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Abstract 

Let P(Zl, ..., 2,) = (.,,, + I ? , ,  U(T1, ...) T n )  n,<,,, 2: be homogeneous PolYnomial of 
degree n in n real variables with integer nonnegative coefficients. The support of such 
polynomial p ( q ,  ..., 2,) is defined as sup&) = { ( T I ,  ..., T,) E I,,, : cyT1 ,..., ,.,,) # 0) . The 
convex hull CO(supp(p)) of supp(p) is called the Newton polytope of p . We study the 
following decision problems , which are far-reaching generalizations of the classical perfect 
matching problem , : 

0 Problem 1 . Consider a homogeneous polynomial p ( q ,  ..., 2,) of degree n in n real 
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it 
true that (1,1, .., 1) E supp(p) ? 

0 Problem 2 . Consider a homogeneous polynomial ~ ( 2 1 ,  ..., 2,) of degree n in n real 
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it 
true that (1,1, .., 1) E CO(supp(p)) ? 

We prove that for hyperbolic polynomials these two problems are equivalent and can be 
solved by deterministic polynomial-time oracle algorithms . This result is based on a "hy- 
perbolic" generalization of Rad0 theorem . 

1 Introduction and motivating examples 

Let ~(zi, -., zn) = E(Tl,...,,.n)E~n,n u( , .~ , . . . , ~~)  nl,,ln z:' be homogeneous polynomial of degree n 
i n n  real variables. Here I k , n  stands for the set of vectors T = ( T I ,  ..., ~ k )  with nonnegative integer 
components and ~i = n. We mainly study in this paper homogeneous polynomials with 
nonnegative integer coefficients . 

Definition 1.1: The support of polynomial p ( q ,  ..., z,) as above is defined as supp(p)  = 

U T 1 ,  " ' 7  rn) E In,, : U(7.1, ...,Tn) # 0} . The convex hull CO(supp(p))  of supp(p)  is called the 
Newton polytope of p . I 

We will study the following decision problems : 

0 Problem 1 . Consider a homogeneous polynomial p ( q  , ..., z,) of degree n in n real 
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it true 
that ( 1 , 1 ,  .., 1) E supp(p)  ? 

0 Problem 2 . Consider a homogeneous polynomial p ( q ,  ..., 2,) of degree n in n real 
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it true 
that ( 1 , 1 ,  .., 1) E CO(supp(p ) )  ? 
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Our goal is solve these decision problems using deterministic polynomial-time oracle algorithms 
, i.e algorithms which evaluate the given p(z1, ..., z,) at polynomial in n and log(p(1, 1, .., 1)) 
number of rational vectors (41, ..., qn) ; these rational vectors (q1, ..., q,) have polynomial in n 
and log(p(1, 1, .., 1)) bit-wise complexity ; and the additional auxilary arithmetic computations 
also take polynomial in n and log(p(1, 1, .., 1)) number of steps . 
The next example explains some (well known ) origins of the both problems . 

Example 1.2: Consider first a multilinear polynomial muZ(z1, ..., 2,) = nl<i<, - Clljs, ai,jxj 
, where A = (ai f  : 1 5 i,j 5 n)  is a square integer matrix . Then 

where AT is a square integer matrix consisting of ri copies of the ith column of A , 1 5 
i 5 n ; and per(A) is the usual permanent of A . Notice that in this multilinear case the 
polynomial p ( . )  can be evaluated in O ( N 2 )  arithmetic operations and (1,1, ..., 1) E supp(p)  iff 
per(A) # 0 . Therefore unless P = N P  there is no hope to design deterministic polynomial 
oracle algorithm solving Problem 1 in this case . Next consider even more general case of 
determinantal polynomials : 

where A = (AI ,  ..., A,) is a n-tuple of positive semidefinite n x n hermitian matrices , i.e. 
Ai 0 , with integer entries . Recall that the mixed discriminant 

It is well known (see , for instance , [19] ) that a determinantal polynomial q ( )  can be represented 
as 

where a n-tuple of square matrices consists of ri copies of Ai, 1 5 i 5 k . One of the equivalent 
formulations [28] of the classical Rad0 theorem states that D(AT) > 0 iff 

R a n k ( c A i )  2 IS1 for all S c {1,2,  ..., n} 
iES 

(3) 

One important corollary of the Rad0 conditions (3) is that 

1.e. if integer vectors r , r ( l ) ,  r(2),  ..., r (k )  E I (n ,  n)  and 
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and D(A,(i)) > 0 , l  5 i 5 k then also D(A,)  > 0 . Notice, that in this case Problem 1 and 
Problem 2 are equivalent . 
We can rewrite Rad0 conditions (3) as follows : 

Putting things together we get the following Fact . 

Fact 1.3 The following properties of determinantal polynomial q((z1, ..., z,) = det(Cl,i<n Aizi) 
with n x n hermitian matrices Ai 

_ _  
0 , l  5 i 5 n are equivalent . 

, where (SI, ..., sn) is a characteristic function of the subset S , i.e. si = 1 if i E S , and 
si = 0 otherwise . 
Notice that if (6) holds then the distance 
to the Newton polytope CO(supp(q)) as at 

the vector e = (1, ..., 1) 

I 

We will show that for any class of polynomials satisfying Fact () there exists a deterministic 
polynomial-time oracle algorithm solving both Problem 1 and Problem 2 , which are , of course 
, equivalent in this case . Our algorithm is based on the reduction to some convex programming 

. problem and the consequent use of the Ellipsoids method . 
The next fact about determinantal polynomials , namely their hyperbolicity , is happened to 
be the most important . 

Fact 1.4: Consider a determinantal polynomial q((z1, ..., 2,) = det(Cl,i,, Aizi) with Ai 2 
0 , l  5 i 5 n . Assume that q is not identically zero , i.e. that B =: Ai + 0 (the sum is 
strictly positive definite ). For a real vector ( 2 1 ,  ..., z,) E Rn consider t se  following polynomial 
equation of degree n in one variable : 

_ _  

P( t )  = q(z1 - t ,  2 2  - t ,  ..., z, - t )  = det( Aizi - t Ai)  = 0. (7) 
lsisn l s i < n  

The equation (7) has n real roots roots counting the multiplicities ; if the real vector ( 2 1 ,  ..., z,) E 
R" has nonnegative entries then all roots of (7) are nonnegative real numbers . I 
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Proof: First , the matrix A =: Cl<i<nAixi is hermitian . Second , det(A - t B )  = 0 iff 
det(B-tAB-5 - t1) = 0 , where B-5 is the unique positive definite operator square root of 
positrive definite matrix B-' . As , clearly , B-5AB-T is also hermitian hence its eigenvalues 
, which are the roots of () , are real . If xi 2 0 , l  5 i 5 n , 'then the matrix B-i  AB-; 0 . 
Therefore in this case the roots of (7) are nonnegative real numbers . I 

Section 1.1 , is sufficient for Fact 1.3 ; i.e. Fact 1.4 implies Fact 1.4 . I 

1 T -  

1 1 

The main result of this paper that this hyperbolicity , which we will describe formally in 

1.1 Hyperbolic polynomials 

The following concept of hyperbolic polynomials was originated in the theory of partial differ- 
ential equations [15] . 
A homogeneous polynomial p(x), x E Rm of degree n in m real varibles is is called hyperbolic in 
the direction e E Rm (or e- hyperbolic) if for any z E Rm the polynomial p(x - Xe) in the one 
variable X has exactly n real roots counting their multiplicities. We assume in this paper that 
p(e) > 0 .  Denote an ordered vector of roots ofp(x-Xe) as X(z) = (Xl(x) 2 Xz(z) 2 e . .  Xn(x)). It 
is well known that the product of roots is equal to p ( x ) .  Call x E Rm e-positive (e-nonnegative) 
if Xn(x) > 0 (X,(x) 2 0). The fundamental result [15] in the theory of hyperbolic polynomi- 
als states that the set of e-nonnegative vectors is a closed convex cone. A Ic-tuple of vectors 
( ~ 1 ,  ... x,+) is called e-positive (e-nonnegative) if xi, 1 5 . < Ic are e-positive (e-nonnegative). 
We denote the closed convex cone of e-nonnegative vectors as N,(p) ,  and the open convex cone 
of e-positive vectors as Ce(p) .  It has been shown in [15] (see also [ Z l ] )  that an e- hyperbolic 
polynomial p is also d- hyperbolic for all e-positive vectors d E C e ( p ) .  
Let us fix n real vectors xi E Rm, 1 5 i 5 n and define the following homogeneous polynomial: 

' 

1-  

%,..,z, (a1 , . . ., an) = p (  a i 4  
l j i s n  

Following [21] , we define the p-mixed value of an n-vector tuple X = (XI, .., xn) as 

Equivalently, the p-mixed value Mp(zl, .., 2,) can be defined by the polarization (see [ Z l ] )  : 

Mp(xl, .., 2,) = 2-* P(  h i )  n bi (10) 
b, E{ - 1 ,+1},1 sisn 1 i i i n  lsisn 

Associate with any vector T = (q, ..., T,) E In,n an n-tuple of m-dimensional vectors X, 
consisting of ~i copies of xi(1 5 i 5 n).  It follows, for instance from the polarization identity 
( lo) ,  that 

1 

For e-nonnegative tuple X = (51, .., x,), define its capacity as: 
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Probably the best known example of a hyperbolic polynomial is 

P(a0, ..., a k )  = D e t (  aiAi) 
OLi<k  

(13) 

where Ai,O 5 i 5 IC are hermitian matrices and the linear space spanned by Ai,O 5 i 5 IC 
contains a strictly positive definite matrix: &Ai = B + 0. This polynomial is hyperbolic 
in the direction ,!3 = (P I ,  ..., P k ) .  We can assume wlog that B = I and that ,8 = (1,0,0, ..., 0). 
In other words, after a nonsingular linear change of variables 

where the matrices Bi, 1 5 i 5 IC are hermitian and Bo = I .  
In this case mixed forms are just mixed discriminants. 
We make a substantial use of the following very recent result [22] , which is a rather direct 
corollary of [l] , [30] and even much older [lo] . 

Theorem 1.5: Consider a homogeneous polynomial p(y1, y2, y3 ) )  of degree n in 3 real variables 
which i s  hyperbolic in the direction (O,O, 1). Assume that p(O,O, 1) = 1 . T h e n  there exists two 
n x n real symmetric matrices A, B such that 

It has been shown in [16] that most of known facts (and some opened problems ) about hyper- 
bolic polynomials follow from Theorem 1.5 . 

2 A hyperbolic analogue of the Rad0 theorem 

Definition 2.1: Consider a homogeneous polynomial p ( z ) ,  z E Rm of degree n in m real 
variables which is hyperbolic in the direction e.Denote an ordered vector of roots of p ( z  - Ae) 
as A ( x )  = (Al(z) 2 X,(z) 2 ... A,(%)) . We define the p-rank of z E Rm in direction e as 
Ranlcp(z )  = I{i : Ai (z)  # O}l .  It follows from Theorem 1.5 that the p-rank of z E Rm in any 
direction d E C, is equal to the p-rank of z E Rm in direction e , which we call the p-rank of 
x € R m . I  

Consider the following polynomial in one variable D ( t )  = p( td  + x )  = 

from the identity (11) that 
~ t ' .  It follows _ _  

c, = ~ ~ ( d ,  ..,d)(n!)-l = p ( d ) , c , - i  = ~ ~ ( z , d ,  .., d)(l!(n--l)!)-l, ..., co = M ~ ( Z ,  .., z ) (n! ) -  1 = p ( z ) .  

Let (Ay)(z) 2 A, (4 (z) 2 ... 2 A, (4 (z)) be the (real) roots of z in the e-positive direction d ,  i.e. 
(15) 

the roots of the equation p ( t d  - z) = 0 . Define (canonical symmetric functions) : 

S k , d ( x )  = xi,(z)xi2(z)...Xik(2) 
1521<i2<...<ik<72 
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Then S k , d ( x )  = 7 Cn-k . Clearly if x is e-nonnegative then for any e-positive d the p rank  
R a n k p ( x )  = max{k : Sk,d(x) > 0 }  . The next theorem , which we prove in Appendix A , is the 
main mathematical result of this paper . 

Theorem 2.2 Consider a homogeneous polynomial p ( x ) ,  x E Rm of degree n in m real variables 
which i s  hyperbolic in the direction e .  Let (X) = ( 2 1 ,  ... x k ) ,  xi E R" be e-nonnegative) n-tuple 
of m-dimensional vectors , i.e. xi ,  1 5 i 5 k are e-nonnegative . 
T h e n  the p-mixed f o r m  M p ( X )  =: M p ( x l ,  . . ,xn) is positive i f  the following generalized Rad0 
conditions hold : 

R a n k p ( x x i )  2 (SI f o r  all S c {1,2, ..., n } .  (16) 
iES 

Definition 2.3: Call a homogeneous polynomial p ( x ) ,  x E Rn of degree n in n real variables P- 
hyperbolic if it is hyperbolic in direction e = (1,1, ... 1) (vector of all ones) and all canonical orts 
e*, 1 5 i 5 n (rows of the identity matrix I ) are e-nonnegative . Call a homogeneous polynomial 
q ( x ) ,  x E Rn of degree n in n real variables with nonnegative coefficients S-hyperbolic if there 
exists a P-hyperbolic polynomial p such that supp(p)  = supp(q) . I 

Corollary 2.4: Let q ( x ) , x  E Rn be S-hyperbolic polynomial of degree n . 
Then  CO(supp(q)) n In,n . 

Corollary 2.5: Let q ( x ) , x  E Rn be S-hyperbolic polynomial of degree n . Then the following 
conditions are equivalent 

1. 

2. 

3. 

4.  

5. 

6. 

For all E > 0 there exists a vector ( a ~ ,  ..., an) with positive entries such that the following 
inequality holds : 

a 

(17) 
a i G q ( a 1 ,  .'., an) 

- 112 5 E .  
l<i<n I q(a1, ... ,an> 

There exists a vector (a1, ..., a,) with positive entries such that the following inequality 

1 
holds : ' I q(a1, ' " 7  an) n (18) 

a (al, ..., an) 
- 112 5 -. aai 4 

l<i<n 

For all subsets S C {1,2, ..., n }  the following inequality holds : 
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(We sketch a proof in Appendix C . ) 

The following result , which we prove in Appendix B , is a "polynomial" generalization of 
Lemma 4.2 in [17] . 

Proposition 2.6: The  condition (18) implies the condition (19) for  all homogeneous polyno- 
mial q ( x ) , x  E Rn of degree n in n real variables with nonnegative coeficients . 

3 The ellipsoid algorithm 

Consider a homogeneous polynomial q(z), 2 E R" of degree n in n real variables with nonneg- 
ative integer coefficients . Associate with such q the following convex functional 

f(y1, ..., yn) = 1og(q(eY1,eY2, ..., eYn). 

Proposition 3.1: The following conditions' are equivalent 

If e = (171, .., 1) $ CO(supp(q)) then in&+ ...+y ,=O f ( Y l ,  '", Yn) = - 00. 

Let d i s t (e ,  CO(supp(q)))  = A-l > 0 and Q = log(q(e)) . Define y = ( Q  + 1)A . Then  

f (91, ..., Yn) 5 -1. (20) inf f ( Y l ,  '", Yn) = min 
Yl+...+Y,=o,(lYll2+...+~y~~~)~ 5-y Y1+ . . .+yn =o, IY112+. . .+ Iyn 125-y 

Proof: Our proof is a strigthforward application of the concavity of the logarithm on the 
positive semi-axis and of Hanh-Banach separation theorem . It will be included in the full 
version . I 

Proposition 3.1 suggests the following natural approach to solve Problem 2 , i.e. to decide 
whether e = (1 ,1 ,  .., 1) E CO(supp(q))  or not : 
find m i n y l + . . . + y n ~ O , ~ y l ~ ~ + . . . + ~ y , ~ ~ ~ ~  f(y1, ..., yn) with absolute accuracy . If the resulting value 
is greater or equal -f then e = (1 ,1 ,  :., 1) E CO(supp(q)) ; if the resulting value is less or 
equal - $  then e = ( l , l , . . , l )  $ CO(supp(q)) . And , of course , it is natural to use the 
ellipsoid method . Our main tool is the following property of the ellipsoid algorithm [26]: For a 
prescribed accuracy 6 > 0, it finds a &minimizer of a differentiable convex function f in a ball 
B, that is a point z6 E B with f ( q )  5 minB f + 6, in no more than 

> VarB(f) = maxf - minf 
B B 

( 2 (2s+varB(f)))  
s 0 n In 

iterations. Each iteration requires a single computation of the value and of the gradient o f f  at 
a given point, plus O ( n 2 )  elementary operations to run the algorithm itself. In our case, this is 
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easily seen to cost at most O(n2) oracle calls and O(n) elementary arithmetic operations . 
We have n - 1 dimensional ball B, = { (y1,  ... , y n )  : y1 + ... + yn = 0,  I y1 l2 + ... + I ynI2 5 y}. A 
straigthforward computations show that 

V a r B ( f )  5 log(q(l,l,  .., l )eyn)  - log(q(l,l,  .., l)e-7n) 5 2yn. 

Which gives O(n2(1n(n) + In(?)) iterations of the ellipsoid method needed to solve Problem 2 
, it amounts to O(n4(1n(n) + ln(y)) oracle calls . And O(n4(ln(n) + In(?)) is polynomial in n 
even if y is exponentially large (d is t (e ,  CO(supp(q)))  is exponentially small ). The problem is 
that if y is exponentially large ( and it can happened ) then we need to call oracles on inputs 
with exponential bit-size . 
Putting things together , we get the following conclusion : 
If it i s  promised that either e = (1,1, .., 1) E CO(supp(q)) or dis t (e ,  CO(supp(q)))  2 poly(n)- l  
for  some fixed polynomial po ly (n )  then Problem 1 can be solved by a deterministic polynomial- 
t ime oracle algorithm based on  the ellipsoid method . 
And at this point we can say nothing about Problem 1 , i.e. deciding whether e = (1,1, .., 1) E 
supp(q)  or not . Corollary 2.5 says that if q is S-hyperbolic polynomial then Problem 1 and 
Problem 2 are equivalent ; moreover if e = (l,l,..,l) $! supp(q)  then here exists nonempty 
S c {1,2, ..., n} such that 

risi < si = 1st for ali(r1, ..., r,) E supp(q) ,  (22) 
l s i i n  lsisn 

, where (SI, ..., sn)  is a characteristic function of the subset S , i.e. si = 1 if i E S , and si = 0 
otherwise . 
Notice that if (22) holds then the distance dis t (e ,  CO(supp(q)))  from the vector e = (1, ..., 1) 
to the Newton polytope CO(supp(q)) is at least JT Isl(.-lsl) > - 2 JF; . Thus we have the next 
theorem . 

Theorem 3.2: Problem I and Problem 2 are equivalent for  S-hyperbolic polynomials . There 
exists a deterministic polynomial-time oracle algorithm solving Problem 1 for  a given S-hyperbolic 
polynomial q(a1,  ..., an) with integer coeficients . It requires O(n4(ln(n)+ln(ln(q(l, 1, ..., 1))) or- 
acle calls and it bit-wise complexity (which roughly the radius of the ball B, ) is  O(ni In(q(1, 1, ..., 1)) 

4 Hyperbolic Sinkhorn scaling 

We will discuss briefly in this section another method , which is essentially a large step version 
of the gradient descent . 

Definition 4.1: Consider an e-nonnegative tuple X = (21, .., 2,) such that the sum of its 
components S(X) = d = C l < i l k z i  is e-positive. Define trd(z) as a sum of roots of the 
univariate polynomial equation>(z - t d )  = 0.  
Define the following map (Hyperbolic Sinkhorn Scaling) acting on such tuples: 
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Hyperbolic Sinkhorn Iteration (HSI) is a recursive procedure: 

Xj+i = H S ( X j ) , j  2 0, Xo is an e-nonnegative tuple with Ti E Ce . 
l < i < k  

We also define the doubly-stochastic defect of e-nonnegative tuples with e-positive sums as 

D S ( X )  = (trd(xi) - 1)2; xi = d E C, 
l < i < k  l < i < k  

I 

We can define the map H S ( . )  directly in terms of the P-hyperbolic polynomial 

Q(a1, ...>an) = Pz1,..,zn(a1, “ ‘1 4 = P( C Y i X i ) .  
l<i<n 

Indeed, if Clliln aixi = d E C, then 

a ai ~ Q ( a 1 ,  .’., an) 
Q(w, ..., an) trd(a2zi) = 

This gives the following way to redefine the map H S ( X )  : 

(23) 

And correspondingly the doubly-stochastic defect of (al, ..., a,) is equal to 

the same as the left side of (18 ) . Notice that 

Example 4.2: Consider the following hyperbolic polynomial in n variables: p ( q ,  ..., 2,)  = nlsiLn zi. It is e- hyperbolic for e = (1,1, ..., 1). And Ne is a nonnegative orthant, Ce is a 
positive orthant. An e-nonnegative tuple X = (21, .., 2,) can be represented by an n x n matrix 
Ax with nonnegative entries: the i th column of A is a vector xi E Rn. If 2 = (21 ,  ..., 2,) E Rn 
and d = (dl, ..., d,) E Rn; zi > 0 , l  5 i 5 n, then t rd(2)  = Cl<i<n 2. Recall that for a square 
matrix A = {aij : 1 5 i , j  5 N }  row scaling is defined as 

trd(xi) = n by the Euler’s identity . - 

_ -  

column scaling as C ( A )  = { ‘*j } assuming that all denominators are nonzero. The iterative 

process ... CRCR(A)  is called Sinkhorn’s iterative scaling (SI). In terms of the matrix Ax the 
map H S ( X )  can be realized as follows: 

xi aij 

AHS(X) = C ( R ( A x ) )  

So, the map H S ( X )  is indeed a (rather far-reaching) generalization of Sinkhorn’s scaling. Other 
generalizations (not all hyperbolic) can be found in [20], [3], [2]. I 
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The following result , proved in [16] , allows to use (HSI) to solve Problem 1 for P-hyperbolic 
polynomials q in the same way as it was done for the perfect matching problem in [20] , [17] ; and 
for the Edmonds' problem in [3] . The corresponding complexity is O ( n  log(q(e) ) )  iterations of 
(HSI) , which can be done in O(n3 log(q(e))) oracle calls . The algorithm works in the following 
way : 

R u n  K = O ( n l o g ( q ( e ) ) )  Hyperbolic Sinkhorn Iterations X j+l  = H S ( X j )  ; if D S ( X i )  5 f for  
some i 5 K then the p-mixed f o r m  M p ( X o )  > 0 , and M P ( X o )  = 0 otherwise . 

Proposition 4.3: Let yi = , where xi is e-nonnegative , 1 5 i 5 n , and d = C l < i < n x i  - -  
as e -  positive . Then (clearly) w = Cl<i<n yi is  e-  positive . Let positive real numbers X1 2 
... 2 Xn be the roots of the equation p(w-- t d )  = 0. Then C15i5n X i  = n and thus p ( w )  = 

I n  terms of the corresponding P-hyperbolic polynomial Q , the following inequality holds : 
P ( d )  r I l< i<n  Xi I P@)  * 

(24) 
a d 

sal dan 
&((-&(ai, ...,a,))-', ..., (--(ai, ..., a,))-') 5 &(ai, ..., ai > 0. 

5 Conclusion and Acknowledgments 

Univariate polynomials with real roots appear quite often in modern combinatorics , especially 
in the context of integer polytopes . We discovered in this paper rather unexpected and very 
likely far-reaching connections between hyperbolic polynomials and many classical combinato- 
rial and algorithmic problems . There are still several open problems . The most interesting 
is a hyperbolic generalization of the van der Waerden conjecture for permanents of doubly 
stochastic matrices . 

Question 5.1: Define the van der Waerden constant of a hyperbolic in direction e polynomial 
p ( y 1 ,  ..., y m )  of degree n in rn real variables as 

where the infimum is taken over the set of tuples ( 2 1 ,  .., 2,) of e-positive vectors. It is easy to 
see that V D W ( p )  5 $. Is V D W ( p )  = $ ? Is it positive ? I 

For a hyperbolic in direction (1 ,1 ,  .., 1) polynomial Mul(y1, ..., yn) = y1y2 ...yn this question 
is equivalent to the famous van der Waerden conjecture for permanents of doubly stochastic 
matrices , proved in [12] , [13] . For a hyperbolic in direction I polynomial det(X) , X is n x n 
herinitian matrix , it is equivalent to Bapat's conjecture [5] (it was also hinted in [12] ) , proved 
by the author in [18] , [29] . 

I would like to acknowledge a great influence of amazingly clear paper [21] . It is my pleasure 
to thank Adrian Lewis for numerous as e-mail as well phone communications. Many thanks to 
the fantastic library of Los Alamos National Laboratory: all references I needed were there. 
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Proof of the (main ) Theorem 2.2 

Before proving Theorem 2.2 , we will recall some basic properties of p-mixed forms and prove 
a few auxillary results . The following fact was proved in [21] 
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Fact A.l:  Consider a homogeneous polynomial p ( x ) ,  x E Rm of degree n in rn real variables 
which is hyperbolic in the direction e. Then the following properties hold . 

1. The pmixed form M p ( x l ,  .., 2,) is linear in each x i ,  1 5 i 5 n. 

2. If x 1 , 2 2 ,  .., x,-1 are e-nonnegative then the linear functional l (2)  = M p ( x l ,  .., x n - l ,  x )  is 
nonnegative on the closed cone Ne of e-nonnegative vectors . 

3. If the tuples ( 2 1 ,  .., x , ) ,  (91, .., y,), ( X I  - 91, .., x ,  - y,) are e-nonnegative then 

4. Fix e-positive vector d and consider the following homogeneous polynomial pd(x), x E R" 
of degree n - 1 in m real variables : pd(x) =: Mp(x, x ,  ..., x ,  d) . Then pd is hyperbolic in 
any e-positive direction t~ E Ce(p) . If g E Ce(p) ( e-positive respect to the polynomial p 
) then also q E Cv(pd)  for all t~ E C,(p) . 

I 

The next fact is well known 

Fact A.2: Consider a sequence of univariate polynomials of the same degree n : Pk(t) = 
C05i5nai,ktZ . suppose that limk+coai,k = ai,O 2 i 5 n and a, # 0 . 
Define P ( t )  = aiti . Then roots of Pk converge to roots of P . In particular if roots of 
all polynomials Pk-are real then also roots of P are real ; if roots of all polynomials Pk are real 
nonnegative numbers then also also roots of P are real nonnegative numbers . I 

The following corollary of Theorem 1.5 plays crucial role in our proof of Theorem 2.2 . 

Corollary A.3: 

1. Consider a homogeneous polynomial p ( x ) , x  E R" of degree n in m real variables which 
is hyperbolic in the direction e. Let x 1 , x 2 , x 3  be three e-nonnegative vectors and d = 

x1 + 2 2  + 2 3  is e-positive . Assume wlog that p(x1  + 2 2  + " 3 )  = 1 . Then there exists 
three symmetric positive semidefinite matrices A, B ,  C such that p ( a l x l +  a222 + ~ 3 x 3 )  = 

det(alA + a2B + a3C for  all real a l ,  1-22, a3. Additionally , the roots of a1x1 + a222 + a323 

in the direction d , i. e. the roots of the equation p ( a l x l +  ~ 2 x 2  + a323 - td) = 0 , coincide 
with the eigenvalues of alA + a2B + a3C . 

2. Theorem 2.2 is true for  e-nonnegative tuples (X) = ( 2 1 ,  ... x , ) , x i  E R" consisting of at 
most three distinct components , i.e the cardinality of the set (21 ,  ... x,} is at most three . 

Proof: 
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1. Consider the following homogeneous polynomial L(b1, bz ,  b3) = P(blz1 + bzx2 + b3(x1 + 
22 + 23))  of degree n in 3 real variables . It follows from Theorem 1.5 that there exists two 
real symmetric matrices A and B such that L(b1, bz ,  b3) = det(b,A+bzB+b3I) . It follows 
that they both positive semidefinite , and C = I - A - B is also positive semidefinite . 
Take a real linear combination z = a121 + a222 + ~ 3 x 3 .  Then 

' 

p(z - t ( q +  x2 + 23)) = det ((a1 - a3)A + (a2 - a3)B +a31 - t I )  = det(alA+ azB +a3C - tI). 

This proves that p(alx1 + ~ 2 x 2  + ~3.3) = det(a1A + azB + a3C) for all real al, a2, a3 by 
putting t = 0. And it also proves the "eigenvalues " statement . 

2. Consider e-nonnegative tuple (X) consisting of ri copies of xi , 1 5 i 5 3 ; r1 + rz + 7-3 = n 
. Assume that d = 21 + 22 + 2 3  is e-positive (if it is not then M,,(X) = 0 by a simple 
argument based on the monotonicity of p-mixed forms ). It follows from the polarization 
formula (10) , that 

M,,(X) = diP(t1,iXl + t2, ixz + t3,93), 
l < i l k < o O  

and this formula is universal , i.e. holds for all homogeneous polynomial of degree n , in 
particular for det(X) , X is n x n symmetric matrix . Therefore , using the first part 
of this Corollary we get that the p-mixed form M,,(X) = D(A) , where the matrix tuple 
A consists of rl copies of A , r 2  copies of B and 7-3 copies of C and D(A) is the mixed 
discriminant . Using Rad0 theorem for mixed discriminants we get that D(A) > 0 iff 

R a n k ( x A i )  2 c r i  for all S C {1,2,3} .  

But from the first part we get that Rank(CiEs Ai) is equal to p-rank Rank,,(sumi~sxi) 
of CiES xi for all S c {1,2,3} . 

iES i E S  

I 

~ Proposition A.4  Consider similarly to part 4 of Fact A.1  the polynomial pd(x) =: M,,(x, x, ..., x, d )  
where d is e-nonnegative and Rank,,(d) >_ 1 . Then Pd is hyperbolic in any direction z E N,(p) 
which is e-nonnega,tive and satisfies the following inequalities : 

Also , if y E Ne(p) is e-nonnegative then also y E N,(pd) , i.e. is z-nonnegative respect t o  the 
polynomial pd. 

Proof: Let z E Ne(p) be e-nonnegative satisfying (25) . Consider univariate polynomial 
P( t )  = M,,(tz+z,tz+x, ..., t z + x , d )  . Then P ( t )  = &<i<n-l ait and = M p ( z , z ,  ..., z ,  d )  . 
It follows from Corollary A.3 that a,-l > 0 . Consider Lo; a sequence of univariate polynomials 
Pk(t) = Mp(tzk + x,tzk + IC, ..., t z k  + z , d k )  . Where z k , d k  are e-positive and limk+oOzk = 
z ,  limk+, d k  = d . Then the coefficients of polynomials Pk converge to the coefficients of the 

i 
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polynomial P . It follows from part 4 of Fact A.l  that the roots of P ,  are real . Since a,-l > 0 
hence using Fact A.2 we get that the roots of P are also real . This exactly means that the 
polynomial p d  is hyperbolic in direction z . The d-nonnegativity statement follows from the 
nonnegativity part of Fact A.2 . I 

We are ready now to present our proof of Theorem 2.2 . 
Proof: (Proof of Theorem 2.2 ) . The "only if' part is simple . Indeed supposed that there 
exists a subset S C {1,2, ..., n} such that Rankp(CiEszi) < IS1 , i.e. using the identities 
(15) Mp(k ,  k, ... k,d, .., d )  = 0 , where k = CiGs xi , d E Ce(p) is e-positive and the n-tuple 
(k, k, ... k, d,  .., d )  consists of IS/ copies of k = CiEs xi . Let d be any e-positive positive vector 
such that d - zi is e-nonnegative , 1 5 i 5 n . Using the monotonicity of p-mixed forms we get 
that 

M p ( ~ l ,  ..., 2,) 5 Mp(k ,  k, ... k, d,  . . ,d) = 0. 

Our proof of the "if" part is by induction in the degree n . Suppose that the generalized Rad0 
conditions (16) hold . Then at  least Rankp(z,) 2 1 . Consider the following homogeneous 
polynomial of degree n - 1 : 

p d ( 2 )  = M p ( z , z ,  ..., 2, d ) ,  d = 2,. 

We get from Proposition a.4 the following assertion : 
The polynomialpd(z) is hyperbolic in direction z = Cl<iln-l xi and the vectors xi E N , ( p d ) ,  1 5 
i 5 n - 1 , i.e. are z-nonnegative respect to the polynomial p d .  

Indeed , it follows from the generalized Rad0 conditions (16) that Rankp(z) 2 n - 1 and 
Rankp(z + d )  = Rankp(Cl<i,, - -  xi) = n . 

Next we show that the n-1-tuple Y = (21 ,  ..., ~ ~ - 1 )  satisfies the generalized Rad0 conditions 

R a n k p d ( C z i )  2 [SI  for all s c {1,2, ..., n - I}. 
i € S  

Or equivalently , that  

M p ( k ,  .., k , ~ ,  ..., z , d )  > 0; k = CZ~,Z = z i , d = x , , S C { l ,  ..., n-1} ,  (26) 
iES  l<i<n-l  

where the n-tuple T = (IC, .., k, z ,  ..., z ,  d )  consists of IS1 copies of k , n - 1 - IS/ copies of z and 
one copy of d . 
It is easy to see that the generalized Rad0 conditions for the n-tuple T are implied by the 
generalized Rad0 conditions for the original n-tuple X = ( 2 1 ,  ..., Z,-~,X,) . Since the n-tuple 
(k, .., k, z ,  ..., z ,  d )  consists of at  most three distinct components hence we can apply part 2 of 
Corollary A.3 . Therefore we get that indeed 

R a n k p , ( C z i )  2 [SI for all s c {1,2, ..., n - 1). 
i € S  

Thus , by induction in the degree , we get that pd-mixed form M P d ( q ,  ..., ~ ~ - 1 )  > 0 : 
the polynomial pd of degree n - 1 in rn real variables is z-hyperbolic . But 

(27) 
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We conclude that if Theorem 2.2 is true for n - 1 then it is also true for n , and the case 
" n  = 1" is trivially true . I 

B Proof of Proposition 2.6 

Proof: Assume wlog that q(a1, ..., a,) = 1 . It  follows from the Euler's identity that 

Suppose that for some subset S C {1,2,  ..., n}, 1 5 IS( < n we have the inequality CiES ri < 
(SI for all (TI, ...,r,) E supp(q) . Then CiES a iZq(a1 ,  ...,a,) 5 (SI-1.  But the condition (18) 

, X i € ~  I&( I fl < 1 . Therefore , 

a 

says that aiGq(a1, a ...,a,) = 1 + 6i and [& I2  5 . By the Cauchy-Schwarz inequality _ -  

The last inequality gives a contradiction . I 

C A sketch of a proof of Corollary 2.4 

Proof: By Theorem 2.2 the conditions (1). and (2) are equivalent . (2) implies (3) for any 
homogeneous polynomial with nonnegative coefficients . 
Let ai = eYi, 1 5 i 5 n; Yi = 0. Consider the following convex functional - -  

f ( y 1 ,  ..., yn) = log(q(eY1,eY2, ..., eYn). 

Here q(x), x E R" is a homogeneous polynomial of degree n in n real variables with nonnegative 
coefficients . Then 

Notice the condition (3) is equivalent to the following condition : 

inf f(y1,  ..., yn) = L > -m. 
y~S- . . . fyn=O 
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Consider the anti-gradient flow , i.e. the system of differential equations 

It is well known that in this convex case the gradient flow is defined for all t 2 0 . Using the 
Euler's identity we get that 

It is easy to see that because of the convexity of f , a nonnegative function P ( t )  is non- 
increasing on [O, 00) . 
As infY1+...+Yn=o f(y1, ..., yn) = L > -00 thus so" P( t )d t  < 00 . Thus limt+w p( t )  = 0 . This 
proves the implication (3) + (4) for all homogeneous polynomials of degree n in n real variables 
with nonnegative coefficients . 
The implication (4) + (5) is obvious . The implication (5) + (6) for general homogeneous 
polynomials of degree n in n real variables with nonnegative coefficients is Proposition 2.6 . 
Finally , the condition (6) is equivalent to (2) . I 
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