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Abstract

Let p(z1,...,25) = Z(rl,...,rn)eln,n Q(ry,...;rn) [l1<i<n @i° be homogeneous polynomial of
degree n in n real variables with integer nonnegative coefficients. The support of such
polynomial p(z1, ..., %) is defined as supp(p) = {(r1,..,7n) € In;n : Q(ry,....r.y # 0} . The
convex hull CO(supp(p)) of supp(p) is called the Newton polytope of p . We study the
following decision problems , which are far-reaching generalizations of the classical perfect
matching problem , :

e Problem 1 . Consider a homogeneous polynomial p(z1, ..., z,,) of degree n in n real
variables with nonnegative integer coeflicients given as a black box (oracle ) . Is it
true that (1,1,..,1) € supp(p) ?

¢ Problem 2 . Consider a homogeneous polynomial p(z1, ..., z,) of degree n in n real
variables with nonnegative integer coeflicients given as a black box (oracle ) . Is it
true that (1,1,..,1) € CO(supp(p)) ?

We prove that for hyperbolic polynomials these two problems are equivalent and can be
solved by deterministic polynomial-time oracle algorithms . This result is based on a "hy-
perbolic” generalization of Rado theorem .

1 Introduction and motivating examples

~Let p(z1,...,z0) = 22 (r1yesrn)€lnm A(r1,rn) Hi<i<n z;* be homogeneous polynomial of degree n
in n real variables. Here Iy, ,, stands for the set of vectors r = (ry, ..., ry) with nonnegative integer
components and } ;< 7 = n. We mainly study in this paper homogeneous polynomials with
nonnegative integer coefficients .

Definition 1.1: The support of polynomial p(z;,...,z,) as above is defined as supp(p) =

{(r1,-s7n) € Inp @ a(ry,..r) # 0} . The convex hull CO(supp(p)) of supp(p) is called the
Newton polytope of p . I

We will study the following decision problems :

e Problem 1 . Consider a homogeneous polynomial p(zy,...,z,) of degree n in n real
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it true
that (1,1,..,1) € supp(p) ?

e Problem 2 . Consider a homogeneous polynomial p(z1,...,z,) of degree n in n real
variables with nonnegative integer coefficients given as a black box (oracle ) . Is it true
that (1,1,..,1) € CO(supp(p)) ?



Our goal is solve these decision problems using deterministic polynomial-time oracle algorithms
, i.e algorithms which evaluate the given p(z1,...,z,) at polynomial in n and log(p(1,1,..,1))
number of rational vectors (qi,...,qn) ; these rational vectors (qi,...,qn) have polynomial in n
and log(p(1,1,..,1)) bit-wise complexity ; and the additional auxilary arithmetic computations
also take polynomial in n and log(p(1,1,..,1)) number of steps .

The next example explains some (well known ) origins of the both problems .

Example 1.2: Consider first a multilinear polynomial mul(z1, ..., Tn) = [l1<icn L1<j<n %, %5
, where A = (a;; : 1 <14,j < n) is a square integer matrix . Then

p(x1, ..y Tp) = ' Z H o) 'per(A 1 (1)

N
r=(r1,...,rn}E€In,n 1<i<n H1<z<n Ty

where A, is a square integer matrix consisting of r; copies of the ith column of A , 1 <
i < n ; and per(A) is the usual permanent of A . Notice that in this multilinear case the
polynomial p(.) can be evaluated in O(N?) arithmetic operations and (1,1,...,1) € supp(p) iff
per(A) # 0 . Therefore unless P = NP there is no hope to design deterministic polynomial
oracle algorithm solving Problem 1 in this case . Next consider even more general case of
determinantal polynomials :

q(zy, ..., zpn) = det( Z A;z;),

1<i<n

where A = (A4y,...,4,) is a n-tuple of positive semidefinite n X n hermitian matrices , i.e.
A; = 0, with integer entries . Recall that the mixed discriminant

o
D(A) = o dar det(mz;nA izi).

It is well known (see , for instance , [19] ) that a determinantal polynomial ¢() can be represented

as .
1
g(z1,za) = Y, [[ 2P'DA), 5=—— (2)

|
r€lnn 1<i<n H1<z<n T4

where a n-tuple of square matrices consists of r; copies of A;,1 < ¢ < k. One of the equivalent
formulations [28] of the classical Rado theorem states that D(A,) > 0 iff

Rank(d_ 4;) > |S| for all S C {1,2,...,n} (3)
i€ES

One important corollary of the Rado conditions (3) is that
supp(q) = CO(supp(9)) N Inn. (4)

Le. if integer vectors r,7(1),7(2),...,r(k) € I{n,n) and

r= 5 a(i)r(i),a(d) 20,1<i<k Y, a(i),

1<i<k 1<i<k



and D(A,;)) > 0,1 <4 < k then also D(A,) > 0 . Notice that in this case Problem 1 and
Problem 2 are equivalent .
We can rewrite Rado conditions (3) as follows :

max Y r; > |S| forall S C {1,2,...,n} (5)
resupp(e) ;g

Putting things together we get the following Fact .

Fact 1.3: The following properties of determinantal polynomial ¢((z1, ..., Zn) = det(X;<;<n AiTi)
with n X n hermitian matrices 4; > 0,1 < ¢ < n are equivalent .

L (1,1,.,1) ¢ supp(q).
2. (1,1,.,1) ¢ CO(supp(q))-

3. There exists nonempty S C {1,2,...,n} such that

> risi< Y. s =S| for all(ry, ..., mn) € supp(q), (6)

1<i<n 1<iln

, where (s, ..., 8n) is a characteristic function of the subset S ,ie. s; =1ifi€ S, and
8; = 0 otherwise .

Notice that if (6) holds then the distance dist(e, CO(supp(q))) from the vectore = (1,...,1)
to the Newton polytope CO(supp(q)) is at least Fl(n_n—ﬁﬁ > \/lﬁ

We will show that for any class of polynomials satisfying Fact () there exists a deterministic
polynomial-time oracle algorithm solving both Problem 1 and Problem 2 , which are , of course
, equivalent in this case . Our algorithm is based on the reduction to some convex programming
. problem and the consequent use of the Ellipsoids method . '

The next fact about determinantal polynomials , namely their hyperbolicity , is happened to
be the most important .

Fact 1.4: Consider a determinantal polynomial q((z1,...,z,) = det(}>1<;<p, Aizi) with 4; >
0,1 <i < n. Assume that ¢ is not identically zero , i.e. that B =: 3 ;<, 4; > 0 (the sum is
strictly positive definite ). For a real vector (z1,...,z,) € R™ consider the following polynomial
equation of degree n in one variable :

P(t)=q(z1 —t,@p —t,..,zn —t) =det( Y Aimi—t > A;)=0. (7)

1<i<n 1<i<n

The equation (7) has n real roots roots counting the multiplicities ; if the real vector (z1, ..., z,) €
R™ has nonnegative entries then all roots of (7) are nonnegative real numbers . 1



Proof: First , the matrix A =: };;<, 4iz; is hermitian . Second , det(4 — tB) = 0 iff
det(B'%AB‘% —tI) = 0, where B~7 is the unique positive definite operator square root of
positrive definite matrix B! . As, clearly , B~3AB~7 is also hermitian hence its eigenvalues
, which are the roots of () , are real . If z; > 0,1 <4 < n, then the matrix B iAB”3 =0.
Therefore in this case the roots of (7) are nonnegative real numbers . 1

The main result of this paper that this hyperbolicity , which we will describe formally in
Section 1.1, is sufficient for Fact 1.3 ; i.e. Fact 1.4 implies Fact 1.4 . 11

1.1 Hyperbolic polynomials

The following concept of hyperbolic polynomials was originated in the theory of partial differ-
ential equations [15] .

A homogeneous polynomial p(z),z € R™ of degree n in m real varibles is is called hyperbolic in
the direction e € R™ (or e- hyperbolic) if for any z € R™ the polynomial p(xz — Ae) in the one
variable A has exactly n real roots counting their multiplicities. We assume in this paper that
p(e) > 0. Denote an ordered vector of roots of p(z—Ae) as A(z) = (M(z) > Ao(z) 2 .. Aa(z)). It
is well known that the product of roots is equal to p(z). Call ¢ € R™ e-positive (e-nonnegative)
if Ap(z) > 0 (Ap(z) > 0). The fundamental result [15] in the theory of hyperbolic polynomi-
als states that the set of e-nonnegative vectors is a closed convex cone. A k-tuple of vectors
(z1,...zx) is called e-positive (e-nonnegative) if z;,1 < ¢ < k are e-positive (e-nonnegative).
We denote the closed convex cone of e-nonnegative vectors as Ne(p), and the open convex cone
of e-positive vectors as Ce(p). It has been shown in [15] (see also [21]) that an e- hyperbolic
polynomial p is also d- hyperbolic for all e-positive vectors d € C¢(p).

Let us fix n real vectors z; € R™,1 < i < n and define the following homogeneous polynomial:

Poyon(01, o) =p( D o) (8)
1<i<n
Following {21] , we define the p-mixed value of an n-vector tuple X = (z1,..,z,) as
8",
P( ) P(xla ;xn) aal.“aanp(lgzzsnaixl) ( )
Equivalently, the p-mixed value Mp(z1,..,z,) can be defined by the polarization (see [21}) :

Mp(arl,..,xn)=2_” Z p( Z b;z;) H b; (10)

bie{~1,+1},1<i<n  1<i<n 1<i<n

Associate with any vector r = (rq,...,7,) € Inn an n-tuple of m-dimensional vectors X,
consisting of r; copies of z;(1 < ¢ < n). It follows, for instance from the polarization identity
(10), that

4 1
P:z:1,..,.’l:n(a1) ey an) = Z H a:tMp(Xr) 1 (11)
reln 1<i<n Mi<icn it
For e-nonnegative tuple X = (z1, .., Z, ), define its capacity as:
Cap(X) = inf Pry a1, ..y 0n) (12)

ai>0,] ], ¢, =1

4



Probably the best known example of a hyperbolic polynomial is

P(ayg, ...,ar) = Det( E a; A;) (13)
0<i<k

where A;,0 < 7 < k are hermitian matrices and the linear space spanned by 4;,0 < : < k
contains a strictly positive definite matrix: > g<;<s B;A; = B > 0. This polynomial is hyperbolic
in the direction 8 = (B4, ..., Bx). We can assume wlog that B = I and that 8 = (1,0,0,...,0).
In other words, after a nonsingular linear change of variables

P(ag,...,o) = Det( Y 04B;) (14)
0<i<k

where the matrices B;,1 <1 < k are hermitian and By = I.

In this case mixed forms are just mixed discriminants.

We make a substantial use of the following very recent result [22] , which is a rather direct
corollary of [1] , [30] and even much older [10] .

Theorem 1.5: Consider a homogeneous polynomial p(y1,y2,ys)) of degree n in 3 real variables
which is hyperbolic in the direction (0,0,1). Assume that p(0,0,1) =1 . Then there exists two
n X n real symmetric matrices A, B such that

p(y1,Y2,y3)) = det(y14 + y2 B + ysl).

It has been shown in [16] that most of known facts (and some opened problems ) about hyper-
bolic polynomials follow from Theorem 1.5 . :

2 A hyperbolic analogue of the Rado theorem

Definition 2.1: Consider a homogeneous polynomial p(z),z € R™ of degree n in m real
variables which is hyperbolic in the direction e.Denote an ordered vector of roots of p(z — Ae)
as A(z) = (M(z) > A(z) > .. Au(z)) . We define the p-rank of z € R™ in direction e as
Ranky(z) = |{ : Ai(z) # 0}|. It follows from Theorem 1.5 that the p-rank of x € R™ in any
direction d € C, is equal to the p-rank of z € R™ in direction e , which we call the p-rank of
z€R™ .1

Consider the following polynomial in one variable D(t) = p(td + &) = Yy<;<, cit’. It follows
from the identity (11) that

en = Mp(d, .., d)(n!) ™! = p(d), ca—1 = Mp(z,d,..,d) (1N (n-1))"1, .., co = Mp(z, .., z)(n)) ™! = p(z).

(15)
Let ()\gd) (z) > )\gd) () >..> D (z)) be the (real) roots of z in the e-positive direction d, i.e.
the roots of the equation p(td — z) = 0 . Define (canonical symmetric functions) :

Sk’d(:c) = Z )‘il (x))\i2(a:)...)\ik (.’1:)

1<81 <22<...<ip<n

5



Then Sj4(z) = c'; 2 Clearly if z is e-nonnegative then for any e-positive d the p-rank

Ranky(z) = max{k : Sk 4(x) > 0} . The next theorem , which we prove in Appendix A , is the
main mathematical result of this paper .

Theorem 2.2: Consider a homogeneous polynomial p(z),x € R™ of degree n tn m real variables
which is hyperbolic in the direction e. Let (X) = (z1,...xx),z; € R™ be e-nonnegative) n-tuple
of m-dimensional vectors , i.e. x;,1 <1 <k are e-nonnegative .
Then the p-mized form Mp(X) =: Mp(z1,..,2n) s positive iff the following generalized Rado
conditions hold :
Rankp(z z;) > |S| forall S C{1,2,..,n}. (16)
1ES

Definition 2.3: Call a homogeneous polynomial p(z),z € R™ of degree n in n real variables P-
hyperbolic if it is hyperbolic in direction e = (1,1, ...1) (vector of all ones) and all canonical orts
ei, 1 < i < n (rows of the identity matrix I ) are e-nonnegative . Call a homogeneous polynomial
g(z),z € R"™ of degree n in n real variables with nonnegative coefficients S-hyperbolic if there
exists a P-hyperbolic polynomial p such that supp(p) = supp(q) . §

Corollary 2.4: Let g(z),z € R™ be S-hyperbolic polynomial of degree n .
Then CO(supp(q)) NInn -

Corollary 2.5: Let q(z),z € R™ be S-hyperbolic polynomial of degree n . Then the following
conditions are equivalent

1. e € CO(supp(q)) -
2. e € supp(q) , t.e. %{%‘mq(m) >0.
3. Cap(p) =: infae>0,l_[1<,»<,, a=19(01, -, an) > 0.

4. For all € > 0 there exists a vector (o, ..., ) with positive entries such that the following
inequality holds :

> | """ 22)_jpce (17)

1<i<n 0(1, ’an)

5. There exists a vector (aq, ..., an) with positive entries such that the following inequality
holds :

5 zaa ey Ol _1|2§1' (18)

1<i<n al’ an)

3

6. For all subsets S C {1,2,...,n} the following inequality holds :

Zri 2 |S| fOT all (7'1,---,7'n) € supp(q) (19)
€S



(We sketch a proof in Appendix C . )

The following result , which we prove in Appendix B , is a ”polynomial” generalization of
Lemma 4.2 in [17] .

Proposition 2.6: The condition (18) implies the condition (19) for all homogeneous polyno-
mial g(z),z € R™ of degree n in n real variables with nonnegative coefficients .

3 The ellipsoid algorithm

Consider a homogeneous polynomial ¢(z),z € R™ of degree n in n real variables with nonneg-
ative integer coefficients . Associate with such ¢ the following convex functional

Fy1, ., yn) = log(g(e¥*, €%, ..., e¥").
Proposition 3.1: The following conditions are equivalent

1. e=(1,1,..,1) € CO(supp(q)) .

2. infy, 4. 4yn=0 f(y1,..,¥n) 2 0.

Ife=(1,1,.,1) ¢ CO(supp(q)) then infy,y 4y,—0 f(y1,-,yn) = —00.
Let dist(e, CO(supp(q))) = A~1 > 0 and Q = log(q(e)) . Define vy = (Q + 1)A . Then

inf f(yl) )y’n) = f(yb 7yn) < -1 (20)

min
Y1+t yn=0,(ly1 >+ +lyn|?) T <y Yt yn=0ly1l - Hyn|?<y

Proof: Our proof is a strigthforward application of the concavity of the logarithm on the
positive semi-axis and of Hanh-Banach separation theorem . It will be included in the full
version . I

Proposition 3.1 suggests the following natural approach to solve Problem 2 , i.e. to decide
whether e = (1,1, ..,1) € CO(supp(q)) or not :
find ming, 4 4y —0/jy1j2+..+|yn|2<y F (Y1, -, Yn) With absolute accuracy % . If the resulting value
is greater or equal —% then e = (1,1,..,1) € CO(supp(q)) ; if the resulting value is less or
equal —% then e = (1,1,..,1) ¢ CO(supp(q)) . And , of course , it is natural to use the
ellipsoid method . Our main tool is the following property of the ellipsoid algorithm [26]: For a
prescribed accuracy § > 0, it finds a d-minimizer of a differentiable convex function f in a ball
B, that is a point z; € B with f(zs) < ming f + §, in no more than

0 (n2 In (M)) , Varp(f) = mgxf - rri_)i,nf (21)

iterations. Each iteration requires a single computation of the value and of the gradient of f at
a given point, plus O(n?) elementary operations to run the algorithm itself. In our case, this is



easily seen to cost at most O(n?) oracle calls and O(n) elementary arithmetic operations .
We have n — 1 dimensional ball By = {(y1, .-, ¥n) : y1+ . +yn =0, [y1|2 + ... + |yn[2 < 7} A
straigthforward computations show that

Varp(f) <log(q(1,1,..,1)e™) —log(g(1, 1, ., 1)e™™) < 2yn.

Which gives O(n?(In(n) + In(y)) iterations of the ellipsoid method needed to solve Problem 2
, it amounts to O(n*(In(n) + In(y)) oracle calls . And O(n*(In(n) + In(y)) is polynomial in n
even if v is exponentially large (dist(e, CO(supp(q))) is exponentially small ). The problem is
that if v is exponentially large ( and it can happened ) then we need to call oracles on inputs
with exponential bit-size .

Putting things together , we get the following conclusion :

If it is promised that either e = (1,1,..,1) € CO(supp(q)) or dist(e, CO(supp(q))) > poly(n)~!
for some fized polynomial poly(n) then Problem 1 can be solved by a deterministic polynomial-
time oracle algorithm based on the ellipsoid method .

And at this point we can say nothing about Problem 1, i.e. deciding whether e = (1,1,..,1) €
supp(q) or not . Corollary 2.5 says that if ¢ is S-hyperbolic polynomial then Problem 1 and
Problem 2 are equivalent ; moreover if e = (1,1,..,1) ¢ supp(q) then here exists nonempty
S c{1,2,...,n} such that

Z ris; < Z s; = | S| for all(ry, ...,mn) € supp(q), (22)
1<i<n 1<i<n

, where (s1, ..., 8,) is a characteristic function of the subset S ,ie. s, =1if1€ S, and 5, =0
otherwise .

Notice that if (22) holds then the distance dist(e, CO(supp(q)
to the Newton polytope CO(supp(q)) is at least 1/@'@%@5

theorem .

~—

) from the vector e = (1,...,1)
—\/2? . Thus we have the next

v

Theorem 3.2: Problem 1 and Problem 2 are equivalent for S-hyperbolic polynomials . There
exists a deterministic polynomial-time oracle algorithm solving Problem 1 for a given S-hyperbolic
polynomial g(o, ..., o) with integer coefficients . It requires O(n*(In(n)+In(In(g(1, 1, ...,1))) or-
acle calls and it bit-wise complezity (which roughly the radius of the ball By ) is O(n% In(q(1,1,...,1))

4 Hyperbolic Sinkhorn scaling

We will discuss briefly in this section another method , which is essentially a large step version
of the gradient descent .

Definition 4.1: Consider an e-nonnegative tuple X = (z1,..,Zn) such that the sum of its
components S(X) = d = Y << i is e-positive. Define trq(z) as a sum of roots of the
univariate polynomial equation p(z — td) = 0.

Define the following map (Hyperbolic Sinkhorn Scaling) acting on such tuples:

T Tn

HSX) =Y = (@) tralen)

8



Hyperbolic Sinkhorn Iteration (FISI) is a recursive procedure:
X;41 = HS(X;),j >0, Xo is an e-nonnegative tuple with > z; € C, .
1<i<k
We also define the doubly-stochastic defect of e-nonnegative tuples with e-positive sums as

DS(X) = z (trd(xz - 1 Z z,=d¢e C,

1<i<k 1<z<k

We can define the map HS(.) directly in terms of the P-hyp.erbolic polynomial
Qar,...;on) = Py zular,..yon) = p( Z ;T;).

1<i<n

Indeed, if 31 <;<p @ii = d € Ce then

i Q(an, . an)
Q(a, ..., an)
This gives the following way to redefine the map HS(X) :

trg(a;z;) = (23)

Q(ala" a'n) Q(ala" an) -
HS yeey An ) = ey y O 0;1 <i<n.
(e, -, am) (aalQ(al,.. 3 Qe e rsn

And correspondingly the doubly-stochastic defect of (ay, ..., ap) is equal to

aza a]_.. )
PO T -1,

152n Qlon, o 0n)

the same as the left side of (18 ) . Notice that 35, <;<,, tra(z:) = n by the Euler’s identity .

Example 4.2: Consider the following hyperbolic polynomial in n variables: p(z,...,z,) =
[Ti<i<n #i- It is e- hyperbolic for e = (1,1,...,1). And N, is a nonnegative orthant, C, is a
positive orthant. An e-nonnegative tuple X = (z1, .., Z,) can be represented by an n x n matrix
Ax with nonnegative entries: the ¢th column of A4 is a vector z; € R"*. If Z = (z1,...,2,) € R"
and d = (di, ...,dn) € R™; 2 > 0,1 <4 < n, then try(Z) = 3y<;<n & Recall that for a square
matrix A = {a;; : 1 <4, < N} row scaling is defined as

R(A) =A{ b

Z] if
column scaling as C(A4) = {E—L} assuming that all denominators are nonzero. The iterative

process ...CRCR(A) is called Sinkhorn’s iterative scaling (SI). In terms of the matrix Ax the
map HS(X) can be realized as follows:

Ansx) = C(R(Ax))

So, the map HS(X) is indeed a (rather far-reaching) generalization of Sinkhorn’s scaling. Other
generalizations (not all hyperbolic) can be found in [20], [3], [2]. R



The following result , proved in [16] , allows to use (HSI) to solve Problem 1 for P-hyperbolic
polynomials q in the same way as it was done for the perfect matching problem in [20] , [17] ; and
for the Edmonds’ problem in {3} . The corresponding complexity is O(nlog(q(e))) iterations of
(HSI) , which can be done in O(n3 log(q(e))) oracle calls . The algorithm works in the following
way :

Run K = O(nlog(q(e))) Hyperbolic Sinkhorn Iterations X1 = HS(X;) ; if DS(X;) < L for
some i < K then the p-mized form My(Xo) > 0, and My(Xo) = 0 otherwise .

Proposition 4.3: Let y; = ﬁ"aj , where x; is e-nonnegative , 1 <i<n, andd = lez’gn x;
is e- positive . Then (clearly) w = Y1<i<n Yi 1S €- positive . Let positive real numbers Ay >
. 2 An be the roots of the equation p(w ~ td) = 0. Then 3 ic;cn Ai = n and thus p(w) =
p(d) ITi<i<n X < p(d) - o

In terms of the corresponding P-hyperbolic polynomial Q , the following inequality holds :

0

day,

Q((%Q(aly'“)an))—l’“-)( Q(al,...,an))_l) S Q(al)---,an)_(n_l);ai > 0 (24)

5 Conclusion and Acknowledgments

Univariate polynomials with real roots appear quite often in modern combinatorics , especially
in the context of integer polytopes . We discovered in this paper rather unexpected and very
likely far-reaching connections between hyperbolic polynomials and many classical combinato-
rial and algorithmic problems . There are still several open problems . The most interesting
is a hyperbolic generalization of the van der Waerden conjecture for permanents of doubly
stochastic matrices .

Question 5.1: Define the van der Waerden constant of a hyperbolic in direction e polynomial
P(¥1, ..., Ym) of degree n in m real variables as

Mp(il)l, I LL‘n)

VD =i
W(p) ind Cap(xl,..,wn)

where the infimum is taken over the set of tuples (z1, .., z,) of e-positive vectors. It is easy to
see that VDW (p) < :_"' Is VDW(p) = ;’:;' ? Is it positive 7 1

For a hyperbolic in direction (1,1,..,1) polynomial Mul(y1,...,yn) = y1¥2...yn this question
is equivalent to the famous van der Waerden conjecture for permanents of doubly stochastic
matrices , proved in [12] , [13] . For a hyperbolic in direction I polynomial det(X) , X isn xn
hermitian matrix , it is equivalent to Bapat’s conjecture [5] (it was also hinted in [12] ) , proved
by the author in [18]} , [29] .

I would like to acknowledge a great influence of amazingly clear paper [21] . It is my pleasure
to thank Adrian Lewis for numerous as e-mail as well phone communications. Many thanks to
the fantastic library of Los Alamos National Laboratory: all references I needed were there.
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A Proof of the (main ) Theorem 2.2

Before proving Theorem 2.2 , we will recall some basic properties of p-mixed forms and prove
a few auxillary results . The following fact was proved in [21]
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Fact A.1l: Consider a homogeneous polynomial p(z),z € R™ of degree n in m real variables
which is hyperbolic in the direction e. Then the following properties hold .

1. The p-mixed form My(z1,..,2,) is linear in each z;,1 < i < n.

2. If zy,29,..,2,—1 are e-nonnegative then the linear functional l(z) = My(z1,..,Zn-1,%) is
nonnegative on the closed cone N, of e-nonnegative vectors .

3. If the tuples (z1,..,2s), (¥1,--,Yn), (£1 — Y1, .., Tn — Yn) are e-nonnegative then

0 S Mp(ylv ’yn) < Mp(xlv axn)

4. Fix e-positive vector d and consider the following homogeneous polynomial p4(z),z € R™
of degree n — 1 in m real variables : py(z) =: Mp(z,z,...,z,d) . Then pq is hyperbolic in
any e-positive direction v € Ce(p) . If g € Ce(p) ( e-positive respect to the polynomial p
) then also q € C,(pg) for all v € Ce(p) .

The next fact is well known .

Fact A.2: Consider a sequence of univariate polynomials of the same degree n : Pi(t) =
> o<i<n ai,kti . suppose that limy_,ca; % = a;,0 <i<mnanda, #0.

Define P(t) = Yg<;<n ait' . Then roots of Py converge to roots of P . In particular if roots of
all polynomials P, are real then also roots of P are real ; if roots of all polynomials P, are real
nonnegative numbers then also also roots of P are real nonnegative numbers . §

The following corollary of Theorem 1.5 plays crucial role in our proof of Theorem 2.2 .

Corollary A.3:

1. Consider a homogeneous polynomial p(z),z € R™ of degree n in m real variables which
is hyperbolic in the direction e. Let x1,xz3,z3 be three e-nonnegative vectors and d =
z1 + 29 + x3 is e-positive . Assume wlog that p(z1 + z2 + z3) = 1 . Then there ezists
three symmetric positive semidefinite matrices A, B, C such that p(a;z1 + asx2 + asz3) =
det(a; A+ a2B + a3C for all real ay,az,a3. Additionally , the roots of ajxy + azx2 + azxs
in the direction d , i.e. the roots of the equation p(a121 + asxy + azz3 —td) =0, coincide
with the eigenvalues of a1 A+ asB + a3C .

2. Theorem 2.2 is true for e-nonnegative tuples (X) = (z1,...z,),2; € R™ consisting of at
most three distinct components , i.e the cardinality of the set {z1,...x} is at most three .

Proof:

13



1. Consider the following homogeneous polynomial L(by, b2, b3) = P(biz1 + baza + b3(z1 +
z9+x3)) of degree n in 3 real variables . It follows from Theorem 1.5 that there exists two
real symmetric matrices A and B such that L(by, by, b3) = det(by A+byB+bsI) . It follows
that they both positive semidefinite , and C = I — A — B is also positive semidefinite .
Take a real linear combination z = a1z + aszs + azz3. Then

p(z—t(z1+x2+23)) = det((a1 —a3)A+(az—a3)B+azl—tI) = det(a A+azB+a3C—tI).

This proves that p(a;z; + axzy + azzs) = det(a14 + aB + a3C) for all real a1, az,a3 by
putting ¢ = 0. And it also proves the "eigenvalues ” statement .

2. Consider e-nonnegative tuple (X) consisting of r; copiesof z; , 1 <t <3 ;ri+re+r3 =n
. Assume that d = 1 + z2 + 3 is e-positive (if it is not then Mp(X) = 0 by a simple
argument based on the monotonicity of p-mixed forms ). It follows from the polarization
formula (10) , that

Mpy(X) = > dip(trims + taia + t3,23),
1<i<k<oo

and this formula is universal , i.e. holds for all homogeneous polynomial of degree n , in
particular for det(X) , X is n X n symmetric matrix . Therefore , using the first part
of this Corollary we get that the p-mixed form M,(X) = D(A) , where the matrix tuple
A consists of 7y copies of A , ry copies of B and r3 copies of C and D(A) is the mixed
discriminant . Using Rado theorem for mixed discriminants we get that D(A) > 0 iff

Rank(S Ai) > Y rs forall §C{1,2,3}.
1€S ies
But from the first part we get that Rank(3 ;cs As) is equal to p-rank Ranky(sumies®;)
of Y ieszi for all S C {1,2,3} .

' Proposition A.4: Consider similarly to part 4 of Fact A.1 the polynomial pa(z) =: Mp(z,z, ..., 2, d)
where d is e-nonnegative and Rank,(d) > 1 . Then pq is hyperbolic in any direction z € N¢(p)
which is e-nonnegative and satisfies the following inequalities :

Rankp(z) > n —1; Ranky(z +d) =n. (25)

Also , if y € Ne(p) is e-nonnegative then also y € N (pg) , i.e. is z-nonnegative respect to the
polynomial py.

Proof: Let z € N.(p) be e-nonnegative satisfying (25) . Consider univariate polynomial
P(t) = My(tz+z,tz+z,...,tz+z,d) . Then P(t) = Ygcicn_y ait’ and an_y = Mp(2,2, ..., 2,d) .
It follows from Corollary A.3 that a,_; > 0. Consider now a sequence of univariate polynomials
Py(t) = Mp(tzi + z,tzp + z, ..., tz; + 2,d) . Where z,dy are e-positive and limgo0 2x =
2z, limg_ oo di = d . Then the coefficients of polynomials Pj; converge to the coefficients of the

14



polynomial P . It follows from part 4 of Fact A.1 that the roots of P are real . Since ap—; >0
hence using Fact A.2 we get that the roots of P are also real . This exactly means that the
polynomial pg4 is hyperbolic in direction z . The d-nonnegativity statement follows from the
nonnegativity part of Fact A.2 . I

We are ready now to present our proof of Theorem 2.2 .

Proof: (Proof of Theorem 2.2 ) . The ”only if” part is simple . Indeed supposed that there
exists a subset S C {1,2,...,n} such that Ranky(} ;c5 i) < |S|, ie. using the identities
(15) Mp(k,k,..k,d,..,d) = 0, where k = Y} ;c52; , d € Ce(p) is e-positive and the n-tuple
(k,k,...k,d,..,d) consists of |S| copies of k = } ;.5 x; . Let d be any e-positive positive vector
such that d — ; is e-nonnegative , 1 <7 < n . Using the monotonicity of p-mixed forms we get
that

My(zy, ..., zn) < My(k, k, ...k, d, ..,d) = 0.

Our proof of the ”if’ part is by induction in the degree n . Suppose that the éeneralized Rado
conditions (16) hold . Then at least Ranky(x,) > 1 . Consider the following homogeneous
polynomial of degree n — 1 :

pa(z) = Mp(z,z,...,z,d), d=zp,.

We get from Proposition a.4 the following assertion : :

The polynomial p;(z) is hyperbolic in direction z = Y, <;<,_1 i and the vectors z; € N,(pg4),1 <
i <n—1,ie. are z-nonnegative respect to the polynomial pg.

Indeed , it follows from the generalized Rado conditions (16) that Ranky(z) > n — 1 and
Ranky(z + d) = Ranky(Y1<icp i) =1 -

Next we show that the n—1-tuple Y = (zy, ..., z,_1) satisfies the generalized Rado conditions

Rankp () ;) > |S| forall Sc{1,2,..,n—1}.
€S
Or equivalently , that

My(k,. .k, 2,...,2,d) >0,k = in,z = Z zi,d =x,,S C{1,..,n — 1}, (26)
i€S 1<i<n—1

where the n-tuple T = (k, .., k, 2, ..., z,d) consists of |S| copies of k , n — 1 — | S| copies of z and
one copy of d .

It is easy to see that the generalized Rado conditions for the n-tuple T are implied by the
generalized Rado conditions for the original n-tuple X = (z1,...,2p_1,Zn) . Since the n-tuple
(k,.,k,z,..,2,d) consists of at most three distinct components hence we can apply part 2 of
Corollary A.3 . Therefore we get that indeed

Rankp, (Y ;) > |5 forall ScC{1,2,..,n—1}. (27)
iES

Thus , by induction in the degree , we get that pg-mixed form Mp,(z1,...,Zn-1) > 0:
the polynomial py of degree n — 1 in m real variables is z-hyperbolic . But
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anl
Mpy(z1,..) Tna1) = 5;;‘55;—;Pd(§:1<1<n 1 04T;) =

an-1
W P(ZlSiSn—l QTgyeeey ZISiSn—l a; T4, xn) = (n b 1)!Mp(£l,‘1, ceey IEn).

We conclude that if Theorem 2.2 is true for n — 1 then it is also true for n , and the case
"n = 1" is trivially true . I

B Proof of Proposition 2.6
Proof: Assume wlog that ¢(ai,...,a,) =1 . It follows from the Euler’s identity that

Z cvz - al,...,an-),zln.

1<i<n
Let g(au, ""‘O‘_") = Lofrayarn)€supp(q) Urra) i<icn 05" -
Define ( positive numbers ) b, . ) = Q(ry,....rn) ngign a;t, (r1,...,mn) € supp(q) .
Then ai%Q(al) ey a‘n) = Z(rl,...,rn)e.supp(q) rib(rl,...,rn) .

Suppose that for some subset S C {1,2,...,n},1 < |S| < n we have the inequality  ;cs7: <
|8 for all (ry,...,75) € supp(q) . Then Y ;s aia%iq(al, <y @n) <|S|—1. But the condition (18)

says that aia%iq(al, v 0n) =146 and 3q<icn 6;]2 < 717 . By the Cauchy-Schwarz inequality
, 2ies 16i] < \/J%l < 1. Therefore ,

Zaza qa17 HQ >IS| Z|6|>|S|_1
€S €S

The last inequality gives a contradiction . I

C A sketch of a proof of Corollary 2.4

Proof: By Theorem 2.2 the conditions (1) and (2) are equivalent . (2) implies (3) for any
homogeneous polynomial with nonnegative coeflicients .
Let a; = e¥,1 < i <n;¥1<i<n ¥i = 0. Consider the following convex functional

f(yl) "')yn) = log(q(eyl’eyz) "')eyn)'

Here ¢(z),z € R" is a homogeneous polynomial of degree n in n real variables with nonnegative
coefficients . Then

a
aize-g(a1,,an) 8 |
i = — Ty eeey ’1 S 7 S n.
g(ai, ..., on) 3yif(y yers Yn)

Notice the condition (3) is equivalent to the following condition :

inf - =L > —o00.
y1+“lhr_lkyn:0f(y1) Yn) 00
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Consider the anti-gradient flow , i.e. the system of differential equations

yi(t) = —(a%if(yl, o¥n) — 1),%(0) =0;1 < i < n.

It is well known that in this convex case the gradient flow is defined for all ¢ > 0 . Using the
Euler’s identity we get that

d _ . : aia%iq(al,...,an)
E (yl(t)7 )yn(t)) B _ﬂ(t) T ]_<1Z<,nl Q(al, "')an)

— 1|2

It is easy to see that , because of the convexity of f , a nonnegative function §(t) is non-
increasing on [0, 00) .

Asinfy  1y.=0f(¥1,-,yn) = L > —oo thus [° B(t)dt < oo . Thus lims—,eo B(t) = 0 . This
proves the implication (3) — (4) for all homogeneous polynomials of degree n in n real variables
with nonnegative coefficients .

The implication (4) — (5) is obvious . The implication (5) — (6) for general homogeneous
polynomials of degree n in n real variables with nonnegative coefficients is Proposition 2.6 .
Finally , the condition (6) is equivalent to (2) . I
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