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Abstract. Recently, the appearance of very large (3 - 10M gate) FPGAs 
with embedded arithmetic units has opened the door to the possibility of 
floating point computation on these devices. While previous researchers 
have described peak performance or kernel matrix operations, there is as 
yet little experience with mapping an application-specific floating point 
pipeline onto FPGAs. In this work, we port a supercomputer applica- 
tion benchmark onto Xilinx Virtex I1 and I1 Pro FPGAs and compare 
performance with comparable microprocessor implementation. Our re- 
sults show that this application-specific pipeline, with 12 multiply, 10 
add/subtract, one divide, and two compare modules of single precision 
floating point data type, shows speedup of 1 . 6 ~  - 1 . 7 ~ .  We analyze the 
trade-offs between hardware and software “sweet spots” to character- 
ize the algorithms that will perform well on current and future FPGA 
architectures. 

1 Introduction 

Over the past decade, Re-Configurable Computing (RCC) using Field-Prog- 
rammable Gate Arrays (FPGAs) has demonstrated speed-ups of one to  two 
orders of magnitude on data- and compute-intensive processing tasks involving 
fixed point computation on small integers, typically in signal and image pro- 
cessing applications. Floating point computation was not mapped to  FPGA due 
to  the large operand size (32- or 64-bit) and excessive area consumed by float- 
ing point arithmetic units on configurable logic cells. Recently, that  limitation of 
FPGAs appears to  be receding: 3-10 million gate FPGAs with embedded proces- 
sors, memories, and arithmetic units have become available, making it feasible 
to  consider a broader range of applications than traditional signal and image 
processing, including those requiring floating point operations. Studies compar- 
ing floating point performance of FPGAs vs. high performance microprocessors 
[l] suggest that peak FPGA floating-point performance is growing significantly 
faster than peak floating-point performance for a CPU. Other studies ([2], [3]) 
also suggest that  modern FPGAs may be competitive with microprocessors on 
dense matrix operations such matrix multiply and LU decomposition. 

However, it  is well-known in the supercomputing community that peak per- 
formance and dense matrix kernel operations are far from accurate predictors of 
realized performance of a complete application. Memory access patterns, cache 



behaviour, control flow, and inter-processor communication result in actual per- 
formance that is well below peak. For example, applications run on a cluster 
supercomputer often realize no more than 5040% of theoretical peak ( [4]), 
reducing a 30 TFLOP machine to  15 TFLOPs. 

The purpose of the work described below is t o  better quantify the perfor- 
mance of FPGA-based floating point computation on real applications by map- 
ping a portion of an application (as opposed to a kernel) onto FPGA. We com- 
pare the performance of an application-specific (single precision) floating point 
pipeline mapped to  the Virtex family of FPGA to execution on comparable 
microprocessors. 

Re-Configurable Computing using FPGAs exploits “spatial parallelism”, the 
ability, for example, to  unroll a computational block directly onto hardware, ex- 
ecuting the entire block in parallel. This ability is not available on a CPU, which 
depends on fast clock rate t o  increase performance. FPGAs use a significant 
amount of spatial parallelism to compensate for having a clock speed that is an 
order of magnitude slower than that of a CPU. 

In this paper we describe our FPGA implementation of a floating-point in- 
tensive supercomputing application called “radiative heat transfer” [5]. For our 
implementation, we chose the FPLibrary, a VHDL library of hardware oper- 
ators for floating-point (FP) computation, developed in the Arhaire  project, 
a t  ENS Lyon, France [6]. We describe the floating-point libraries available and 
why we chose FPLibrary. We also describe other floating-point applications im- 
plemented on FPGAs. Next, we give an overview of the radiative heat transfer 
application. We describe how we parallelized the inner loop of the application, 
which is the most computationally intensive portion of the program. We present 
performance results of the computationally intensive inner loop of the applica- 
tion on Intel Xeon 1.76GHz and 3.06GHz workstations and compare that to the 
performance of our implementation on Xilinx Virtex I1 [7] and Virtex I1 Pro [8] 
FPGAs. Finally, we provide our conclusions and future work. 

2 Related Work 

Using FPGAs for floating-point operations is not new. Past efforts exploring 
floating point include exploration by Virigia Tech [9], re-evalua.tion at Clemson 
[lo] and a library produced at Northeastern [ll]. These efforts demonstrate the 
viability of using floating-point on FPGAs. FPGAs are viable targets because 
they can be programmed t o  include many concurrent floating-point operations 
[l]. Earlier work [12] found that FPGAs were not fast enough to  be competitive 
with general purpose processors for floating point. However, current generations 
have increased performance with faster logic and embedded multipliers [13]. This 
increased performance may allow FPGAs to be used for floating-point in areas 
normally reserved for supercomputers. 

FPGAs offer several advantages when used to  calculate floating-point oper- 
ations. First, FPGAs offer a high degree of flexibilty, where they can provide 
a customized solution for a given floating-point algorithm. Second, due to the 



available concurrency, an FPGA can provide a floating-point solution that is 
faster than what is possible with a general purpose processor. Third, FPGAs are 
based on SRAM, and thus they track trends in transistors (e.g. “Moore’s Law”) 
more closely that general purpose processors. FPGAs take advantage of transis- 
tor density to  provide high levels of concurrency. Offsetting those advantages are 
the slow clock speed relative to  microprocessors and the relatively large area re- 
quired by floating point operands and operations, which limits spatial parallelism 
opportunities. 

Several commercial [14,15] and open source [ll, 131 libraries are available for 
creating floating-point circuits. The FPLibrary [6] was chosen for use with the 
radiant heat transfer algorithm, because it met three important qualifications. 
First, it  was written VHDL in a platform-independent manner. This allows de- 
signs to  be easily targeted to different FPGA architectures. Second, the library 
implements add, multiply and divide floating point operations which are required 
for this algorithm. Third, the modules and floating-point types have parameter- 
izable bitwidths, so that we can easily program the library for single, double or 
arbitrary sized floating point types. FPLibrary is used to  leverages the advan- 
tages of FPGAs to implement the core of a supercomputing application. 

3 Description of the Monte Carlo Radiative Heat 
Transfer Simulation 

Monte Carlo radiative heat transfer simulation was chosen for implementation 
on an FPGA, because it contains computationally intensive floating-point op- 
erations. It has been run on a SPARCStation farm [16] as well the Cyber 206 
supercomputer [5]. It is a real world problem, because it models the geome- 
try of a laser isotope separation (LIS) unit to  accurately determine the radiant 
exchange factors among the surfaces. This is an important component of the 
isotope separation process simulation. 

The radiative heat transfer simulation is a Monte Carlo application that 
traces a large number of photons emitted from the surfaces of a 2-D enclosure 
(Figure 1). The result of the application is a record of how many photons emit- 
ted from each surface a were absorbed at surface j .  This information is used to 
compute a heat transfer coefficient between each pair of surfaces, i and j .  It is 
a Monte Carlo application because it uses random values to  determine charac- 
teristics of an emitted photon’s path and because it traces a large number of 
photons. 

In the algorithm, 5000 photons are emitted (with randomly chosen charac- 
teristics) from each surface of a 37-sided polygon. The algorithm follows the 
path of each emitted photon. It identifies the surface of intersection, which is 
the most computationally intensive portion of the algorithm. Next, a random 
number determines whether the photon is absorbed into the surface, reflected 
off of it, or transmitted through it. The photon is followed until it is transmitted, 
absorbed or lost. This algorithm is designed to  calculate intersections assuming 
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a convex chamber. A more sophisticated version which works with both convex 
a.nd concave surfaces, and is the subject of future work. 

The vectorized version of the algorithm parallelizes it at the “task” level. The 
pseudocode for this algorithm is summarized in Figure 2. A task loops through 
the 37 surfaces of the polygon and traces the 5000 photons emitted from each 
surface. For each surface, a for loop iterates through each photon emitted, then 
an inner while loop checks if the photon is still active before following it to its 
next surface intersection. Inside the while loop, an inner for loop computes the 
surface intersection, then the random number generator determines interaction 
with the surface (absorbed, reflected, transmitted or lost). 

When considering which part of the algorithm to implement on the FPGA, we 
decided that parallelism at the task level was too coarse because it would trace 
185,000 photons. Implementing surface level parallelism was also too coarse, 
since it would need to  trace 5000 photons emitting from one surface. Neither im- 
plementation would fit on currently available FPGAs. At the while loop level, 
tracing one photon’s path until it is not active may be possible in terms of fit- 
ting on an FPGA, but there are dependencies carried from loop iteration to loop 
iteration, which makes the implementation more complex and limit parallelism. 
At the inner for loop level, where the algorithm checks for the surface of in- 
tersection, the code is straightforward to realize on an FPGA, since the loop 
iterations are independent of each other and can be spatially replicated on the 
FPGA. 

In addition, this inner for loop is the most computationally intensive portion 
of the program. We used the Portland Group Profiler to measure the percentage 
of time spent in this inner for loop. The profiler shows that it spends 78% of 
its time executing the inner for loop. The C code inside this loop is included in 



For each surface in the 37-surface polygon 
For each of 5000 photons emitted from this surface 
Emit a photon with random characteristics from this surface 
While the photon is not absorbed, transmitted or lost 

For each side i in the polygon 
If the current side is not the emitted side 

Check if the photon intersected with this side 
(This is implemented on the FPGA) 

End if 
End for 
Randomly determine if the photon is absorbed, transmitted, 

reflected or lost 
End while 

End for 
End for 

Fig. 2. Radiative Heat Transfer algorithm loop structure 

Figure 3. All the variables used in the arithmetic computations are floating-point 
types. 

Originally the program was written for double precision floating-point, but for 
our purposes, we changed that to  single precision floating-point. We found that 
there is not a significant difference in the results when we use single versus double 
precision floating-point. There was only a .0025% difference in the number of 
photons absorbed in the single precision version compared to  the double precision 
version. 

4 Hardware Implementation 

We target the hardware implementation to  the Virtex I1 and Virtex I1 Pro 
FPGAs. These devices have small embedded memories called Block RAMs as 
well as embedded 18-bit multipliers. An initial approximation of the pipeline was 
generated from the Streams-C compiler [17] on an integer version of the code. 
The generated pipeline was then converted to  use floating point modules, and 
manually optimized to  maximize pipelining. 

Figure 3 shows the C code for the compute-intensive for loop of the radia- 
tive heat transfer algorithm. In each iteration of this loop, the calculations are 
performed relative to  one of the surfaces of the convex shape. Some variables 
are invariant across loop iterations (e.g., epsdet0) while others assume unique 
values for each loop iteration, as shown by the array index s ,  for example, delxs, 
delys, and rhss. The latter variables are assumed to  reside in Block RAMs. 

Figure 4 shows the pipelined hardware implementation of the innermost loop. 
The design is an 11 stage pipeline utilizing the floating point libraries from [6]. 
It consists of 12 multiply, 3 addition, 7 subtraction, 1 divide and 2 comparison 
modules. The breakdown of the latency is as follows: 4 cycles for multiplica- 



float 
xl [NSM 1 ,x2 , CNSM 1 .  
Yl [NSM 1 ,Y2 [NSM I ,  
delx [NSM 1 ,dely [NSM I ,  
sqln [NSM 1 ,rhs [NSM I; 

delxs = delx [SI; 
delys = dely [SI; 
rhss = rhs [SI; 

/* compute intersection points*/ 
det = ex*delys - ey*delxs; 
absdt= fabs(det1; 
if (absdt <= epsdet0) 
det= epsdet0; 

dtinv= l.O/det ; 
xi = dtinv * (delxi*rhse - ex*rhss); 
Yi = dtinv * (delyi*rhse - ey*rhss); 

/* test for intersection between surface endpoints*/ 
xls = xl [SI ; 
yls = yl [SI; 

x2s = x2 [SI ; 
y2s = y2 [SI; 

sqlns = sqln [SI; 
ssq = (xi - xls)*(xi - xis) + (xi - x2s)*(xi - x2s) 

if(ssq <= sqlns) < 
+ (yi - yis)*(yi - yls) + (yi - y2s)*(yi - ~2s); 

intersect-side[s] = 1; /* s is the intersected side */ 
else intersect-side[sl = 0; 

1 

Fig. 3. Radiative Heat Transfer code implemented on the FPGA 
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Fig. 4. FPGA Implementation 

tion, 3 cycles for addition or subtraction, 15 cycles for division, and 1 cycle for 
comparison. The total latency of the 11 stage pipeline is 41 cycles. There are 2 
intermediate registers that  need pipelining from Level 4 through Level 5. This 
data synchronization requirement introduces 32 additional 34-bit registers into 
the design.' For clarity, only two registers are shown in Level 5; actually there 
are 15 registers for each operand, for a total of 30 34-bit registers at Level 5; 

For this implementation there are 11 inputs to  the pipeline - 6 inputs are 
consumed in the first Level, 4 inputs are consumed at Level 7 and 1 input is 
consumed at Level 10. The data is stored in 2 204-bit by 512 deep, dual-port 
Block RAMS. Memory reads are scheduled so that values arrive at Level 7 and 
at Level 10 at exactly the cycle they are consumed. By scheduling the reads in 
this way, we avoid the overhead of fully pipelining the 5 inputs that are needed 
at Level 7 and Level 10. This would introduce an extra 27 cycles x 4 registers 
(Level 7) plus 40 cycles x 1 register (Level lo), or 112 + 40 = 152 34-bit registers 
into the design. These 152 registers correlate to  a 1% increase in area utilization 
on the Virtex 11. 

5 Performance 

This section gives a performance analysis of the application running on several 
P4  systems versus the the Virtex I1 and Virtex I1 Pro hardware platforms. 

The FPLibrary adds a 2-bit tag to each floating point register. 



5.1 Workstation Performance 

For performance comparisons with the FPGA we needed to  look at the innermost 
loop of the task, which is the iteration over 37 surfaces for a single photon, looking 
for an intersection. 

The static instruction count shows 130 instructions: 61 floating point in- 
struction, 9 branches, 73 instructions which reference the stack (including float- 
ing load/store to  stack for locals), and only one integer instruction (the loop 
counter). All the instructions and data for this loop fit neatly into the Level 1 
cache (the fastest cache level), and hence could be expected to run at maximum 
speed on the CPU. 

Needless to  say, this is a very small instruction count, and measurements 
can easily perturb it. Obtaining an accurate measure of this loop represents a 
challenge. Traditional profiling tools such as gprof are acceptable for function- 
level timing, but we needed an extremely accurate measure of the inner loop. 

On the Pentium and later processors there is a timer register, called the Time 
Stamp Counter (TSC), which measures processor ticks at the processor clock 
rate. This 64-bit read-only counter is extremely accurate, as it is implemented 
as a Model-Specific Register inside the CPU. The overhead of using this register 
is extremely low. On a 1.8 Ghz Pentium the TSC runs at 1.8 Ghz and has a 
resolution of 555 picoseconds; on a 3 Ghz Pentium the TSC has a resolution of 
333 picoseconds. 

We used the TSC to  measure the inner loop of the application. We performed 
measurements both in the application itself, and by extracting the inner loop 
and running it many times. As expected for this loop, the performance varied 
with the CPU being used, with the fastest CPU being the 3 Ghz Pentium. 

We tested both the Intel compiler (newest version) and gcc. Gcc provided the 
best performa.nce, which was somewhat surprising. Timing for one iteration of 
the inner loop, shown in Figure 5 ,  ranges from 60ns to 104ns. Note that the time 
is an average, as in the sequential version of the loop body, there is opportunity 
for early exit from the loop. 

Fig. 5.  FPGA vs. Workstation performance for Inner Loop. Speed up compared to the 
P4 3.0 GHz System. 



5.2 FPGA Performance 

Placement results for one iteration of the inner loop on the Virtex I1 and Virtex 
I1 Pro FPGAs are shown in Figure 5.  On the Virtex I1 6000, only 20% of the 
Look Up Tables (LUT) is used by the loop body. However, all the multipliers 
are used, and therefore only one instance of the loop body can fit on this part. 
In contrast, the larger Virtex I1 Pro parts can fit 2-3 instances of the inner loop, 
resulting in a higher degree of spatial parallelism. 

As noted above, the hardware design is highly pipelined. The pipelining al- 
lows a relatively high clock frequency for the design. However, the cost is a high 
latency - 41 clock cycles to  seeing the first result. Also, in contrast to  the soft- 
ware implementation, in the hardware, the entire loop body is executed, and the 
timing results reflect the cost of executing all 37 iterations. 

In terms of technology generation, the Virtex I1 6000 and P4 1.6GHz are com- 
parable. The results show that the V26K hardware implementation outperforms 
the microprocessor by a factor of 1.67. Encouragingly, for the newer generations 
of FPGA and microprocessor (V2Pro100 and 3.0GHz) , the speedup is slightly 
better - 1 . 7 3 ~ .  

5.3 Discussion 

Our results show that the FPGA hardware outperforms comparable generation 
of microprocessor by 1.6 - 1 . 7 ~  on an application-specific single-precision floating 
point pipeline. There are several points to  note. 

First, the FPGA implementation must execute all loop iterations of the inner 
for loop. The software timing is an average number: many times the software 
breaks out of the loop without completing all iterations, as the last if statement 
of Figure 3 contains a break in the software version of the loop. In a scenario 
in which all loop iterations were required, the FPGA speedup would be much 
greater. 

Second, this application fits well in the L1 cache of the microprocessor. A 
more data-intensive application would better use the strengths of the FPGA 
(greater memory bandwidth and better performance on data intensive compu- 
tation). 

Third, the number of iterations of the for loop is quite small. In fact, the 
pipeline latency is greater than the number of iterations. Like vector processors, 
the application-specific pipeline on the FPGA shows the best performance when 
the algorithm has many iterations with little data-dependent branching. 

Fourth, the floating point library we used in this experiment is technology- 
independent. In fact we were able to synthesize it to several different families, 
including the Altera Stratix. Technology-specific floating point cores such as 
Quixilica yield smaller area and faster clock rate. On the minus side, other float- 
ing point libraries, including Quixilica, have even higher operation latencies. For 
best performance, embedded hard floating point units in a fabric of reconfig- 
urable logic would, of course, be desirable. 



Finally, it is important to  compare the performance of the application-specific 
pipeline, with a mix of different floating point operators and branching con- 
structs, to  peak performance results cited by others. While theoretical peak 
numbers are useful to  gauge feasibility, using floating point in a supercomputing 
application gives us more accurate performance results - which, of course, are 
much reduced from theoretical peak. 

6 Conclusions 

We have presented hardware implementation of a floating point Monte Carlo 
radiative heat transfer simulation application on the Virtex I1 and Virtex I1 Pro 
families of FPGA.  In contrast to previous work that presented peak performance 
or performance results on small kernels, we have implemented an application- 
specific pipeline on the FPGA. We have presented detailed timing results com- 
paring FPGA speed to  high performance workstations, realizing a 1 . 7 3 ~  speed up 
of the single precision floating point pipeline running on a VirtexII Pro hardware 
platform versus running the application on a 3.0GHz workstation. 

7 Acknowledgements 

We would like to  thank Jeremie Detrey for his open source floating point library 
and his help with simulation a,nd synthesis of the library modules. We thank 
Sung-eun Choi for her assistance in obtaining workstation timings. 

References 

1. I<. Underwood, “FPGAs vs. CPUs: Trends in peak floating-point performance,” 
in ACM/SIGDA Twelfth ACM International Symposium on Field-Programmable 
Gate Arrays (FPGA 2004), 2004. 

2. Seventh Annual Workshop on High Performance Embedded Computing (HPEC 
2003), Area and Power Performance Analysis of Floating-point based Application 
on FPGAs,  (Lexington, MA), September 2003. 

3. S. Choi and V. Prasanna, “Time and energy efficient matrix factorization using 
fpgas,” in FPL 03: 13th International Conference on  Field Programmable Logic 
and Applications, Sept. 2003. 

4. Top 500, “Top 500 supercomputer sites.” http://www.top5OO.org, 2004. 
5. P. J. Burns and D. V. Pryor, “Vector and parallel monte car10 radiative heat 

transfer simulation,” Numerical Heat Transfer, vol. 16, 1989. 
6 .  J. Detrey and F. de Dinechin, “FPLibrary, a VHDL library of parametris- 

able floating-point and LNS operators for FPGA.” http://perso.ens- 
lyon.fr/jeremie.detrey/FPLibrary/, 2004. 

7. Xilinx Corporation, “Virtex I1 platform FPGAs: Introduction and overview,” 
http://www.xilinx. com, 2003. 

8. Xilinx Corporation, “Virtex I1 Pro platform FPGAs: Introduction and overview,” 
http://www.xilinx. com. 



9. N. Shirazi, A. Walters, and P. Athanas, “Quantitative analysis of floating point 
arihtmetic of FPGA based custom computing machines,” in IEEE Symposium 
on Field-Programmable Custom Computing Machines, (Napa, CA), pp. 155-162, 
IEEE Computer Society Press, 1995. 

10. Walter B. Ligon 111, S. McMillan, G. Monn, K. Schoonover, F. Stivers, and K. D. 
Underwood, “A re-evaluation of the practicality of floatin-point operations on fp- 
gas,” in IEEE Symposium on Field-Programmable Custom Computing Machines, 
(Napa, CA), pp. 206-215, IEEE Computer Society Press, April 1998. 

11. P. BelanoviC and M. Leeser, “A library of parameterized floating-point modules and 
their use,” in F P L  2002: The 12th International Conference on Field-Programmable 
Logic and Applications, pp. 657-666, Springer-Verlag, 2002. 

12. CAINE, Feasibility of Floating-point Arithmetic in FPGA based artijicail Neural 
Networks, (San Diego, CA), Nov. 2002. 

13. E. Roesler and B. Nelson, “Novel optimizations for hardware floating-point units,” 
in F P L  2002: The 12th International Conference on Field-Programmable Logic and 
Applications, pp. 637-646, Springer-Verlag, 2002. 

14. QinetiQ Holdings Ltd., “Real time systems lab.” 
http://www.quixilica.com/products.htm, 2002. 

15. Nallatech, “Floating point IP cores for virtex-11.” 
http://www.nallatech.com/solutions/products/software-fpgaip/fpgaip/fpc/, 
2003. 

16. R. Minnich and D. V. Pryor, “A radiative heat transfer simulation on a SPARC- 
Station farm,” in First International Symposium on  High Performance Distributed 
Computing (HPDC ’92), 1992. 

17. M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented fpga 
computing in the streams-c high level language,” in Proceedings of the IEEE Sym- 
posium on  Field-Programmable Custom Computing Machines, (Napa, CA), p. n/a, 
IEEE, 2000. 


