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Monte Carlo Radiative Heat Transfer Simulation
on a Reconfigurable Computer

Maya Gokhale, Christine Ahrens, Jan Frigo, Ron Minnich, and Justin L. Tripp

Los Alamos National Laboratory

Abstract. Recently, the appearance of very large (3 - 10M gate) FPGAs
with embedded arithmetic units has opened the door to the possibility of
floating point computation on these devices. While previous researchers
have described peak performance or kernel matrix operations, there is as
yet little experience with mapping an application-specific floating point
pipeline onto FPGAs. In this work, we port a supercomputer applica-
tion benchmark onto Xilinx Virtex II and II Pro FPGAs and compare
performance with comparable microprocessor implementation. Our re-
sults show that this application-specific pipeline, with 12 multiply, 10
add/subtract, one divide, and two compare modules of single precision
floating point data type, shows speedup of 1.6x — 1.7x. We analyze the
trade-offs between hardware and software “sweet spots” to character-
ize the algorithms that will perform well on current and future FPGA
architectures.

1 Introduction

Over the past decade, Re-Configurable Computing (RCC) using Field-Prog-
rammable Gate Arrays (FPGAs) has demonstrated speed-ups of one to two
orders of magnitude on data- and compute-intensive processing tasks involving
fixed point computation on small integers, typically in signal and image pro-
cessing applications. Floating point computation was not mapped to FPGA due
to the large operand size (32- or 64-bit) and excessive area consumed by float-
ing point arithmetic units on configurable logic cells. Recently, that limitation of
FPGAs appears to be receding: 3-10 million gate FPGAs with embedded proces-
sors, memories, and arithmetic units have become available, making it feasible
to consider a broader range of applications than traditional signal and image
processing, including those requiring floating point operations. Studies compar-
. ing floating point performance of FPGAs vs. high performance microprocessors
[1] suggest that peak FPGA floating-point performance is growing significantly
faster than peak floating-point performance for a CPU. Other studies ([2], [3])
also suggest that modern FPGAs may be competitive with microprocessors on
dense matrix operations such matrix multiply and LU decomposition. .
However, it is well-known in the supercomputing community that peak per-
formance and dense matrix kernel operations are far from accurate predictors of
realized performance of a complete application. Memory access patterns, cache



behaviour, control flow, and inter-processor communication result in actual per-
formance that is well below peak. For example, applications run on a cluster
supercomputer often realize no more than 50-80% of theoretical peak ( [4]),
reducing a 30 TFLOP machine to 15 TFLOPs.

The purpose of the work described below is to better quantify the perfor-
mance of FPGA-based floating point computation on real applications by map-
ping a portion of an application (as opposed to a kernel) onto FPGA. We com-
pare the performance of an application-specific (single precision) floating point
pipeline mapped to the Virtex family of FPGA to execution on comparable
Microprocessors.

Re-Configurable Computing using FPGAs exploits “spatial parallelism”, the
ability, for example, to unroll a computational block directly onto hardware, ex-
ecuting the entire block in parallel. This ability is not available on a CPU, which
depends on fast clock rate to increase performance. FPGAs use a significant
amount of spatial parallelism to compensate for having a clock speed that is an
order of magnitude slower than that of a CPU.

In this paper we describe our FPGA implementation of a floating-point in-
tensive supercomputing application called “radiative heat transfer” [5]. For our
implementation, we chose the FPLibrary, a VHDL library of hardware oper-
ators for floating-point (FP) computation, developed in the Arénaire project,
at ENS Lyon, France [6]. We describe the floating-point libraries available and
why we chose FPLibrary. We also describe other floating-point applications im-
plemented on FPGAs. Next, we give an overview of the radiative heat transfer
application. We describe how we parallelized the inner loop of the application,
which is the most computationally intensive portion of the program. We present
performance results of the computationally intensive inner loop of the applica-
tion on Intel Xeon 1.76GHz and 3.06GHz workstations and compare that to the
performance of our implementation on Xilinx Virtex II {7] and Virtex II Pro (8]
FPGAs. Finally, we provide our conclusions and future work.

2 Related Work

Using FPGAs for floating-point operations is not new. Past efforts exploring
floating point include exploration by Virigia Tech [9], re-evaluation at Clemson
[10] and a library produced at Northeastern [11]. These efforts demonstrate the
viability of using floating-point on FPGAs. FPGAs are viable targets because
they can be programmed to include many concurrent floating-point operations
[1]. Earlier work [12] found that FPGAs were not fast enough to be competitive
with general purpose processors for floating point. However, current generations
have increased performance with faster logic and embedded multipliers {13]. This
increased performance may allow FPGAs to be used for floating-point in areas
normally reserved for supercomputers.

FPGAs offer several advantages when used to calculate floating-point oper-
ations. First, FPGAs offer a high degree of flexibilty, where they can provide
a customized solution for a given floating-point algorithm. Second, due to the



available concurrency, an FPGA can provide a floating-point solution that is
faster than what is possible with a general purpose processor. Third, FPGAs are
based on SRAM, and thus they track trends in transistors (e.g. “Moore’s Law”)
more closely that general purpose processors. FPGAs take advantage of transis-
tor density to provide high levels of concurrency. Offsetting those advantages are
the slow clock speed relative to microprocessors and the relatively large area re-
quired by floating point operands and operations, which limits spatial parallelism
opportunities.

Several commercial [14, 15] and open source {11, 13] libraries are available for
creating floating-point circuits. The FPLibrary [6] was chosen for use with the
radiant heat transfer algorithm, because it met three important qualifications.
First, it was written VHDL in a platform-independent manner. This allows de-
signs to be easily targeted to different FPGA architectures. Second, the library
implements add, multiply and divide floating point operations which are required
for this algorithm. Third, the modules and floating-point types have parameter-
izable bitwidths, so that we can easily program the library for single, double or
arbitrary sized floating point types. FPLibrary is used to leverages the advan-
tages of FPGAs to implement the core of a supercomputing application.

3 Description of the Monte Carlo Radiative Heat
Transfer Simulation

Monte Carlo radiative heat transfer simulation was chosen for implementation
on an FPGA, because it contains computationally intensive floating-point op-
erations. It has been run on a SPARCStation farm [16] as well the Cyber 206
supercomputer [5]. It is a real world problem, because it models the geome-
try of a laser isotope separation (LIS) unit to accurately determine the radiant
exchange factors among the surfaces. This is an important component of the
isotope separation process simulation.

The radiative heat transfer simulation is a Monte Carlo application that
traces a large number of photons emitted from the surfaces of a 2-D enclosure
(Figure 1). The result of the application is a record of how many photons emit-
ted from each surface ¢ were absorbed at surface 5. This information is used to
compute a heat transfer coefficient between each pair of surfaces, i and j. It is
a Monte Carlo application because it uses random values to determine charac-
teristics of an emitted photon’s path and because it traces a large number of
photons.

In the algorithm, 5000 photons are emitted (with randomly chosen charac-
teristics) from each surface of a 37-sided polygon. The algorithm follows the
path of each emitted photon. It identifies the surface of intersection, which is
the most computationally intensive portion of the algorithm. Next, a random
number determines whether the photon is absorbed into the surface, reflected
off of it, or transmitted through it. The photon is followed until it is transmitted,
absorbed or lost. This algorithm is designed to calculate intersections assuming
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Fig. 1. Test Geometry for Radiative Heat Transfer

a convex chamber. A more sophisticated version which works with both convex
and concave surfaces, and is the subject of future work.

The vectorized version of the algorithm parallelizes it at the “task” level. The
pseudocode for this algorithm is summarized in Figure 2. A task loops through
* the 37 surfaces of the polygon and traces the 5000 photons emitted from each
surface. For each surface, a for loop iterates through each photon emitted, then
an inner while loop checks if the photon is still active before following it to its
next surface intersection. Inside the while loop, an inner for loop computes the
surface intersection, then the random number generator determines interaction
with the surface (absorbed, reflected, transmitted or lost).

When considering which part of the algorithm to implement on the FPGA, we
decided that parallelism at the task level was too coarse because it would trace
185,000 photons. Implementing surface level parallelism was also too coarse,
since it would need to trace 5000 photons emitting from one surface. Neither im-
plementation would fit on currently available FPGAs. At the while loop level,
tracing one photon’s path until it is not active may be possible in terms of fit-
ting on an FPGA, but there are dependencies carried from loop iteration to loop
iteration, which makes the implementation more complex and limit parallelism.
At the inner for loop level, where the algorithm checks for the surface of in-
tersection, the code is straightforward to realize on an FPGA, since the loop
iterations are independent of each other and can be spatially replicated on the
FPGA.

In addition, this inner for loop is the most computationally intensive portion
of the program. We used the Portland Group Profiler to measure the percentage
of time spent in this inner for loop. The profiler shows that it spends 78% of
its time executing the inner for loop. The C code inside this loop is included in



For each surface in the 37-surface polygon
For each of 5000 photons emitted from this surface
Emit a photon with random characteristics from this surface
While the photon is not absorbed, transmitted or lost
For each side i in the polygon
If the current side is not the emitted side
Check if the photon intersected with this side
(This is implemented on the FPGA)
End if
End for
Randomly determine if the photon is absorbed, transmitted,
reflected or lost
End while
End for
End for

Fig. 2. Radiative Heat Transfer algorithm loop structure

Figure 3. All the variables used in the arithmetic computations are floating-point
types.

Originally the program was written for double precision floating-point, but for
our purposes, we changed that to single precision floating-point. We found that
there is not a significant difference in the results when we use single versus double
precision floating-point. There was only a .0025% difference in the number of
photons absorbed in the single precision version compared to the double precision
version.

4 Hardware Implementation

We target the hardware implementation to the Virtex II and Virtex II Pro
FPGAs. These devices have small embedded memories called Block RAMs as
well as embedded 18-bit multipliers. An initial approximation of the pipeline was
generated from the Streams-C compiler [17] on an integer version of the code.
The generated pipeline was then converted to use floating point modules, and
manually optimized to maximize pipelining.

Figure 3 shows the C code for the compute-intensive for loop of the radia-
tive heat transfer algorithm. In each iteration of this loop, the calculations are
performed relative to one of the surfaces of the convex shape. Some variables
are invariant across loop iterations (e.g., epsdet0) while others assume unique
values for each loop iteration, as shown by the array index s, for example, delxs,
delys, and rhss. The latter variables are assumed to reside in Block RAMs.

Figure 4 shows the pipelined hardware implementation of the innermost loop.
The design is an 11 stage pipeline utilizing the floating point libraries from [6].
It consists of 12 multiply, 3 addition, 7 subtraction, 1 divide and 2 comparison
modules. The breakdown of the latency is as follows: 4 cycles for multiplica-



float

x1 [NSM 1,x2 , [NSM 1,
1 [NSM 1 ,y2 [NSM 1,
delx [NSM ] ,dely [NSH 1,
sqln [NSM ] ,rhs [NSM 1;

delxs = delx [s];

delys = dely [sl;

rhss = rhs [s1;

/* compute intersection points*/
det = exx*delys - ey*delxs;
absdt= fabs(det);
if (absdt <= epsdet0)
det= epsdetO;
dtinv= 1.0/det;
xi dtinv * (delxi*rhse - ex*rhss);
yi dtinv * (delyi*rhse - ey*rhss);

/* test for intersection between surface endpoints*/
x1s = x1 (s1;

yis = y1 [s1;
x2s = x2 (s];
y2s = y2 [s];
sqlns = sqln [s];
ssq = (xi - x1s)#*(xi - x1s) + (xi - x2s)*(xi - x2s)

+ (yi - yls)*(yi - y1s) + (yi - y2s)*(yi - y2s);

if(ssq <= sqlns) {
intersect_side[s] = 1; /* s is the intersected side */
else intersect_sidel[s] = 0;

}

Fig. 3. Radiative Heat Transfer code implemented on the FPGA
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Fig. 4. FPGA Implementation

tion, 3 cycles for addition or subtraction, 15 cycles for division, and 1 cycle for
comparison. The total latency of the 11 stage pipeline is 41 cycles. There are 2
intermediate registers that need pipelining from Level 4 through Level 5. This
data synchronization requirement introduces 32 additional 34-bit registers into
the design.! For clarity, only two registers are shown in Level 5; actually there
are 15 registers for each operand, for a total of 30 34-bit registers at Level 5;

For this implementation there are 11 inputs to the pipeline — 6 inputs are
consumed in the first Level, 4 inputs are consumed at Level 7 and 1 input is
consumed at Level 10. The data is stored in 2 204-bit by 512 deep, dual-port
Block RAMs. Memory reads are scheduled so that values arrive at Level 7 and
at Level 10 at exactly the cycle they are consumed. By scheduling the reads in
this way, we avoid the overhead of fully pipelining the 5 inputs that are needed
at Level 7 and Level 10. This would introduce an extra 27 cycles x 4 registers
(Level 7) plus 40 cycles x 1 register (Level 10), or 112 + 40 = 152 34-bit registers
into the design. These 152 registers correlate to a 1% increase in area utilization
on the Virtex II.

5 Performance

This section gives a performance analysis of the application running on several
P4 systems versus the the Virtex II and Virtex II Pro hardware platforms.

! The FPLibrary adds a 2-bit tag to each floating point register.



5.1 Workstation Performance

For performance comparisons with the FPGA we needed to look at the innermost
loop of the task, which is the iteration over 37 surfaces for a single photon, looking
for an intersection.

The static instruction count shows 130 instructions: 61 floating point in-
struction, 9 branches, 73 instructions which reference the stack (including float-
ing load/store to stack for locals), and only one integer instruction (the loop
counter). All the instructions and data for this loop fit neatly into the Level 1
cache (the fastest cache level), and hence could be expected to run at maximum
speed on the CPU.

Needless to say, this is a very small instruction count, and measurements
can easily perturb it. Obtaining an accurate measure of this loop represents a
challenge. Traditional profiling tools such as gprof are acceptable for function-
level timing, but we needed an extremely accurate measure of the inner loop.

On the Pentium and later processors there is a timer register, called the Time
Stamp Counter (TSC), which measures processor ticks at the processor clock
rate. This 64-bit read-only counter is extremely accurate, as it is implemented
as a Model-Specific Register inside the CPU. The overhead of using this register
is extremely low. On a 1.8 Ghz Pentium the TSC runs at 1.8 Ghz and has a
resolution of 555 picoseconds; on a 3 Ghz Pentium the TSC has a resolution of
333 picoseconds.

We used the TSC to measure the inner loop of the application. We performed
measurements both in the application itself, and by extracting the inner loop
and running it many times. As expected for this loop, the performance varied
with the CPU being used, with the fastest CPU being the 3 Ghz Pentium.

We tested both the Intel compiler (newest version) and gee. Gee provided the
best performance, which was somewhat surprising. Timing for one iteration of
the inner loop, shown in Figure 5, ranges from 60ns to 104ns. Note that the time
is an average, as in the sequential version of the loop body, there is opportunity
for early exit from the loop.

Virtex2 6000|Virtex2p100|Virtex2p125|P4 1.6|P4 2.4|P4 3.0
Speed (ns) 29.9 16.7 15.7 104 | 74 | 60
%Area (LUTSs) 20 15 12
%Multiplers 100 32 25
Latency (cycles) 41 41 41
Speed up 1.7 24 2.6 04 | 0.8 1

Fig. 5. FPGA vs. Workstation performance for Inner Loop. Speed up compared to the
P4 3.0 GHz System.



5.2 FPGA Performance

Placement results for one iteration of the inner loop on the Virtex II and Virtex
II Pro FPGAs are shown in Figure 5. On the Virtex II 6000, only 20% of the
Look Up Tables (LUT) is used by the loop body. However, all the multipliers
are used, and therefore only one instance of the loop body can fit on this part.
In contrast, the larger Virtex II Pro parts can fit 2-3 instances of the inner loop,
resulting in a higher degree of spatial parallelism.

As noted above, the hardware design is highly pipelined. The pipelining al-
lows a relatively high clock frequency for the design. However, the cost is a high
latency — 41 clock cycles to seeing the first result. Also, in contrast to the soft-
ware implementation, in the hardware, the entire loop body is executed, and the
timing results reflect the cost of executing all 37 iterations.

In terms of technology generation, the Virtex II 6000 and P4 1.6GHz are com-
parable. The results show that the V26K hardware implementation outperforms
the microprocessor by a factor of 1.67. Encouragingly, for the newer generations
of FPGA and microprocessor (V2Prol00 and 3.0GHz) , the speedup is slightly
better — 1.73x.

5.3 Discussion

Our results show that the FPGA hardware outperforms comparable generation
of microprocessor by 1.6 — 1.7x on an application-specific single-precision floating
point pipeline. There are several points to note.

First, the FPGA implementation must execute all loop iterations of the inner
for loop. The software timing is an average number: many times the software
breaks out of the loop without completing all iterations, as the last if statement
of Figure 3 contains a break in the software version of the loop. In a scenario
in which all loop iterations were required, the FPGA speedup would be much
greater.

Second, this application fits well in the L1 cache of the microprocessor. A
more data-intensive application would better use the strengths of the FPGA
(greater memory bandwidth and better performance on data intensive compu-
tation).

Third, the number of iterations of the for loop is quite small. In fact, the
pipeline latency is greater than the number of iterations. Like vector processors,
the application-specific pipeline on the FPGA shows the best performance when
the algorithm has many iterations with little data-dependent branching,.

Fourth, the floating point library we used in this experiment is technology-
independent. In fact we were able to synthesize it to several different families,
including the Altera Stratix. Technology-specific floating point cores such as
Quixilica yield smaller area and faster clock rate. On the minus side, other float-
ing point libraries, including Quixilica, have even higher operation latencies. For
best performance, embedded hard floating point units in a fabric of reconfig-
urable logic would, of course, be desirable.



Finally, it is important to compare the performance of the application-specific
pipeline, with a mix of different floating point operators and branching con-
structs, to peak performance results cited by others. While theoretical peak
numbers are useful to gauge feasibility, using floating point in a supercomputing
application gives us more accurate performance results — which, of course, are
much reduced from theoretical peak.

6 Conclusions

We have presented hardware implementation of a floating point Monte Carlo
radiative heat transfer simulation application on the Virtex II and Virtex II Pro
families of FPGA. In contrast to previous work that presented peak performance
or performance results on small kernels, we have implemented an application-
specific pipeline on the FPGA. We have presented detailed timing results com-
paring FPGA speed to high performance workstations, realizing a 1.73x speed up
of the single precision floating point pipeline running on a VirtexII Pro hardware
platform versus running the application on a 3.0GHz workstation.
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