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In many HCP metals, both twinning and slip are known to be important modes of 

deformation. However, the interaction of the two mechanisms and their effect on work 

hardening is not well understood. In hafnium, twinning and work hardening rates 

increase with increasing strain, increasing strain rate, and decreasing temperature. At low 

strains and strain rates and at higher temperatures, slip dominates deformation and rates 

of work hardening are relatively lower. To characterize the interaction of slip and 
twinning, Hf specimens were prestrained quasi-statically in compression at 77K, creating 

specimens that were heavily twinned. These specimens were subsequently reloaded at 
room temperature. Twinning within the microstructures was characterized optically and 

using transmission electron microscopy. The interaction of slip with the twins was 
investigated as a function of prestrain and correlated with the observed rates of work 

hardening. 
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Hafnium 
*Group IVa of the Periodic Table 

*HCP Structure 
*Hafnium + c/a = 1.58 1 

*Applications: 
Control material in nuclear reactors 
*Solid solution strengthener 

*Properties: 
*High strength 
*High ductility 
*Resistant to corrosion and irradiation 
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Motivation 
~~ 

Predictive models have success with canturine the mechanical behavior 
I V 

of high symmetry, isotropic metals. 

It is more difficult to model the behavior of nighly texturea, anisotropic 
materials : 

*The effects of texture on mechanical behavior are incompletely 
understood. 

For these metals there is a lack of mechanical test data over a broad 
range of strain rates and temperatures. 

In the past we have examined the influence of temperature, strain rate, 
and texture on Hafnium on: 

*Mechanical properties 
.Microstructural and substructural evolution 

I Here we are study the effects of twinning on work hardening behavior I 
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Experimental Material 
High purity crystal bar Hafnium 

Chemistry of the Crystal Bar Hafnium (wt% ppm) 

*Upset forged and rolled, annealed at 85OOC for 1Hr. 

Initial Microstructure 
(Zr is in atom YO) 

Pole Figure: Basal Texture 
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Compression Specimens 

Dimensions: 
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.Height = 5mm 

Two Orientations: 
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Mechanical Testing Results: Hafnium 
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Flow stresses and rates of work hardening are influenceH texture, 
" W' temperature, and strain rate 
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Evolution of Substructure: IP Case - Hafnium 

I IP, Hf, E = 2.87%, 1/3[-21101 dislocations I 
gliding on the (01-10) plane 

IP Hf, E = 5.02%, dislocations are 1/3 [ 1-2 101 
on the (-1010) plane, other areas contained 

loose subgrains 



Evolution of Substructure: IP Case - Hafnium, Cont. 

HF IP, E = lo%, dislocations are a-type, 
most of the substructure contained well 

formed subgrains 

d 

I I 

Hf IP, E = 21%, Matrix dislocations are a- 
type, twin is on the (-21 1-1) plane, 

dislocations within the twin are [OOOl] 



Experimental 

Quasi-Static Compression Testing 
OInstron Screw Driven Load Frame 
.Strain Rate: 1 O-3/s 
*Temperatures : 

- Loaded at 77 K to 5 and 10% 
- Reloaded at 298 K an additional 2% 
strain 

Characterization 
.X-ray Analysis 
.Optical Metallography 
.Transmission Electron Microscopy 

N A T I O N A L  L A B O R A T O R Y  



Mechanical Testing: Reload Results 
StressSrain of Hafnium at .oOl/s in Compression 
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.Yield stresses and work hardening rates increase with decreasing 
temperature 

Room temperature reloaded specimens, prestrained at 77K, display 
higher flow stresses than room temperature specimens, with no prestrain. 



Work Hardening: Reload Results 
Work Hardening Rate of Hafnium at .OOI/s in Compression 

6000 

Q) 5000 
CI 

2g 
p i! 4000 
'- c ti 

1000 

0 

A Reload @298K #I * As-Annealed @77K 

I I I I I I I 

0 0 
'0 
2 
CP 

0 
'0 
% 

0 
'0 
lr 

0 
'0 

TP 

0 
'0 
% 

0 0 ~ 

'2 
2 
R 

True Strain 

Room temperature reloaded specimens, prestrained at 77K, display 
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higher rates of work hardening than room temperature specimens, 
with no prestrain. 



Microstructure 

4% 77K 

5% 77K 
3% 298K 
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Influence of Temperature on Twinning 
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More grains contain 
twins at lower test 
temperatures. 

Twinning increases 
with strain. 

At both 77K and at 
298K there is a sharp 
increase in the amount 
of twinned grains 
between 5 and 10% 
strain. 
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Substructure of H f  - at 77 K 
a 
L 1  

I, 
I 400nm - 1  95nm - 

I - 

I Twin at 5% strain, on the (1 1 22) I Matrix at 5% E, tangled a-type 
dislocations I plane, contains debris 

Substructure similar to the 298K substructure at 5% E, except volume 
fraction of twins is significantly higher at 77K 



Substructure of Reloaded H f  

Low magnification image of the 
twins and matrix 

Higher magnification image of a- 
type dislocations accumulating 

between two twins 

Dislocation pile-ups between twin boundaries cause higher flow 
stresses and rates of work hardening in reloaded specimens 



Conclusions 

Room temperature reloaded specimens, prestrained at 77K, 
display higher flow stresses and rates of work hardening than 
room temperature specimens, with no prestrain at a comparable 
strain. 

The volume fraction of twinned grains increases with increasing 
strain and decreasing temperature 

Twins effect work hardening rates in two ways: 
1 .) Dislocations pile up between twinned areas, the refined glide distances 

inhibit motion. 
2 . )  Twins contain high density of dislocation debris, difficult to glide within 

twinned regions. 
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