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Abstract: 
We review our approach to the representation and propagation of hybrid uncertainties 
through high-complexity models, based on quantities known as random intervals [15,20,21]. 
These structures have a variety of mathematical descriptions, for example as interval-valued 
random variables [4], statistical collections of intervals [ 171, or Dempster-Shafer bodies of 
evidence on the Bore1 field [19]. But methods which provide simpler, albeit approximate, 
representations of random intervals are highly desirable, iiicludiiig 1)-boscs c ~ ~ i d  tiaces. Each 
random interval, through its cumulative belief and plausibility measures functions [35], gen- 
erates a unique p-box whose constituent CDFs are all of those consistent with the random 
interval. In turn, each p-box generates an equivalence class of random intervals consistent 
with it. Then, each p-box necessarily generates a unique trace which stands as the fuzzy set 
representation of the p-box or random interval. In turn each trace generates an equivalence 
class of p-boxes. The heart of our approach is to try to understand the tradeoffs between er- 
ror and simplicity introduced when p-boxes or traces are used to stand in for various random 
interval operations. For example, Joslyii [18] has aigued tliat foi elicitatioii aiid iepreseiita- 
tion tasks, traces can be the most appropriate structure, aiid has proposed a method for the 
generation of canonical random intervals from elicited traces. But alternatively, models built 
as algebraic equations of uncertainty-valued variables (in our case, random-interval-valued) 
propagate uncertainty through convolution operations on basic algebraic expressions, and 
while convolution operations are defined on all three structures, we have observed that the 
results of only some of these operations are preserved as oxie moves through these three levels 
of specificity. We report on the status and progress of this inodeliiig approach coiiceriiiiig 
the relations between these mathematical structures witliiii tliis overall frarneworlc. 

Keywords: Dempster-Shafer theory, random sets, random intervals, p-boxes, probability 
bounds, fuzzy arithmetic. 

1. INTRODUCTION 
Engineering modeling problems are frequently characterized by a large number of inputs 
with different forms and levels of uncertainty present on tlieiii. Foi exaiiiple, it iiiiglit be 
desirable in a given context to combine uncertainties characterized by coarse-grained prob- 
ability distributions, strong or weak statistical data, interval data, possibility distributions, 

*Knowledge Systems and Computational Biology Team, Computer and Computational Sciences, 
Mail Stop B265, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, joslynmlanl .gov, 
h t t p  : //www . c 3 .  lad. gov/"j oslyn, (505) 667-9096. 

+Applied Biomathematics Setauket, New York. 



or linguistic information represented as fuzzy sets. Propagating such hybrid uncertainties 
through high-complexity models (whether analytical or computational) is thereby especially 
challenging, as are elicitations and interpretations of both input and output uncertainties by 
domain experts and customers. 

We have been developing an approach to the represeiitatioii and propagatioii of hybrid uncer- 
tainties in engineering modeling applications based on quantities known as random intervals 
[15,20,21]. These structures have a variety of rnatliematical descriptions, for example as 
interval-valued random variables [4], statistical collections of intervals [ 171, or Dempster- 
Shafer bodies of evidence on the Bore1 field [19]. 

One of the advantages of random interval structures is their ability to generalize more specific 
kinds of uncertainty quantities with a relative minimum of computational and mathematical 
complexity. Nonetheless, random intervals are not especially siiiiplc sti uclui cs to represent 
or manipulate, and therefore methods which provide simpler, albeit approximate, repre- 
sentations of them are highly desirable. In this paper we report on a framework we are 
developing to  accomplish this. In our approach, random interval quantities can be repre- 
sented in increasingly simplified and approximate forms through first p-box, and then trace, 
structures. 

A p-box [8] is an ordered pair of monotonically increasing functions wliicli together bound 
a collection of cumulative probability distribution functions. Each 1-aiidon1 iiitervd, tlirough 
its cumulative belief and plausibility measures functioiis [35], generates a unique p-box wliose 
constituent CDFs are all of those consistent with the random interval. In turn, each p-box 
generates an equivalence class of random intervals consistent with it. 

A trace [17] is defined in this context as a fuzzy quantity 011 tlie real line. Each p-box 
necessarily generates a unique trace which stands as the fuzzy set representation of the 
p-box or random interval. Under different conditions it can take on the properties of a 
probability distribution, possibility distribution, or so-called “fuzzy intcrval” quantity (used 
in fuzzy arithmetic). In turn each trace generates an equivaleiice class of p-boxes. 

The heart of our approach is to try to understand the tradeoffs between error and simplicity 
introduced when p-boxes or traces are used to stand in for various random interval operations. 
For example, Joslyn [18] has argued that for elicitatioii and representation tasks, traces caii 
be the most appropriate structure, and has proposed a method for the generation of canonical 
random intervals from elicited traces. 

But alternatively, models built as algebraic equations of uncertainty-valued variables (in our 
case, random-interval-valued) propagate uncertainty througli coiivolution opei atioiis on basic 
algebraic expressions. But while convolution operations are defined on all three structures 
(random intervals, pboxes, and traces), we have observed that the results of only some of 
these operations are preserved as one moves through these three levels of specificity. 
In this paper, we report on the status and progress of this modeling approach concerning 
the relations between these mathematical structures within this overall framework. 
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2. GENERALIZED U N C E R T A I N T Y  QUANTIFICATION FOR 
E N G I N E E R I N G  M O D E L I N G  

Consider the situation where we have a model, perhaps a large computer code, which acts 
as a function f mapping inputs X to outputs Y .  This model f might be quite complex, 
with high run times, and more significantly multiple input parameters (expressed as the 
dimensionality of the space X), with different kinds of uncertainty represented on them. 
Given the necessity for many “gaps” between the information present in our simulations 
from those of reality (model incompleteness and error, and inherent system variability and 
imprecision), we wish to represent amounts, degrees, and ltirids of these uncertainties in 
formal systems. 

But information available on inputs may be rich or sparse, so-called “aleatory” (related to 
well-known, but chance, outcomes) or “epistemic” (related to a less-than-well-known out- 
come), and may be made known through objective measurements or through the subjective 
elicitation of experts. Mathematically, inputs might be represented as probability distribu- 
tions, paramaterized classes of probability distributions (e.g. N ( p ,  a)), by a strong statistical 
collection of data points, by a sparse such collection, by simple intjervads, st,a,t:istical collections 
of such intervals, or even by non-quantified linguistic expressions. 

A Probability 
Distribution b b 

I- Distribution hiu, 
Parameters Sigma 

Statistical ..$,+* 1 t- Strong 

Data 
Weak 

Statistical -, ... Model 
Data 

Figure 1. Hybrid uncertainty quantification for an engineering modeling problem. 

So given a risk or reliability problem related to our model f as charicatured in Fig. 1, how 
can we quantify this uncertainty on the input space X, and furthermore propagate it through 
f to the output space Y? More to the point, how can we do so in a way which respects all 
the original uncertainty quantifications as provided, iiialtiiig 110 uiiiiecessaiy czssuinptions? 
Paraphrasing Klir [25], how can we do such in a way which uses no less than, but also no 
more than, all available information; that is, uses only, but all of, what we are given? 

So wherever possible, we should fit formalism to available information, and not vice versa. 
Through the 20th century, uncertainty modeling has been dominated by the mathematics of 
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probability, and since Shannon and Weaver [31], information has been defined as a statistical 
measure of a probability distribution. But also starting in the 1960s, alternative formalisms 
have arisen. Some of these were intended to stand in contrast to probability theory; others 
are deeply linked to probability theory, but depart from or elaborate on it in various ways. 
In the intervening time, there has been a proliferation of methodologies (including interval 
analysis [28], fuzzy systems [26], fuzzy and monotone measures [24], Dempster-Shafer evi- 
dence theory [13], random sets and intervals [22], possibility theory [7], probability bounds 
[8], rough sets [29], imprecise probabilities [33], and info-gap theory [2]) aloiil; with concomi- 
tant movements to synthesize and generalize them. Together, following Klir [19,23], we call 
these Generalized Information Theory (GIT). These methods are increasingly accepted 
in engineering modeling [15,32], and our approach is squarely centered here. 

As a very simple example motivating our approach, consider that for one of the variables x 
in our space X, we’re given only an interval, that x might be between two quantities a and 
b, so that x E [a,b]. How do we represent the uncertainty U ( I )  in I? A standard answer 
might be to use a uniform probability ditribution U ( I )  := p ( z )  with 

as shown by the horizontal line in Fig. 2. No doubt this answer is justified (by maximum 
entropy, insufficient reason, and related principles) when it is necessary to use a single prob- 
ability distribution. But this was not specified in the problem. Indeed, one could argue 
that any probability distribution with support on [a, b] can be justified. perhaps denoted 
U ( I )  E P([a,b]) (perhaps the truncated normal shown in Fig. 2); but better yet, why isn’t 
our uncertainty all such distributions: U ( I )  = P([a,b]) (the box bounded by the dashed 
lines in Fig. 2). 

4 

Figure 2. Representatioris of 2 E [a, b ] .  

In its purest form, our answer should in fact be none of these, but rather that U ( I )  is best 
represented by the information as provided us, that is, by the interval itself U ( I )  = [a,b]. 
However, when it is necessary to combine information for some variable x E X with another 
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y E Y ,  then these other forms may be vailable. We argue below that all of these answers are 
approached consistently within the proper GIT context. 

3. NOTATION 

Throughout the paper assume a universe of discourse 0 = { w } .  Denote A I L> := AnB = Q). 
Given a class C = { A }  C 2", define the core and support respectively as 

We begin considering C! = {w i } ,  1 5 i 5 n to be finite, but move to recognize 0 = IR, and 
consider Borel sets (half-open interval subsets), elements of a interval Borel field. 

DEFINITION 3.1 (INTERVAL BOREL FIELD). Let 

whereVa 5 b E IR, -oo < a 5 b < 00, [-oo, b) := lim,,-,[a, b) E Z, [a, eo) := limb,,[a, b)  E 
1, [-oo, 00) = IR E 1, and [-m, -oo) = [oo, oo) := 8 E Z by conventzon. 

In general, let I := [a,b) E Z. 

A vector denoted a' = (a,) = (a l ,  a2,. . . , a,) is a structure of leiigtli 121 = 111, \diere each 
element a, of the vector is an element of some set a, E X. The a, are ordered and may include 
duplicates. Let an element b E X be said to be included in a vector b E a' if 3a,, b = a,. 
Define subtraction of an element a, from a vector a' as a new vector 

-t a - a2 := (a1, a2,. . . , ai-1, U i + l , .  . . , a,) 

so that la'- ail = m - 1. 

Since a vector may contain duplicate elements ai, ,  aa2 E 2, uaI = ut2, tliereloie each vector ii 
determines a unique non-empty set A constructed by including one instance of each element 
ai E a', so that b E a' b E A, 1 5 IAl 5 m, and the quantity la'l - [AI is the number of 
elements of a' which are duplicates. 

Generalized convolution operators will be introduced, and denoted @ E { +, -, x , +, "} for 
addition, subtraction, multiplication, division, and exponentiation respectively. Let V be the 
maximum and A the minimum operator. 

4. RANDOM SETS, RANDOM INTERVALS, AND EVIDENCE THEORY 

We now introduce the fundamental ideas of random sets and intervals. 

DEFINITION 4.1 (GENERAL RANDOM SET). Given a probability space (X, C, Pr), then 
a function S: X H 2" - {8}, where - is set subtraction, as a random subset of s2 af S is 
Pr-measurable, so that VO # A 
rtandom sets were originally developed as a branch of stochastic geomet,ry: and their math- 
ematics in general can be quite complex [l, 221. But for our purposes, and especially ill the 

0, S-l(A) E E. 
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finite case, they can be seen more simply as random variables taking values on subsets of 
R. Further, they are mathematically isomorphic to bodies of evidence ill  Deinpster-Shafer 
evidence theory [3,30, ?I. We now reintroduce randoin sets in this context. 

DEFINITION 4.2 (EVIDENCE FUNCTION, BASIC ASSIGNMENT). A function m: 2" H [0,1] 
is  an evidence function (basic assignment) when m(0) = 0 and CAcnm(A) - = 1. 

DEFINITION 4.3 (FINITE RANDOM SET). Given an  evidence function m, then 

S := {(Aj ,mj)  : mj > 0 } ,  (1) 

is  a finite random set where Aj G R, mj := m(Aj ) ,  and 1 5 j' 5 N := IS1 5 3" - 1. Denote 
the focal set of S as the class F (S )  := {Aj : mj > 0) C 2" 
NOTE 4.4. Each finite random set S determines a unique general random set S :  F ( S )  I+ 

2" - 0 defined o n  the probability space (F (S ) ,  27(s), Pr), where Pr is  the measure determined 
by m acting as i ts  density function 1161. Moreover, S simply is a Dempster-Shafer body of 
evidence I?, 131. 

We recognize random sets with the following special structures: 

Consistent: The global intersection is non-empty: "Aj l ,  Aj, E F ( S ) ,  Aj,  )! Aj, c-1 C ( F ( S ) )  # 
0. 

Consonant: Focal elements are all nested: V A j ,  , Aj, E F(S) ,  Aj, 2 Aj, or Aj, C_ Aj,. 

Disjoint: No focal elements intersect: VAj,, Aj, E F ( S ) ,  Aj, I Aj,. 

Specific: All focal elements are singletons: VAj E F(S) ,  3!w E R, A, = { w } .  

Note that consonance implies consistency, and specificity implies disjointness. Finally, dis- 
jointness implies a lack of consistency, and vice versa. 

DEFINITION 4.5 (MONOTONE MEASURE, MONOTONE MEASURE TRACE). (341 Assume 
a general universe of discourse R, a class of subsets C C_ 2", and a sequence of such sets 
{Al,AP,. . .} G C .  Then  v:C H [0,1] is  a monotone measure if 

1. 4 0 )  = 0 

2. Monotonicity: 
VA,B 2 R, A 2 B t v(A)  5 v (B)  (2) 

3. Continuity from Below: 

AI C A2 2 . .  . and U(C) E C --f ,lim v(Ai) = v 
2-00 

4. Continuity from Above: 
00 

AI 2 A2 2 . . . and C(C) E C t ,lim v(Ai) = v (n Ai)  . 
2-00 i=l 
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u is  normal when u(R) = 1. Define the trace of a monotone measure u as i ts  “one-point 
covering function” q,,: R H [O, 11, qy(w) := u ( { w } ) .  

DEFINITION 4.6 (EVIDENCE MEASURES). The plausibility and belief measures on  VA G R 
are 

Pl(A) := mj, Bel(A) := mj, 
Aj  4.4 Aj EA 

P1 and Bel are generally normal, non-additive monotone measures [34], and are dual, in that 
VA C R, Bel(A) = 1 - P1( A) .  
Random intervals were introduced by Dempster [4]. 
DEFINITION 4.7 (FINITE RANDOM INTERVAL). A finite random interval, denoted d, is  a 
finite random set o n  R = IR for which 3(d) = {Ij} 

Thus a finite random interval is a finite random left-closed interval subset of R. 
Previously 52 had been postulated as a finite set, which leads to a great deal of mathematical 
simplicity. However, even though R is now uncountable, complications can still be avoided 
as long as A is finite, that is as long as only finitely many (N)  focal elements are present. 
This is because each I = [ I ,  r )  C R is characterized completely by the two endpoints 1 and r .  
With each new focal element Aj, N grows by 1, and the total number of endpoints present 
in 3(d) grows by at most 2. Thus the focal set of a finite random interval can be completely 
represented by the finite collection of these endpoints: F(d) = { I j }  = {[l j ,r j )} .  It is only 
these endpoints that need to be considered, and none of the properties of I;hc continuum of 
points between them is significant. 

On this basis we can describe the various components of a random interval. In general denote 
Ij = [ l j ,  r j ) .  Then, denote the vector of all endpoints L’ := ( l l , r l ,  l2,12:. . , Z j ,  rj, . . . , l ~ ,  r N ) ,  

and let L := {zk} be the set derived from eliminating duplicates from L,  with Vxk E L, 3zj E 
Z,xk =xj and 15 IC 5 Q := I L I , N + l  5 Q 5 2N = IL’I. 
The elements of L determine a class l? = {Gk} 1, now with 1 5 k 5 Q - 1, which is the 
finest partition of the support U(d) induced by the total intelsections 01 Llic I j  with each 
other and with all their intersections recursively. In practice, the Gk are determined simply 
by ordering the xk E L and then traversing them from min xk rightward, forming an interval 
for each point in turn. 

An example is shown in Fig. 3, with N = 4, F(d) = { [3.5,4), [l, 2), [3,4), [2,3.5)}, and rrz 
is as shown. Here Q = 5, with L’ = (3.5,4,1,2,3,4,2,3.5),  L = {1,2,3,3.5,4}, and thus 

Our definition differs somewhat from others in the literature [9] who use fully closed intervals. 
But not only is the Bore1 field Z more consistent with that of measure theory [14,34], 
it  also makes the algebraic manipulations of the Ij much easier, since e.g. for z 5 y 5 

In real problems, random intervals are derived from collections of observed intervals. In 
Joslyn’s formalism for random interval measurement [ 171, the values m( I j )  are derived by 
their relative frequency in this observation record. But depending on the application, it may 

1, 1 5 j 5 N.  

r = {[L 21, [2,3), [3,3.5), [3.5,4)}. 

2, [z, Y) n [Y, 4 = 0. 
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Figure 3. Example of a finite raridorn interval. 

or may not be likely that two identical intervals I ,  I’ = [ l ,  r )  will be observed, as distinct 
from another interval I‘ “very close” to I ,  for example I’ = [1+ E ,  r - 6) for some very small 
E ,  6. In this case, as N grows each Ij is observed once, but with increasing refinement among 
the endpoints { l j ,  r j } .  Thus it is common in real applications to deal with random intervals 
where all the focal elements I j  E F(d) are distinct with Q - 2N, and therefore each with 
frequency m ( I j )  = 1/N. 
Yager [35] introduced convolution operators on random intervals. 

DEFINITION 4.8 (RANDOM INTERVAL CONVOLUTION). Assume two independent random 
intervals dl = { ( I j , m j ) } , l  5 j 5 N1,d2 = { ( I k , m k > } , l  5 k 5 N2, and a convolution 
operator $. Then dl $ A2 := { ( I l ,  ml)} where: 

1 5 1 5  NlN2, ~ ~ = { x = x $ y , x E I j , y E ~ ~ } ,  ml=mjmk. 

5. PROBABILITY BOXES 

Random intervals can be difficult structures to elicit, represent, and manipulate. The first 
of their approximations we introduce are so-called probability boxes, or just p-boxes. 

DEFINITION 5.1 (PROBABILITY Box (P-Box)). A p-box [8] is  a structure B := (B,B), 
where B, B: R H [0,1] with: 

I. limz-,-w B ( x )  - 0, 

2. B ( x ) , B ( x )  are monotone non-decreasing in x ,  and 

limz-,w B ( x )  - 1, B E B,  

3. B 5 B. 

- B and B are interpreted as bounds on cumulative distribution functions (CDFs). In other 
words, given B = B, B , we are interested in the set of all functioiis (17 : U 5 J‘ 5 B} such 

In this way, each p-box defines such a class of probability measures. 
that F is the CD F( of -) some probability measures Pr on R. For each such F, denote F E 0. 
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DEFINITION 5.2 (P-Box CONVOLUTION). Assume two p-boxes Bl ,  Bp, and a convolution 
operator e. When B1 and t32 are independent, then define 

Each random interval naturally generates a P-Box. 

THEOREM 5.3. Given a random interual A, then B(d)  := (BEL,PL) is a P-Box, where 
BEL and PL are the “cumulative belief and plausibility distri21u2iuiisi’ PL, EEL: IR H [0,1] 
originally defined b y  Yager 15’51 

BEL(s) := Bel([-oo, s)), PL(s) := Pl([-co, x)). 

Proof Assume a random interval A. We need to show: 

I. First, 

lim BEL(s) = lim Bel([-03,s)) = Bel = Bel([-oo, -03)) = Bel(0) = 0. 
x--w Z--W 

Similarly, 

lim BEL(s) = lim Bel([-03,s)) = Bel = Bel([-w,co)) = Bel(R) = 1. 
x-00 x-00 

The results limx--w PL(s) = 0, l i inx-+w PL(x) = 1 follow identically. 

2. Since s 5 y + [-oo,s) C [-m,y), and since Bel and P1 are monotone measures, 
therefore from monotone measure monotonicity IC 5 y --f BEL(x) 5 BEL(y), therefore 
BEL(x) is monotone non-decreasing in IC. And similarly for PL. 

3. V I  E Z, Bel(1) 5 Pl(I) ,  and thus BEL(1) 5 PL(1). 

Therefore (BEL, PL) is a P-Box. 

The p b o x  generated from the example randoin interval is shown in Fig. 4. Since B and 
partially overlap, the diagram is somewhat ambiguous on its far left and right portions, but 
note that 

- - 
B ( [ - 0 ,  1)) = 0, B([-m, 2 , ) )  = 0, B([3 ,  m)) = 1, .B([3.5, m)) = 1. 

But for the converse, each p b o x  determines only ai1 equivaleiice class oi raiidoiii iiitervals. 
Consider the example shown in Fig. 5 for a < c < d < b E R, C = { B = [a,  d ) ,  C = 
[a, b) ,  D = [c, d) ,  E = [c, b ) } ,  and three different focal classes FI = { B ,  E } ,  F2 = { C, D } ,  
and F3 = {B ,  C, D ,  E }  with their respective ml, 77x2, and m3 are shown. We have D ( d l )  = 
B(A2) = B(A3). 
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PL = E  
o--- -+ 

BEL = B 
v---+ 

Figure 4. A finite random interval and its piecwise-constant pbox B(d). 

= .5 
E : - m(E) =.5 

: I m(C) = . 5  C I  : 
D : - : m(D) =.5 

B I  , ,  : I . .  : m(B) = .25 
C !  i : , .  I m(C) =.25 
D i . *  : m(D) =.25 
E - m(€) =.25 

. ,  

. .  . .  
. .  . .  
. ,  . .  * .  * .  

Figure 5. Three different random intervals and their corriniori p-box arid trace. 
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Thus for a given p-box B, we can denote d(B) as the equivalence class of random intervals 
consistent with it: d(B) := {d : B(d) = a}. 
P-boxes and B have inverses under reasonable conditions. Assume that B and B are 
peicewise continuous from the left. Then define the pseudo-inverses 

-- 1 - ~ - ' ( a )  := argmin la - ~ ( x ) l ,  B (a)  := argmin IQ - B(z)l, 
X E R  X E I R  

for a E [0,1], and 

DEFINITION 5.4 (P-Box INVERSE). Given a p-box 23, let B-': [0,1] H Z where V a  E [0,1] 

B-l(a) := { [B-'(a),B-l(a))} 

Condition 3 of (5.1) guarantees that for each a = [0, I], B-l(a) exists and is a member of 1. 
When and B are peicewise-constant, l3-l naturally partitions [0,1] into disjoint intervals 
denoted 6j over which Va,  a' E 6j, B-'(a) = B-'(a'). In practice, denote bj := [a:, a;], 
where 

1 aj = argminB(x) 2 a,  a; = argmaxB(z) 5 a. 
X E I R  xElR 

This is shown in Fig. 4. 
Given a peicewise-constant p-box, there is a canonical way to construct a random interval 
consistent with it. 

DEFINITION 5.5 (CANONICAL RANDOM INTERVAL FROM P-Box). Assume a p-box B. 
Then construct d*(B) := { ( B - ' ( ? i j ) , q ) } ,  where := B-l(a$) = B-l(a;) and mj = 
al. - a?. 

THEOREM 5.6. d*(B) is a random interval, and A*(@ E d (B) .  
Prooj 
0;j partition [0,1], therefore 

3 3  

It  is evident from the definitions (5.4) and (5.5) that each fij E 1. Also, since the 

It is relatively easy to see in the example that in Fig. 4 that A*(B(A)) = A, although we 
know that this is not always so. 

6.  RANDOM INTERVAL TRACES 

A fuzzy (sub)set of 0, denoted A 5 R, is determined by its membership function, which is 
any function of the form px: R H [0,1]. Denote the core of a fuzzy set as C(p) := { w  E R : 

The value of p ~ ( w i )  indicates the degree or extent to which wi E R. Fuzzy sets generalize 
classical (crisp) sets in that a subset A C R has a ineniberhsip fi,iiiction defined as the 
characteristic function p~ := X A .  In the sequel, let each fuzzy set be considered to be a 
fuzzy subset of the reals A 

P6-4 = 11. 

IR. 
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The trace of any monotone measure defined on R is a fuzzy set; 

COROLLARY 6.1. Given a monotone measure Y, then qv is a membership function. 

Proof. Follows trivially from the definition of trace (4.5). 

Fuzzy sets also have convolutions. 

DEFINITION 6.2 (FUZZY SET CONVOLUTION). Assume two fuzzy intervals AI, &, a con- 
volution operator @, and a T-norm n. Let & = 2, @ &. Then 

There are two special kinds of fuzzy subsets which are of particular interest to us. 

DEFINITION 6.3 (FUZZY INTERVAL). /5,6] A fuzzy subset of the real line 
interval if p is  maximally normalized and convex, so that 

R is a fuzzy 

Note that convexity here implies unimodality in the weak sense that C(F) is a closed 

where 32 E 

interval. This goes to a limit for fuzzy numbers. 

DEFINITION 6.4 (FUZZY NUMBER). A fuzzy number  zs a fuzzy znterval 

So each random interval naturally generates a trace. 

DEFINITION 6.5 (RANDOM INTERVAL TRACE). Gzveii u izl~idosii ziitei uul A, define tlie 
function PA: R H [0,1] as the plauszbilzstzc trace, or just  trace, of A, where PA = q p l .  

Therefore 

R, C ( P )  = {x}. 

v x  E R, pA(x) := Pl({Z}) = mj. (3) 
A, 32 

An example is shown in Fig. 6, with A as before, and p shown ill the top of the figure. 

But for the converse, each fuzzy subset of R determines only an equivalence class of random 
intervals. Consider again the example shown ill Fig. 5 .  Each of tlic tliiec iC~iidoiii iiitervals 
AI,&, and -A3 generates exactly the same trace, here shown in the bold, dashed, “step- 
pyramid” shaped curve. 
So for a given fuzzy set 3, denote A (F) as the equivalence class of random intervals consis- 
tent with it: A(p) := { A  : p(A) = F}. The structure of this equivalence class is not simple, 
and has been dealt with in depth by Goodman and his colleagues [lo-121. Furthermore, they 
have shown that operations on fuzzy sets are preserved when projected through the randoin 
set space. 

Joslyn has shown the basis to derive fuzzy mathematics from (empirically derived) random 
intervals [17]. First, p is constant over each GI, C R. But moreoever: 

THEOREM 6.6. [17” The trace PA of a random znterval A zs a fuzzy znterval zff A is 
consistent. 
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Figure 6. Example random interval with its trace and its components. 

This is important because fuzzy intervals generalize crisp intervals as fuzzy sets generalize 
crisp sets. They are also the basis for “fuzzy arithmetic”, since the set of fuzzy intervals is 
closed under convolution. In addition: 

PROPOSITION 6.7. Given two fuzzy intervals 31, F2, u convolution operutor e, und u T- 
n o m  fl, then Fl P z  i s  not necessarily a fuzzy interval. However, 

c (Fl @ F2) = c (Fl) e c (F2), u (1’1 @ F2) = u (PI) e u (F2). 

7. P-BOXES AND TRACES 

We now begin to explore the relations among the categories of random intervals and their 
trace and p-box representations. These are diagrammed in Fig. 7 .  
First, a given p-box determine a trace uniquely. 

DEFINITION 7.1 (TRACE OF A P-Box). Assume a p-box B.  Then  its trace, denoted p(B), 
is determined by p(B) := B - B. 
The trace determined in this way from the p-box of a random interval is the same as the 
trace of the random interval itself. 

THEOREM 7 . 2 .  For all random intervals A, p(B(A)) = p ( A ) .  
Prooj Assume a random interval A. Fix a point z E IR. Then 

PL(2) = Pl((o0,z)) = rn(1j) = c rn(1j) 
13 C(00,xI l j  <x 

(4) 
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Figure 7. Relations among random intervals, p-boxes, and traces. 

Then from ( 5 . 5 )  and (7.1), 

p(B(d))(z) = PL(z) - BEL(z) = m(1,) = ~ ~ ( 1 3 )  = p(A)(z).  ( 5 )  
1, <x<r3 X E I ,  

Note how crucial the use of half-open intervals is. The weak inequality in (4) results 
through subtraction in the appropriate half-open interval 111 (5), sild 11115 \ \ odd  have beeii 
the case whether the 1, were closed or not. These results call be checked with some simple 
diagrammatic reasoning between Fig. 4 and Fig. 6. 
But conversely, it  might be that the trace of a random interval lias multiple p-boxes which 
could generate it. 

8. FUTURE WORK 
Future development requires the following considerations: 

0 Given that B ---t p, then it should be that A(B) g A(B(p)). What about the converse? 

0 For a given A, compare d(B(d)) and A(p(A)). 

Comparison of canonical reconstructions: 

0 For a given A, compare d*(B(A)) and A*(p(A)). 

0 Keep going: compare p(A*(B)) and B(d* (p ) ) .  
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Convolutions. Similar questions for convolutions all around. In particular: 

l Compare @Al@ AZ) with B(dl) GS B(dz). 

l Compare d*(B(dl @ AZ)) with k(l?(dl) $ 13(dz)). 

l Compare p(d1 @ d2) with p(d1) GI p(d2). 

l Compare A*(p(dl @ AZ)) with k(p(d1) @ p(dz)). 
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