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Abstract:

‘We review our approach to the representation and propagation of hybrid uncertainties
through high-complexity models, based on quantities known as random intervals [15, 20, 21].
These structures have a variety of mathematical descriptions, for example as interval-valued
random variables [4], statistical collections of intervals [17], or Dempster-Shafer bodies of
evidence on the Borel field {19]. But methods which provide simpler, albeit approximate,
representations of random intervals are highly desirable, including p-boxes aud traces. Each
random interval, through its cumulative belief and plausibility measures functions [35], gen-
erates a unique p-box whose constituent CDF's are all of those consistent with the random
interval. In turn, each p-box generates an equivalence class of random intervals consistent
with it. Then, each p-box necessarily generates a unique trace which stands as the fuzzy set
representation of the p-box or random interval. In turn each trace generates an equivalence
class of p-boxes. The heart of our approach is to try to understand the tradeoffs between er-
ror and simplicity introduced when p-boxes or traces are used to stand in for various random
interval operations. For example, Joslyn [18] has argued that for elicitation and representa-
tion tasks, traces can be the most appropriate structure, and has proposed a method for the
generation of canonical random intervals from elicited traces. But alternatively, models built
as algebraic equations of uncertainty-valued variables (in our case, random-interval-valued)
propagate uncertainty through convolution operations on basic algebraic expressions, and
while convolution operations are defined on all three structures, we have observed that the
results of only some of these operations are preserved as one moves through these three levels
of specificity. We report on the status and progress of this modeling approach concerning
the relations between these mathematical structures within this overall framework.

Keywords: Dempster-Shafer theory, random sets, random intervals, p-boxes, probability
bounds, fuzzy arithmetic.

1. INTRODUCTION

Engineering modeling problems are frequently characterized by a large number of inputs
with different forms and levels of uncertainty present on them. For example, it might be
desirable in a given context to combine uncertainties characterized by coarse-grained prob-
ability distributions, strong or weak statistical data, interval data, possibility distributions,
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or linguistic information represented as fuzzy sets. Propagating such hybrid uncertainties
through high-complexity models (whether analytical or computational) is thereby especially
challenging, as are elicitations and interpretations of both input and output uncertainties by
domain experts and customers.

We have been developing an approach to the representation and propagation of hybrid uncer-
tainties in engineering modeling applications based on quantities known as random intervals
[15,20,21]. These structures have a variety of mathematical descriptions, for example as
interval-valued random variables [4], statistical collections of intervals [17], or Dempster-
Shafer bodies of evidence on the Borel field [19].

One of the advantages of random interval structures is their ability to generalize more specific
kinds of uncertainty quantities with a relative minimum of computational and mathematical
complexity. Nonetheless, random intervals are not especially simple structures to represent
or manipulate, and therefore methods which provide simpler, albeit approximate, repre-
sentations of them are highly desirable. In this paper we report on a framework we are
developing to accomplish this. In our approach, random interval quantities can be repre-
sented in increasingly simplified and approximate forms through first p-box, and then trace,
structures. -

A p-box {8] is an ordered pair of monotonically increasing functions which together bound
a collection of cumulative probability distribution functions. Each random interval, through
its cumulative belief and plausibility measures functions [35], generates a unique p-box whose
constituent CDF's are all of those consistent with the random interval. In turn, each p-box
generates an equivalence class of random intervals consistent with it.

A trace [17] is defined in this context as a fuzzy quantity on the real line. Each p-box
necessarily generates a unique trace which stands as the fuzzy set representation of the
p-box or random interval. Under different conditions it can take on the properties of a
probability distribution, possibility distribution, or so-called “fuzzy interval” quantity (used
in fuzzy arithmetic). In turn each trace generates an equivalence class of p-boxes.

The heart of our approach is to try to understand the tradeoffs between error and simplicity
introduced when p-boxes or traces are used to stand in for various random interval operations.
For example, Joslyn [18] has argued that for elicitation and representation tasks, traces can
- be the most appropriate structure, and has proposed a method for the generation of canonical
random intervals from elicited traces.

But alternatively, models built as algebraic equations of uncertainty-valued variables (in our
case, random-interval-valued) propagate uncertainty through convolution operations on basic
algebraic expressions. But while convolution operations are defined on all three structures
(random intervals, p-boxes, and traces), we have observed that the results of only some of
these operations are preserved as one moves through these three levels of specificity.

In this paper, we report on the status and progress of this modeling approach concerning
the relations between these mathematical structures within this overall framework.



2. GENERALIZED UNCERTAINTY QUANTIFICATION FOR
ENGINEERING MODELING

Consider the situation where we have a model, perhaps a large computer code, which acts
as a function f mapping inputs X to outputs Y. This model f might be quite complex,
with high run times, and more significantly multiple input parameters (expressed as the
dimensionality of the space X), with different kinds of uncertainty represented on them.
Given the necessity for many “gaps” between the information present in our simulations
from those of reality (model incompleteness and error, and inherent system variability and
imprecision), we wish to represent amounts, degrees, and kinds of these uncertainties in
formal systems. '

But information available on inputs may be rich or sparse, so-called “aleatory” (related to
well-known, but chance, outcomes) or “epistemic” (related to a less-than-well-known out-
come), and may be made known through objective measurements or through the subjective
elicitation of experts. Mathematically, inputs might be represented as probability distribu-
tions, paramaterized classes of probability distributions (e.g. N{(u, o)), by a strong statistical
collection of data points, by a sparse such collection, by simple intervals, statistical collections
of such intervals, or even by non-quantified linguistic expressions. :

Probability
Distribution /\ —>] >
Distribution  mu, > —
Parameters Sigma
Strong
Statistical  ~,cét" ——— >
Data " -
Weak
Statistical - ... ———» Model —>
Data f()
Interval  be——d ] [

Statistical
Interval +F—A ————P» >
Collection

Linguistic "Sunantin ° .
N Rateof ~———D
Information increnve" f———->

Figure 1. Hybrid uncertainty quantification for an engineering modeling problem.

So given a risk or reliability problem related to our model f as charicatured in Fig. 1, how
can we quantify this uncertainty on the input space X, and furthermore propagate it through
f to the output space Y'? More to the point, how can we do so in a way which respects all
the original uncertainty quantifications as provided, making no unnecessary assumptions?
Paraphrasing Klir [25], how can we do such in a way which uses no less than, but also no
more than, all available information; that is, uses only, but all of, what we are given?

So wherever possible, we should fit formalism to available information, and not vice versa.
Through the 20th century, uncertainty modeling has been dominated by the mathematics of
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probability, and since Shannon and Weaver [31], information has been defined as a statistical
measure of a probability distribution. But also starting in the 1960s, alternative formalisms
have arisen. Some of these were intended to stand in contrast to probability theory; others
are deeply linked to probability theory, but depart from or elaborate on it in various ways.
In the intervening time, there has been a proliferation of methodologies (including interval
analysis [28], fuzzy systems [26], fuzzy and monotone measures [24], Dempster-Shafer evi-
dence theory [13], random sets and intervals [22], possibility theory [7], probability bounds
8], rough sets [29], imprecise probabilities [33], and info-gap thecory [2]) aloug with concomi-
tant movements to synthesize and generalize them. Together, following Klir [19, 23], we call
these Generalized Information Theory (GIT). These methods are increasingly accepted

in engineering modeling [15,32], and our approach is squarely centered here.

As a very simple example motivating our approach, consider that for one of the variables x
in our space X, we're given only an interval, that z might be between two quantities a and
b, so that = € [a,b]. How do we represent the uncertainty U([) in I? A standard answer
might be to use a uniform probability ditribution U([I) := p(x) with

[ &, z€ab]

p(“’)‘{ 6, o¢lat]

as shown by the horizontal line in Fig. 2. No doubt this answer is justified (by maximum
entropy, insufficient reason, and related principles) when it is necessary to use a single prob-
ability distribution. But this was not specified in the problem. Indeed, one could argue
that any probability distribution with support on [a,b] can be justified. perhaps denoted
U(I) € P([a,b]) (perhaps the truncated normal shown in Fig. 2); but better yet, why isn’t
our uncertainty all such distributions: U(I) = P([a,b]) (the box bounded by the dashed
lines in Fig. 2).

1.00—l— r-mm-r---}ﬂ—-—b

| N\

m
o
Xy

Figure 2. Representations of z € [a, b].

In its purest form, our answer should in fact be none of these, but rather that U(I) is best
represented by the information as provided us, that is, by the interval itself: U(I) = [a,b].
However, when it is necessary to combine information for some variable x € X with another



y € Y, then these other forms may be vailable. We argue below that all of these answers are
approached consistently within the proper GIT context.

3. NOTATION

Throughout the paper assume a universe of discourse Q = {w}. Denote A L B := ANB =0.
Given a class C = {A} C 2%, define the core and support respectively as

C(C) := () 4, uc) = |J A

AeC AeC

We begin considering 2 = {w;},1 < i < n to be finite, but move to recognize 2 = R, and
consider Borel sets (half-open interval subsets), elements of a interval Borel field.

DEFINITION 3.1 (INTERVAL BOREL FIELD). Let
Z:={a,b) CR:a,be RU{—00,00},a < b},

whereVa < b€ R, —00 <a < b < 00,[—00,b) :=lim,—,_[a,b) € Z, [a,00) := limy_,[a,b) €
Z,[~00,00) =R € Z, and [—00, —0) = [00,00) := 0 € T by convention.

In general, let I := [a,b) € T.

A vector denoted @ = (a;) = (a1, 02,...,0n) is a structure of length |@| := m where each
element a; of the vector is an element of some set a; € X. The q; are ordered and may include

duplicates. Let an element b € X be said to be included in a vector b € @ if Ja;, b = a;.
Define subtraction of an element a; from a vector @ as a new vector

a—a; = (a1,a2,~~-,ai—1,ai+1,-~,am)

so that |@ — a;| =m — 1.

Since a vector may contain duplicate elements a;,, a;, € @, u;, = a;,, therelore each vector @
determines a unique non-empty set A constructed by including one instance of each element
a; € d,sothat b € @ « b € A, 1 < |A| < m, and the quantity |@| — |A] is the number of
elements of @ which are duplicates.

Generalized convolution operators will be introduced, and denoted & € {+, —, X, +,"} for

addition, subtraction, multiplication, division, and exponentiation respectively. Let V be the
maximum and A the minimum operator.

4. RANDOM SETS, RANDOM INTERVALS, AND EVIDENCE THEORY
We now introduce the fundamental ideas of random sets and intervals.

DEFINITION 4.1 (GENERAL RANDOM SET). Given a probability space (X, Z,Pr), then

a function S: X — 29 — {Q}, where — is set subtraction, is a random subset of Q if S is
Pr-measurable, so that V) # A C Q,S71(A4) € .

Random sets were originally developed as a branch of stochastic geometry, and their math-
ematics in general can be quite complex [1,22]. But for our purposes, and especially in the
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finite case, they can be seen more simply as random variables taking values on subsets of
. Further, they are mathematically isomorphic to bodies of evidence in Dempster-Shafer
evidence theory (3,30, ?]. We now reintroduce random sets in this context.

DEFINITION 4.2 (EVIDENCE FUNCTION, BASIC ASSIGNMENT). A function m: 2% — [0, 1]
is an evidence function (basic assignment) when m(0) = 0 and 3 4cq m(A) = 1.

DEFINITION 4.3 (FINITE RANDOM SET). Given an evidence function m, then
S = {{4;,m;) : m; > 0}, (1)

is a finite random set where A; C Q,m; :==m(A4;), and 1 < j < N :=|S5| < 2" — 1. Denote
the focal set of S as the class F(S) := {A; : m; > 0} C 2% '

NOTE 4.4. Each finite random set S determines a unique general random set S: F(S) —
2 — 0 defined on the probability space <.7-' (S),27©) Pr>, where Pr is the measure determined

by m acting as its density function [16]. Moreover, S simply is a Dempster-Shafer body of
evidence [?,13].

We recognize random sets with the following special structures:

Consistent: The global intersection is non-empty: VA; , Aj, € F(S), 4;, L Aj, & C(F(S)) #
0.

Consonant: Focal elements are all nested: VA;,, A;, € F(S), Aj, C Aj, or A;, C Aj,.
Disjoint: No focal elements intersect: VA;, A;, € F(S), A;, L Aj,.

Specific: All focal elements are singletons: VA; € F(S),dw € Q, A; = {w}.

Note that consonance implies consistency, and specificity implies disjointness. Finally, dis-
jointness implies a lack of consistency, and wvice versa.

DEFINITION 4.5 (MONOTONE MEASURE, MONOTONE MEASURE TRACE). [84] Assume
a general universe of discourse U, a class of subsets C C 29, and a sequence of such sets
{Ay, Az,...} CC. Thenv:C — [0,1] is a monotone measure if

1 v(@)=0

2. Monotonicity:

VA, BCQ, ACB-—v(A)<y(B) (2)

3. Continuity from Below:
A1 CAC... and U(C) €C— lim v(A;)) =v (U Ai> .
4. Continuity from Above:

1—00



v is normal when v(Q) = 1. Define the trace of a monotone measure v as its “one-point
covering function” q,: Q > [0, 1], g (w) := v({w}).

DEFINITION 4.6 (EVIDENCE MEASURES). The plausibility and belief measures on VA C Q

are
Pl(4) :== > m;, Bel(A4) := Y my,
A 1A A;CA

Pl and Bel are generally normal, non-additive monotone measures [34], and are dual, in that
VA C Q,Bel(4) =1 —PI(A).

Random intervals were introduced by Dempster [4].

DEFINITION 4.7 (FINITE RANDOM INTERVAL). A finite random interval, denoted A, is a
finite random set on Q = R for which F(A) = {[;} CZ,1<j < N.

Thus a finite random interval is a finite random left-closed interval subset of IR.

Previously €2 had been postulated as a finite set, which leads to a great deal of mathematical
simplicity. However, even though 2 is now uncountable, complications can still be avoided
as long as A is finite, that is as long as only finitely many (V) focal elements are present.
This is because each I = [I,7) C R is characterized completely by the two endpoints { and r.
With each new focal element A;, N grows by 1, and the total number of endpoints present
in F(A) grows by at most 2. Thus the focal set of a finite random interval can be completely
represented by the finite collection of these endpoints: F(A) = {I;} = {[l;,7;)}. It is only
these endpoints that need to be considered, and none of the properties of the continuum of
points between them is significant.

On this basis we can describe the various components of a random interval. In general denote
I; = [l;,r;). Then, denote the vector of all endpoints L := (ly,71,l2,l2, ..., 1,75, ., IN, TN,
and let L := {zx} be the set derived from eliminating duplicates from L, with Vzy € L, dz; €
Laoy=gzjand 1<k<Q:=|L,N+1<Q<2N =|L|.

The elements of L determine a class I' = {Gx} C Z, now with 1 < k < Q — 1, which is the
finest partition of the support U(A) induced by the total intersections of the I; with each
other and with all their intersections recursively. In practice, the G} are determined simply
by ordering the zx € L and then traversing them from min z, rightward, forming an interval
for each point in turn. '

An example is shown in Fig. 3, with N = 4, F(A) = {[3.5,4),[1,2),[3,4),(2,3.5)}, and m
is as shown. Here Q = 5, with L = (3.5,4,1,2,3,4,2,3.5),L = {1,2,3,3.5,4}, and thus
I'={[1,2),[2,3),[3,3.5),[3.5,4)}.

Our definition differs somewhat from others in the literature [9] who use fully closed intervals.
But not only is the Borel field Z more consistent with that of measure theory [14,34],
it also makes the algebraic manipulations of the I; much easier, since e.g. for z < y <
z [z, y) N[y, 2) = 0.

In real problems, random intervals are derived from collections of observed intervals. In

Joslyn’s formalism for random interval measurement [17], the values m(I;) are derived by
their relative frequency in this observation record. But depending on the application, it may
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Figure 3. Example of a finite random interval.

or may not be likely that two identical intervals I,I’ = [l,r) will be observed, as distinct
from another interval I’ “very close” to I, for example I’ = [l + ¢, — §) for some very small
¢, 6. In this case, as N grows each I is observed once, but with increasing refinement among
the endpoints {l;,7;}. Thus it is common in real applications to deal with random intervals
where all the focal elements I; € F(A) are distinct with @ ~ 2N, and therefore each with
frequency m(l;) = 1/N.

Yager [35] introduced convolution operators on random intervals.

DEFINITION 4.8 (RANDOM INTERVAL CONVOLUTION). Assume two independent random
intervals Ay = {(I;,m;)},1 < j < N, Ay = {{(Ie,me)},1 < k < Ny, and a convolution
operator ®. Then A, & Az := {{I;,m;)} where:

]-SZSNIN% Il={2=$@y;37€[j’y61k}, my = M .

5. PROBABILITY BOXES

Random intervals can be difficult structures to elicit, represent, and manipulate. The first
of their approximations we introduce are so-called probability boxes, or just p-boxes.

DEFINITION 5.1 (PROBABILITY Box (P-BoX)). A p-boz [8] is a structure B := <_B, §>,
where B, B: R + [0, 1] with:

1. limg_,_o B(z) — 0, lim, ,,B(z) —1, BEDB;

2. B(z), B(z) are monotone non-decreasing in z, and

3. B<B.
B and B are interpreted as bounds on cumulative distribution functions (CDFs). In other
words, given B = (B, §>, we are interested in the set of all functions {F" : B < I’ < B} such

that F is the CDF of some probability measures Pr on IR. For each such F, denote F' € B.
In this way, each p-box defines such a class of probability measures.



" DEFINITION 5.2 (P-Box CONVOLUTION). Assume two p-bozes By, Bz, and a convolution
operator &@. When By and Bs are independent, then define

BB = {[ _dF@GCw): FeB.Ceb)

dy<z

Each random interval naturally generates a P-Box.

THEOREM 5.3. Gwen a random interval A, then B(A) := (BEL,PL) is a P-Boxz, where
BEL and PL are the “cumulative belief and plausibility distributions” PL,BEL: IR — [0, 1]
originally defined by Yager [35]

BEL(z) := Bel([~00,z)), PL(z) := Pl([—00,)).

Proof. Assume a random interval .A. We need to show:
1. First,

_lim_BEL(r) = _lim_Bel({~00,1)) = Bel ( Lirgoo[-oo,x)) — Bel([~00, —00)) = Bel(0) = 0.

r——00

Similarly,
lim BEL(z) = lim_Bel([—0o,c)) = Bel (z@w[—m,x)> — Bel([~00,0)) = Bel(R) = 1.

The results lim,_,_o, PL(z) = 0,lim;_,, PL(x) — 1 follow identically.

2. Since z < y — [—o00,z) C [—00,¥), and since Bel and Pl are monotone measures,
therefore from monotone measure monotonicity z < y — BEL(z) < BEL(y), therefore
BEL(x) is monotone non-decreasing in z. And similarly for PL.

3. VI € Z,Bel(I) < PI(I), and thus BEL(Z) < PL(I).

Therefore (BEL, PL) is a P-Box.

The p-box generated from the example random interval is shown in Fig. 4. Since B and B
partially overlap, the diagram is somewhat ambiguous on its far left and right portions, but
note that

B(|-00,1)) =0, B([-0,2,))=0, B(3,0)) =1, B(3.50)) =1

But for the converse, each p-box determines only an equivalence class of random intervals.
Consider the example shown in Fig. 5 fora < ¢ < d < b € R,C = {B = [a,d),C =
[a,b),D = [c,d),E = [c,b)}, and three different focal classes F; = {B, E},F; = {C,D},
and F3 = {B,C, D, E} with their respective m;, my, and mgz are shown. We have B(A;) =
B(Az2) = B(As).
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Figure 4. A finite random interval and its piecwise-constant p-box B(A).
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Figure 5. Three different random intervals and their common p-box and trace.



Thus for a given p-box B, we can denote A(B) as the equivalence class of random intervals
consistent with it: A(B) := {A: B(A) = B}.

P-boxes B and B have inverses under reasonable conditions. Assume that B and B are
peicewise continuous from the left. Then define the pseudo-inverses

B Ya) := argmin|a — B(z)|, B (a):= argmin|a - B(z)],
zeR zeR

for @ € {0, 1], and
DEFINITION 5.4 (P-Box INVERSE). Given a p-boz B, let B71:]0,1] — I where Vo € [0, 1]

B(a) :={[B '(a), B!())} .

Condition 3 of (5.1) guarantees that for each o = [0, 1], B7(«) exists and is a member of Z.
When B and B are peicewise-constant, B~! naturally partitions [0, 1] into disjoint intervals
denoted @&; over which Va, o' € &;, B ' (a) = B~}(’). In practice, denote &; := [aé,a ]
where

al = argmin B(z) > a, o = argmax B(z) < a.
zelR ze€lR

This is shown in Fig. 4.

Given a peicewise-constant p-box, there is a canonical way to construct a random interval
consistent with it.

DEFINITION 5.5 (CANONICAL RANDOM INTERVAL FROM P-BOX). Assume a p-boz B.
Then construct A*(B) := {(B~'(a;),m;)}, where B~ (a;) := B~ () = B () and m; =
!

—a”
aj CKJ.

THEOREM 5.6. A*(B) is a random interval, and A*(B) € A(B).
Proof. 1t is evident from the definitions (5.4) and (5.5) that each &; € Z. Also, since the

d; partition [0, 1], therefore
ij Z(a —a] ) = 1.

It is relatively easy to see in the example that in Fig. 4 that A*(B(A)) = A, although we
know that this is not always so.

6. RANDOM INTERVAL TRACES

A fuzzy (sub)set of Q, denoted A C €, is determined by its membership function, which is
any function of the form p3:Q + [0, 1]. Denote the core of a fuzzy set as C(u) :== {w e Q:
p(w) = 1}.

The value of px(w;) indicates the degree or extent to which w; € Q. Fuzzy sets generalize
classical (crisp) sets in that a subset A C € has a memberhsip {unction defined as the

characteristic function u4 := x4. In the sequel, let each fuzzy set be considered to be a
fuzzy subset of the reals 4 € RR.

11



The trace of any monotone measure defined on IR is a fuzzy set.

COROLLARY 6.1. Given a monotone measure v, then q, is a membership function.
Proof. Follows trivially from the definition of trace (4.5).

Fuzzy sets also have convolutions.

DEFINITION 6.2 (Fuzzy SET CONVOLUTION). Assume two fuzzy intervals Ay, Ay, a con-
volution operator ®, and a T-norm M. Let Ay = A, @ Ay. Then

ps(2) = GB\/= iy (@) Mg, (y).

There are two special kinds of fuzzy subsets which are of particular interest to us.

DEFINITION 6.3 (FuzzY INTERVAL). [5, 6] A fuzzy subset of the real line F C R is a fuzzy
interval if F' is mazimally normalized and convez, so that

Vz,yeR, Vze(z,yl, wup(z)>ps)App(y).

Note that convexity here implies unimodality in the weak sense that C(F‘) is a closed
interval. This goes to a limit for fuzzy numbers.

DEFINITION 6.4 (Fuzzy NUMBER). A fuzzy number is a fuzzy interval F where 3z €
R, C(F) = {z}.

So each random interval naturally generates a trace.

DEFINITION 6.5 (RANDOM INTERVAL TRACE). Given o random interval A, define the
function pa:IR — [0,1] as the plausibilistic trace, or just trace, of A, where ps = gpi.
Therefore

Ve e R, paz) =Pl({z})= > m;. (3)

Ajdz
An example is shown in Fig. 6, with A as before, and p shown in the top of the figure.

But for the converse, each fuzzy subset of R determines only an equivalence class of random
intervals. Consider again the example shown in Fig. 5. Each of the threc random intervals
Ai, As, and Az generates exactly the same trace, here shown in the bold, dashed, “step-
pyramid” shaped curve.

So for a given fuzzy set F, denote A (F) as the equivalence class of randoim intervals consis-

tent with it: A(F) := {A :p(A) = ﬁ} The structure of this equivalence class is not simple,
and has been dealt with in depth by Goodman and his colleagues {10-12]. Furthermore, they
have shown that operations on fuzzy sets are preserved when projected through the random
set space.

Joslyn has shown the ba&s to derive fuzzy mathematics from (empirically derived) random
intervals [17]. First, p is constant over each G;, C IR. But moreoever:

THEOREM 6.6. [17] The trace pa of a random interval A is a fuzzy interval iff A is
consistent.

12
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Figure 6. Example random interval with its trace and its components.

This is important because fuzzy intervals generalize crisp intervals as fuzzy sets generalize
crisp sets. They are also the basis for “fuzzy arithmetic”, since the set of fuzzy intervals is
closed under convolution. In addition:

PROPOSITION 6.7. Given two fuzzy intervals F1, Fy, a convolution operator &, and a T-
norm M, then Fy & Fy is not necessarily a fuzzy interval. However,

C(ReR)=C(R)eC(R), U(heRh)=U(R)oU(R).

7. P-BOXES AND TRACES

We now begin to explore the relations among the categories of random intervals and their
trace and p-box representations. These are diagrammed in Fig. 7.

First, a given p-box determine a trace uniquely.

DEeFINITION 7.1 (TRACE OF A P-BOX). Assume a p-box B. Then its trace, denoted p(B),
is determined by p(B) := B — B.

The trace determined in this way from the p-box of a random interval is the same as the
trace of the random interval itself.

THEOREM 7.2. For all random intervals A, p(B(A)) = p(A).

Proof. Assume a random interval A. Fix a point z € IR. Then

PL(z) = Pl((co,z)) = > m(L;) = > m(ly)

Ij}'-(oovz] ligz
BEL(z) = Bel((co,a) = 3 m(ly) = 3 mil,) (@
I3 C(00,x] T2Tj
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Figure 7. Relations among random intervals, p-boxes, and traces.

Then from (5.5) and (7.1),

p(B(A))(z) =PL(z) - BEL(z) = >  m(l;) = > m(l;) = p(A)(z). (5)

lj<z<ry z€l;

Note how crucial the use of half-open intervals is. The weak inequality in (4) results
through subtraction in the appropriate half-open interval in (5), and this would have been
the case whether the I; were closed or not. These results can be checked with some simple
diagrammatic reasoning between Fig. 4 and Fig. 6.

But conversely, it might be that the trace of a random interval has multiple p-boxes which
could generate it.

8. FUTURE WORK

Future development requires the following considerations:

e Given that B — p, then it should be that A(B) C A(B(p)). What about the converse?
e For a given A, compare A(B(A)) and A(p(A)).

Comparison of canonical reconstructions:

e For a given A, compare A*(B(A)) and A*(p(A)).
e Keep going: compare p(A*(B)) and B(A*(p)).

14



Convolutions. Similar questions for convolutions all around. In particular:

e Compare B(A; & A2) with B(A;) & B(A).

o Compare A*(B(A; @ Az)) with A*(B(A;) & B(A2)).
o Compare p(A; ® Az) with p(A;) @ p(A,).

e Compare A*(p(A; @ Ag)) with A*(p(A;) ® p(A2)).
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