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ABSTRACT 

The effect of two-body forces on the structure of dynamic waves in fluidized beds is studied, 
with particular emphasis on expansion waves. Averaged equations of motion are used for the 
study, so the media appear to be interpenetrating continua. Both inertial and viscous two--body 
effects are considered for incompressible materials fluidized by an incompressible fluid. Inertial 
effects are included in the averaged momentum exchange force, using exact (classical) results for 
the potential flow generated by the motion of one submerged body relative to another body. 
Viscous effects are represented, in the limit of zero relative Reynolds number, by solutions to 
Stokes' equations for the two--body problem. For simple one--dimensional motion the inertial 
force is repulsive always, giving a positive compressibility to the dispersed field total density; 
the force is of such a magnitude that the single--pressure continuum equations are 
unconditionally hyperbolic. The corresponding 1-D viscous force is attractive when the bodies 
move apart, and therefore introduces a negative compressibility to the dispersed field. 
Competition between the two-body inertial and viscous forces ultimately determines the nature 
of dynamic waves in a given fluidization system.} 
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ABSTRACT 
The effect of two-body forces on the structure of dynamic waves in fluidized beds is studied, with particular emphasis on expan- 

sion waves. Averaged equations of motion are used for the study, so the media appear to be interpenetrating continua. Both inertial 
and viscous two-body effects are considered for incompressible materials fluidized by an incompressible fluid. Inertial effects are 
included in the averaged momentum exchange force, using exact (classical) results for the potential flow generated by the motion 
of one submerged body relative to another body. Viscous effects are represented, in the limit of zero relative Reynolds number, by 
solutions to Stokes’ equations for the two-body problem. For simple one-dimensional motion the inertial force is repulsive always, 
giving the a positive compressibility to the dispersed field total density; the force is of such a magnitude that the single-pressure 
continuum equations are unconditionally hyperbolic. The corresponding I-D viscous force is attractive when the bodies move apart, 
and therefore introduces a negative compressibility to the dispersed field. Competition between the two-body inertial and viscous 
forces ultimately determines the nature of dynamic waves in a given fluidization system. 

1. INTRODUCTION 

Among the great many outstanding problems in the science 
called “two-phase flow” is the determination of the speed and 
structure of dynamic waves in fluidized beds [l]. Two-phase 
dynamic waves, in the one-dimensional approximation of a flu- 
idized bed, form the subject of this paper. Of interest is the manner 
in which 1-D multibody forces may affect the nature of these well- 
known dynamic waves. (As will be made clear below, we prefer 
the more general term “multifield to describe this science.) 

A simple fluidized bed is created by the upward flow of fluid 
(gas or liquid) in a vertical tube containing a packed bed of solid 
grains, initially resting on a grid at the tube bottom. A pump fur- 
nishes the power needed to make the fluid flow upward through the 
grid, through the bed of grains, and through the tube. As the fluid 
speed is slowly increased a point is reached at which the grains 
become levitated by the fluid, so the weight of the grain bed is 
no longer born by the grid. The flow at this point is said to be 
at the minimum fluidization velocity Umf. As the flow speed is 
increased further, and then held fixed, the bed expands so that the 
free surface reaches a constant height in the tube. Although the 
grains may be moving in some general pattern in the tube between 
the grid and the free surface of the bed, the velocity of the grains, 
averaged on the entire tube, is zero. For this reason the bed is 
called a fixed fluidized bed (rather than a traveling bed or fast 
fluidized bed). The fraction of the tube volume occupied by the 
grain material can be observed by measuring the height of the free 
surface. For all flow speeds U that are lower than the terminal 
velocity of one grain UT,  there will be a single (averaged) volume 
fraction of the solid grains in the bed B(U). 

Now consider a small increase in U ,  accomplished very quickly 
by a sudden change in pump speed. The bed will begin to rise uni- 
formly, at a rate determined by the force acting between the fluid 

and the grains. Because no additional grains enter the tube at the 
grid, a lower value of 6 will immediately arise at the grid and prop- 
agate upward toward the free surface. Conversely a small sudden 
decrease in U will be accompanied by a uniform downward motion 
of the bed. Because no grains leave the tube at the grid, a larger 
value of B will occur there and propagate upward toward the free 
surface. Hence any change in U such that the fluidization speed is 
between Umf and UT will result in adjustment in the bed B that is 
accomplished over time by an upward moving wave, originating 
at the grid. In general the speed and structure of the rising wave 
depends on the dynamics of the interacting materials. Hence these 
are dynamic waves rather than continuity (kinematic) waves. 

In the science of gas dynamics the study of dynamic waves 
is accomplished in the frame of reference of the moving wave, 
which is typically not the frame of a moving element of mass. In 
the wave frame, the positive direction is the direction of the wave 
(relative to a laboratory observer); let us call the uniform state in 
the positive direction the “right” side of the wave, and let the other 
side be the “left”. The decrease in U causes an increase in total 
mass density on the left; in the lexicon of gas dynamics this is 
called a compression wave. The increase in U causes a decrease 
in mass density on the left, so this would be called an expansion 
wave (or rarefaction). The wave structure is the variation of the 
velocities and densities between the left and right uniform states; 
the left state being the new density, and the right corresponding to 
the density prior to the step change in U .  The “width” of the 1-D 
wave is the distance spanned between the left and right uniform 
states. 

Of course any physical fluidized bkd exhibits multidimensional 
motions. That is, across any horizontal plane in the tube, the state 
can be quite different from point to point. This is because the grid 
at the bottom cannot assure aperfectly uniform inflow, and because 
of the inherent (Rayleigh-Taylor) instability associated with the 

tBy acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U S .  Government purposes. This is work performed under the auspices of the U.S. 
Department of Energy. 



levitation of a heavy material (the grains) with the impulse of a 
lighter material (the fluid) in a gravitational field. In many appli- 
cations the formation of voidage bubbles due to this instability is 
an undesirable feature because large volumes of the fluid will not 
come into contact with the grains. Such contact may be the goal of 
a fluidized bed chemical reactor, for example. Nevertheless, the 
study of multidimensional phenomena necessarily begins with a 
sound understanding of the 1-D behavior of the system. For this 
reason attention is confined here to the 1-D approximation, which 
is approached to a satisfactory degree in the laboratory by choos- 
ing a tube diameter that is not too large compared to the average 
spacing of the grains in the bed. In this way the horizontal vari- 
ation in the multidimensional motions is minimized by the tube 
walls. 

The fluidized bed in a narrow tube is a relatively simple device 
to construct in the laboratory, and the waves are easily observed 
through a clear tube wall. Unfortunately the quantitative measure- 
ment of the wave speeds and wave structures is difficult owing to 
the finite width of the waves, and to finite multidimensionality. An 
ingenious experiment that facilitates measurement of the expan- 
sion wave was developed by G. B. Wallis; a second grid is placed 
at the top of the tube so that for U > UT a “stack” of grains is held 
at the top grid. By reducing the flow speed to somewhat below UT, 
but above Umf grains will fall from the stack, and a very clearly 
defined wave rises through the stack toward the upper grid. At 
U < Urns the entire stack falls away from the upper grid, and a 
sharp wave moves into the stack as it falls. 

Data from this experiment are reported by Wallis et al. [ 11, who 
referred to the expansion wave as a “decompression” wave, and 
made important progress relative to forming aphysical mechanism 
explaining the data. Unfortunately a full mechanistic explanation 
of the data is still lacking. 

The main purpose of the present work is to study the possibil- 
ity that certain two-phase flow wave phenomena are controlled 
by the momentum transfer between the interacting materials - 
as affected by the forces between neighboring bodies transmitted 
by the interveningfluid. To begin, the force contribution due to 
two interacting bodies is considered, with both inertial and vis- 
cous contributions included. The goal is to find the lowest-order 
model that contains these effects, and to observe the nature of the 
model in terms of physical expectations. [Remark: Studies of this 
sort are not unique, For this reason, remarks like this are inserted 
in the text to highlight where the present work deviates from, or 
adheres to, the norm established in the literature.] 

A second, more distant, purpose of this study is to find an appro- 
priate set of averaged equations of motion that can be used for so- 
called Large-Eddy-Simulations of multifield turbulence. Numer- 
ical LES has been helpful for modeling closures for single-fluid 
turbulence theories, and are based on the Euler equations from gas 
dynamics. However, there exists a serious roadblock to multifield 
LES: the multifield analog of the Euler (nonviscous) equations 
are not hyperbolic. This means that numerical calculations on a 
very fine grid can possess nonphysical wave structures that can- 
not be included in LES statistics; and separation of the-physical 
wave data from the nonphysical data is impossible. Hence a reli- 
able, physically-based, nonviscous multifield model would finally 
enable multifield LES turbulence closures. 

The plan for the paper is as follows. Section 2 is a brief dis- 
cussion of the origin of the averaged equations most commonly 

used for multifield flow in the limit of incompressible materials. 
Section 3 shows the origin of what is called the “standard” force 
for the interaction among material fields, on average. Section 4 
is the development of the two-body potential flow (inertial) force 
density; and Sec. 5 develops the corresponding two-body viscous 
force. Section 6 displays the character of the 1-D equations, and 
Sec. 7 is a summary. 

2. AVERAGED EQUATIONS 

A wide variety of methods have been used to obtain averaged 
equations for multiple interacting materials. One of the most 
widely accepted approaches uses ensemble averaging of an exact 
(closed) set of dynamical equations [2,3,4]. The ensemble aver- 
age makes continuous variables out of discontinuous ones; so the 
result is a set of continuum equations. The continuum equations 
for multiple fields are needed in this study. In order to make it 
clear where it is that the two-body forces fit into this framework, 
a brief description of the averaging process is given here. 

Consider N different materials, only one of which can reside 
at a location in space-time (x, t ) .  Let the state at a space-time 
point be described by the material density, velocity, stress, and 
31 function: [pol u,, u,, a,]. The subscript o signifies a point in 
space-time, and the integer subscript r is a material number such 
that 1 5 T 5 N .  The state evolves according to conservation 
of mass, momentum, volume, and material type. With no change 
in material type (no phase change) the exact equations for this 
evolution are 

po + p o v .  u, = 0 

poilo - v . u, - pog = 0 

(la) 
(1b) 

v . u , = o  (IC) 
du, = 0 (Id) 

where the overdot signifies the Lagrangian derivative along u, . 
If the stress is represented by an isotropic hydrodynamic pressure 
plus a viscous deviator this is a closed set of equations (otherwise 
a stress evolution equation is needed). The parameter a, has a 
value of one if r-material is at the space-time point, and zero oth- 
erwise. This function has been called the “material selector” [ 2 ] ,  
“function of presence” [3], and other things by different authors. 
We prefer the term 7-l function, following Saffman [SI, who seems 
to have been the originator, and who furnishes the essential rules 
of applying the ensemble average to quantities that are multiplied 
by it. 

Here we let angle brackets indicate the ensemble average, which 
can be thought of as a sum over a great many observations of the 
state at a point in space-time. These averages are referred to as the 
“mean”, and the r index refers to the material “field”. The mean 
field variables are continuous ones generated by the “-weighted 
ensemble average of discontinuous variables. Of particular inter- 
est are the mean mass density, mean momentum density, and mean 
r-field stress, defined respectively by 

p, = (a,p,) mean r-field total mass density (2a) 
pru ,  = (a rpouo)  = mean r-field momentum density(2b) 

whose evolution equations may be expressed in terms of the aver- 
ages 

Orur = (aruo) mean r-field stress (2c) 



Or = (a,) mean r-field 1-I function ( 2 4  
a = (a,) = mean mixture stress (2e) 

having associated fluctuational parts defined 

u’, = u, - u, z r-field velocity fluctuation (20 

with averages of the velocity fluctuation giving the all-important 
multiphase Reynolds stress density 

r-field Reynolds stress density. (2h) 

Equations for the time evolution of pr and u, are formally obtained 
by taking the time derivative of the definition itself, and rearrang- 
ing with the help of the exact equations. The result is a set of 
expressions that look just like conservation equations for mass 
and linear momentum with a momentum exchange term and tur- 
bulence effect added on. The additional terms still require models, 
so the closure modeling still remains to be done. The unclosed 
equations are, 

u‘ = a, - u stress fluctuation (2g) 

p,R, = (a,p,u~u’,) 

p r  + p,v ’ u, = 0 (3a) 

- V . prRr (3b) 
v .u=o  (3c) 

( 3 4  

where u = C,N=lOsu,, u, is the specific volume of r-material, 
and the overdot with subscript r is used to signify the Lagrangian 
derivative relative to the mean motion of r-material. That is 
( ); = a( ),/at + u, . V( ),. The isotropic part of the mean 
stress is the hydrodynamic pressure a = -PI, the deviatoric part 
is neglected here. Equation (3c) formally comes from the evo- 
lution equation for p ,  in the limit of constant w, = l/&. The 
mean pressure evolution equation is constructed by making the 
assumption 

where T, is the mean r-temperature, and where u, ( p ,  T,) is the 
caloric equation of state for pure r-material. The equation for ?j 
comes from the identity [l - C,”,,O,] = 0, which can be placed 
in rate form by differentiation with respect to time. In the isother- 
mal, incompressible limit (with no phase change),Eq.(Sc) is exact; 
its genesis is the assumption made in Eq.(3d), which is a statement 
of the averaged equation of state for the r-field [4]. 

The system Eq.(3) is the ensemble average of the systemEq.(l), 
using the collection of definitions given in Eq.(2). System Eq.(3) 
is displayed this way to emphasize that the averaged equations 
look just like the exact equations, but with extra (unclosed) terms 
on the right side of the momentum equation. 

The first term on the right side of Eq.(3b) is an acceleration due 
to the difference between the r-stress and the mean stress (a, - a), 
which arises, for example, when grains in the fluidized bed come 
into direct contact. In this example the stress difference has been 
called a “configuration” stress, because it depends on the topolog- 
ical orientation of a packed bed of grains. The configuration stress 
leads to waves that depend on the elastic properties of the grains 
themselves. Simple models exist for the configuration stress [4] 
but are not needed in this paper. 

The second term on the right side of Eq.(3b) is the exchange 
force density. The gradient of the ‘H function is a vector (with 

p , ~ ,  - e,v . u - p,g = v . - - (ai . va,) 

e, - PrVr = o 

(a,) Q r  = prur(p, Tr) (4) 

units of inverse length) pointing into r-material [SI; it is nonzero 
only at an interface. Hence the ensemble average is the net force 
on the r-field, as a result interaction with all of the other materi- 
als (any one of which can be on the other side of the interface). 
Because the average is impossible to evaluate exactly, except for 
trivial cases, we express the exchange force symbolically by 

(The sum works out alright because f,, = 0.) There exist many 
ways to approximate the force term, some of which are given in 
the various texts on this subject [6,7 for example], much of which 
is sketched in the next section. The following section is offered 
in order to place the present work into proper context with the 
commonly known ways of making this important approximation. 

3. THE “STANDARD” FORCE 

Because of the enormous variety of possible multifield flows, 
there can be no single expression for the force density f,, that 
applies in all cases. Hence the force density must be modeled on a 
case-by-case basis. Nevertheless it is possible to distill from the 
vast multifield literature [2,4,6,7,8,9,10 for example], an expres- 
sion for f,, that contains most of the physical features currently 
in common use, with the case-specific data left as parameters. In 
this paper, the functional form of this force density is called the 
“standard force”, whose origins are discussed briefly as a reminder 
of the assumptions that are applied in its derivation. 

Consider a single arbitrary rigid body in steady motion w rel- 
ative to a stationary infinite fluid of density p;. The compo- 
nent of total force acting the body in the direction of motion is 
-Cdipfw2A, where c d  is a drag coefficient and A is the cross- 
sectional area of the body. This force contains the effects of flow 
separation (pressure) and fluid viscous stress; it is to be averaged 
and placed into general coordinates. The standard way to do this is 
to suppose that there exist a great many bodies of identical nature 
each of which contributes a like amount yo the total force on the 
entire collection, which is the field of dispersed bodies. Let 0, 
be the fraction of the total volume occupied by the field of like 
bodies. Then 0, = nV, where n is the number density of bodies, 
and V, is the volume of one body. The force density acting on the 
field is then -(+A/K)/3,CdpFw2, on average. This is typically 
called the drag force. 

Now suppose that the fluid“fie1d”really has an arbitrary (space- 
time varying), but averaged, velocity uf in the laboratory frame 
of reference; likewise suppose that the collection of bodies has an 
averaged center-of-mass velocity us. Further suppose that there 
exists a gradient in averaged pressure that causes an (identical) 
acceleration of each body in the collection. Because the pressure 
gradient appears separately in the averaged equation of motion for 
the field, and because the drag force implicitly contains the pres- 
sure gradient, a factor of (1 - e,) = Of is applied to the foregoing 
force density. Hence in general coordinates the drag force density 
on the s-field, is -(+A/V)e,efC,&‘Iu, - ufl(u, - uf) . The 
functional form of this force density, appearing frequently in the 
literature [4,7], is, 



where the scalar exchange coefficient is 

in which the factor corresponds to spheres of averaged diam- 
eter d, and the appropriate material density is designated by pgf, 
which may be either the s- or f-field material density, depend- 
ing on the definition of c d  (and on which field is declared to be 
“continuous”). About the only known exact value of c d  is that 
for the very slow motion of a single sphere in an infinite viscous 
fluid, C d  = 24/Re, of course due to Stokes, and valid for relative 
Reynolds number Re, based on the fluid viscosity and d, such that 
Re < 1. For any other case (non-sphere, Re > 1, time-unsteady, 
. , . ) an experimental correlation is required. 

It is almost universal practice to superpose (add) additional 
contributions to fsf that arise from other physical effects. (This 
practice is so common that it is very easy to forget that the superpo- 
sition is itself an approximation. It is one that will be followed in 
succeeding sections.) Perhaps the best known of the superposed 
force contributions is that due to time-unsteady motions; it is 
known variously as the “added mass”, “virtual mass”, “inviscid”, 
or “potential flow” force. This is most commonly estimated as a 
purely inertial process that is a consequence of the displacement 
of fluid by a submerged body. As the body accelerates it must 
move fluid out of its way, so the force needed to create the acceler- 
ation increases with the amount of fluid displaced. Because only 
the inertial part of the fluid displacement is considered, the force 
depends only on the fluid material density and the acceleration. 
And because potential flow theory is used almost exclusively to 
determine the force, the term “potential flow force” will be used 
here. 

For the case of asingle submerged body (replicated many times, 
to form a field) in a uniform flow, the results from the literature are 
almost always the same: the force depends on the difference in the 
Lagrangian acceleration of the two interacting fields, and acts in 
such a way to reduce the relative acceleration. When a nonuniform 
flow field is permitted (that is, one with gradients in velocity) an 
additional force appears that is proportional to the mean relative 
velocity, and acts perpendicular to it - this is a potential flow “lift” 
force [SI. 

Because the literature on the potential flow forces is very acces- 
sible, the results are simply used here and placed in the form needed 
for this paper. Hence the standard force becomes, finally, 

where the first right side term is the drag force density, derived 
above. The second term is the single-body potential flow force 
with coefficient C, = for uniform rigid spheres. The third term 
is the Drew & Lahey [SI lift force, with antisymmetric f-strain 
rate Wf = (Vuf - VU:) where the subscript f signifyies the 
“continuous field” index number. Of course Eq.(7) is simply a 
functional form, and not a specification for frs; particular values 
of the coefficients, furnished by the analyst, make the equation into 
a specification. There still exists substantial “art” in the process 
of selecting the coefficients, and there is widespread disagree- 
ment on the best way to do so for any well-defined multiphase 
flow problem. [Remark: It is common practice, but by no means 

universal, to obtain vector-valued averaged forces by averaging 
scalar-valued forces. The practice is successful in multifield prob- 
lems because there is a single dominant direction, which is that 
of the averaged relative velocity. The method of making vector 
forces out of scalar ones, along with the superposition of forces, 
are practices that will be retained in this paper.] 

Finally, the effects of turbulence as manifested through the mul- 
tiphase Reynolds stress forms another (but not necessarily sepa- 
rate) important and unresolved problem. Multiphase turbulence is 
an equally artful modeling endeavor that is not addressed here, but 
must be kept in mind in any discussion of multifield phenomena. 
(See [ 1 1 J for a good discussion.) 

4. THE TWO-BODY POTENTIAL FLOW FORCE 

Multibody inertial forces in two-phase flow have been devel- 
oped in the literature. For example Zhang & Prosperetti [ 121 used 
a configuration space method to affect an ensemble average of a 
potential flow about rigid bodies. Fern6ndez et al. [13] consid- 
ered two rigid bodies submerged in an infinite fluid to obtain the 
two-body force arising from motions both in the line of centers 
and perpendicular to the line of centers in a potential flow. Their 
averaging technique required assuming a form of the radial prob- 
ability distribution function for the presence of the second sphere, 
and integrating to infinite separation radius. Unfortunately results 
from the literature are not in a form useful for the present pur- 
poses. This is because we wish to use potential flow solutions 
that are expressible in analytic form (rather than that of an infinite 
series), and valid for very close-spacing of the submerged grains. 
In both the potential flow case and the viscous (Stokes) flow case, 
analytic solutions appear in the form of infinite series. Numerical 
coefficients arise in both cases that can be parameterized by the 
separation of the two bodies. These coefficients can be expressed 
by fitting to a simple functional involving the series expansion 
parameter itself, as was shown by Batchelor & Green [14] for 
the viscous flow case of two spheres. Here we accomplish the 
analogous task for the potential flow of two identical spheres. 

For the study performed here the simple technique used is 
related to that of Drew & Lahey [SI, and also to that of Fern6ndez 
et al. [ 13 J .  This method begins with the total force on a certain 
body and performs an average on it, assuming a linear variation 
in the averaged velocity of the grain field. It is possible that the 
configuration space method, pioneered by Batchelor [I51 and uti- 
lized by Zhang & Prosperetti [12], would produce more accurate 
results by including the spatial variation in the grain field volume 
fraction as well as the velocity variation. For now the interest is 
in finding the lowest+rder physical effect, so a more transparent 
method is considered sufficient, at least for now. 

The analysis uses classical methods from the literature summa- 
rized long ago by Lamb [16]. Briefly, an infinite, incompressible, 
nonviscous, fluid is considered in which two bodies are submerged. 
The fluid is at rest infinitely far from the two bodies. The force 
on the two bodies is determined by Lagrange’s energy method. 
This requires the total kinetic energy of the fluid and the two bod- 
ies, which is a function of the velocity potential that satisfies the 
boundary conditions at the surface of the bodies, and infinitely far 
away. 

There are two cases to work out: motion in the line of centers, 
and motion perpendicular to it. Consider two identical spheres of 
radius a, as illustrated in Fig.1. Let U be the velocity of sphere 



A ,  position x, and let V be the velocity of sphere B, position y. 
Let A4 be the mass of each sphere, and A4’ be the corresponding 
mass of displaced fluid. Let c be the vector pointing from A to B 
(c  = y - x, c = IC/), with associated unit vector C. The general 
motion of each sphere can be split into two parts, one part that 
is parallel to the line of centers, and the other p&t which is not 
parallel. Let VI ,  = C . U, so that UII = CC . U is the parallel 
part, and let U i  = U - UII be the perpendicular part of U, and 
similarly for V. Using this decomposition, equations of motion 
will be found using the gnergy method of Lagrange. 

1 n 

Figure 1.  Two spheres in an arbitrary Cartesian three space. 

First, suppose that the motion is such that the velocity of both 
spheres is along the line of centers. The total energy of the fluid 
and the two spheres is [ 161 

Tlr = 

$ [M + CaM’] Up - CIIM’UII VII + +[A4 + CaM’]q? (8) 

where the coefficients C, and CII are infinite series that arise from 
the potential flow solution for the velocity field. To obtain the fluid 
kinetic energy, the gradient of the velocity potential is squared, and 
integrated over all space. This is added to the sphere energies to 
yield the total energy. If the separation of centers is large, so that 
( u / c )  << 1, it turns out that C, = + and CII = ; ( u / c ) ~ .  In order 
to examine close spacing, for which (u /c)  >> 1, a great many 
terms of series must be evaluated, which is done shortly. 

If instead the motion is confined to be perpendicular to c ,  the 
total energy is 

Ti = 

+ [A4 + CaA4’] u; + C*M’UL ‘ V I  + +[A4 + caA4’]v: . (9) 

In the large-spacing approximation, C l  = $(u/c)~ and again 
C, = f . (In the perpendicular case for small spacing, both coeffi- 
cients are not only different from these values, but very difficult to 
evaluate. Fortunately for the purposes of this paper, the evaluation 
is not needed, as will be seen shortly.) 

Lagrange’s equations, for the variation along x (the trajectory 
of sphere A )  are 

By carrying out the indicated differentiation, Lagrange’s equations 
of motion are obtained. For this, the derivatives of the coefficients 
are needed. These are 

and 

and likewise for C,. Here the super prime signifies the derivative 
of the coefficient with respect to the spacing between centers c. 
Lagrange’s equations are then 

where the overdot again signifies the Lagrangian (total) deriva- 
tive. This is a classical and well known result, and is obtained by 
assuming that C, is a constant (independent of spacing c). Recall 
that for the case of large spacing (u / c  << l), CII = ; ( u / c ) ~  and 
CL = Z(u/c) . Hence Ch = -g(u3/c4) and C i  = -i(u3/c4). 
Now observe the right side terms in order, it is clear that: a) any 
acceleration is retarded by an amount proportional to that acceler- 
ation and the mass of displaced fluid; b) any acceleration of sphere 
B will cause an acceleration on A (and vice versa) that diminishes 
with increasing separation; and c) regardless of any accelerations, 
any motion in the line of centers, due to another sphere close by, 
will result in a force that lies in the line of centers; the paral- 
lel motion is repulsive and the perpendicular motion is attractive 
(because Ch and C i  are negative). The first part is the usual added 
mass acceleration that a single isolated sphere would experience, 
the second part alters the first if the second sphere is also acceler- 
ating, and the third part acts as a repulsive-attractive force. [Two 
Remarks: 1) In the classical literature the quantity [A4 + CaA4’] is 
called the “virtual mass”; and C,M’ is called the “added mass”. 
2) In the multiphase flow literature C, is called the added mass 
coefficient, the value of which is very context dependent - a cause 
for both substantial confusion and lively debate.] 

It is tempting to add the two equations of motion together in 
order to obtain the force associated with the fully general relative 
motion between the two bodies. Unfortunately there will be an 
error associated with this sum, because + Ti is not the actual 
total energy of the system. It is true that the velocity potentials 
are additive for the two cases (parallel and perpendicular motion), 
so the true fluid kinetic energy at a point is the gradient of the 
cornbinedpotential, squared. Hence adding the forces for the sep- 
arate problems misses the cross term associated with squaring the 
combined velocity potential. It appears that the total fluid energy 
for the combinedproblems has not been computed (or at least does 
not appear in the accessible literature). Until the general (com- 
bined parallel and perpendicular) fluid energy is determined, we 
shall confine our attention to the restricted flow associated with 
fluidized beds. In this restricted case we shall suppose that the 
forces arising from two-body motions and accelerations that are 
perpendicular to the line of centers will simply average to zero. 

In the 1-D approximation, the full equation of motion becomes, 
using Eq.( 11) to express the result in terms of the directional gra- 
dient Vx, 



where the variation of C, with spacing cis permitted. This is to be 
averaged with respect to the possible directions for the separation 
vector, the velocity, and the coefficients. For this we assume that 
the velocity is already a continuous (averaged) field, so that 

v = U + c . V U  (14) 

and let angle brackets signify the average over directions. Con- 
sider the term (UII).  which is the variation of the parallel part of 
the velocity, along the center-of-mass motion, whose average is 

((ut,).) = ( e t .  U + (26). . u) = $U (15) 

which assumes that the separation vector is isotropic, and time- 
independent. The factor $ arises from the directional averaging, 
which is formally over the surface of a sphere of radius c, and 
outward normal 2 (See Landau & Lifshitz [17], footnote p. 79.) 
The next term is 

- (c,, (VI,).) = -$C,,U + O(VU)’ 

because CII does not involve the direction c. However V,CII 
explicitly depends on the direction, which is quite important in the 
directional averaging of the other terms. For these, we make the 
following association: 

which selects a specific direction - one associated with the gra- 
dient in volume fraction. This is equivalent to assuming that the 
mostprobable direction is that of increasing volume fraction of the 
spheres e,, and the probability increases with its gradient. This is 
consistent with the assumption behind using Eq.(13) to obtain the 
full force vector: the perpendicular parts have averaged to zero. 
Hence it follows that 

- (y;v,c,,) = - ( ( e .  u + E ’ cv . U)’) V,C,, 

= - ((2.  U)’) v,c,, + O(VU)’ 

because the terms that are odd in c average to zero, and a term 
proportional to the square of the velocity gradient is dropped. The 
derivative of the coefficient is evaluated later. [Remark: On the 
first line the directional derivative is removed from the averaging 
symbol because it is being held fixed; it is a known quantity by 
way of Eq.(19). This is a departure from standard practice, the 
consequences of which will be shown soon.] Similarly the next 
term, averaged over directions, is 

([UI, (q, - u,,) + f (u; + q)] vxca) = gu2,ves dC, 

(21) . ,  
plus a term of order (VU)’. The last two terms will be taken 
together, and averaged in the same way; the result is important 
because it happens to have the largest coefficients. The average 

takes four steps, and makes use of the constant direction vector, 
in unit form & = V0,/lV0,I. The steps are 

There are four steps shown, corresponding to the four right-side 
terms. The first step uses the velocity expansion, eliminates odd 
terms in e (which average to zero), and expands the directional 
derivative. The second step uses the definition of Ull and expresses 
the gradient in terms of the direction tensor &&. The third step 
removes the velocity and its gradient from the averaging symbol, 
because they have already been averaged. The last step performs 
the average, and eliminates the directional tensor because it is just 
the identity tensor in the I-D approximation, whereby the diver- 
gence is used to obtain a symmetric form in the gradient. 

Hence Lagrange’s equation of motion for sphere A ,  averaged 
assuming a linear distribution of sphere velocity becomes, to low- 
est order in the velocity gradient, 

M U  = - (c, - c,,) M’U 
d 

-I-- (C, - Cll) M’U’V0, 
d e s  
+2 (c, - c,,) M’U(V ‘ U) (23) 

The right side is the total force on a body moving in a sea of 
fluid whose averaged velocity is zero. For a sea of perfect fluid 
whose averaged velocity is nonzero, say uf,  it is common practice 
to replace U with us - uf where us is the ensemble-averaged 
velocity of the dispersed (in this case, solid) field. In developing 
the standard force it was assumed that each individual body con- 
tributes to the ensemble average the same amount of force, so the 
force density is simply the number density n = e,/& (volume 
fraction per volume of one sphere) times the force for a single 
body; the same assumption is made here. With these provisions, 
the force density acting on the s-field due to motion relative to the 
f-field, is 

fsf = -0s (c, - c,,) pY(Us - U f )  

In keeping with standard practice, we apply a factor of 0f to the 
first term, which can be thought of as discounting the acceleration- 
dependent added mass acceleration because of the presence of a 
mean pressure gradient (which already has the large-scale part of 
the added mass effect in it). Also the fluid field may have gra- 
dients that are independent from the dispersed field, and which 
can cause forces to arise even in the absense of gradients in the 
dispersed field. For this reason we add a factor of &(V . uf) to 
the third right-side term. This permits combination of the second 
two terms, by using the canonical identity 



Now let pzf be the material density of the “continuous” field (In 

this case the f-field), and let o d  be the volume fraction of the 
“dispersed” field. The expression for the two-body potential flow 
force becomes 

fsr = -OsOfCapzf(lis - lif) - CT+pzf(%S - ur)2ves (26a) 

where the net coefficients, signified by the over-tilde, are 

e a  = (Ca - 41) , W b )  
d 

CT = 2 (ca - ell) - o d -  ( c a  - c,,) . ( 2 6 ~ )  
d o d  

Equation (26) is now a force density that is “symmetric” in the 
material indices. That is, the force on the f-field due to inter- 
action with the s-field is obtained by interchanging the indices 
f and s. Because VOf = -VO, the force is equal and opposite, 
and fsf + ffs -= 0 as is required by the exchange force. The net 
coefficients ca and ET are both positive for all values of o d ,  as 
will be shown next. Hence ea is an added mass coefficient, and 
eT multiplies a term that represents a net repulsive force. 

Positivity of the net coefficients is shown by observing the 
behavior of the potential flow problem, with unrestricted spacing 
between the two spheres. Recall that Ca and CII are both sums 
arising from the infinite series solution for the velocity potential. 
As sphere separation decreases, Ca and CII (and their derivatives 
with respect to spacing) must be modified by a factors that reflect 
higher order disturbances in one sphere’s potential flow field intro- 
duced by the other sphere. The evaluation of these factors requires 
the truncation of the infinite series. By extending the prescription 
for generating these infinite series outlined by Lamb [16], correc- 
tion factors can be produced that, in principle, extend in validity 
up to the point where the spheres are touching. If one hundred 
terms are retained in each of the series for Ca and CII , one can 
reduce the error in the analytic results to less than 0.01 percent for 
both series [18]. 

In order to produce a tractable model that includes the physics 
of close-spacing, a set of fits to the infinite series is used. (Because 
the derivatives are singular when the spheres come into contact, 
the finite number of terms kept here only serves to guide the fit 
when the separation gap approaches zero.) The natual variable 
for expressing the fits is the quantity = ( c  - 2a)/a, which is 
the distance between sphere surfaces (the gap) expressed in sphere 
radii. We shall refer to E as the “separation number”, which varies 
from zero to infinity. The fits used here are 

Ca = f + : [ ( E  + I)(( + 3)]-3 (1 + 0.294e-7 “0 , (27a) 
CII = $’(< + 2)-3 (1 + 0.160e-5.75c) ,(27b) 

d 
- (C, - C,,) = !(< + 2)-4 (1 - 0.428e-1.31E) . (27c) 
dE 

Note that the corrections to Ca and CII small, and occur at ( = 0 
where the spheres are touching. [Remark: The infinite series are 
analytic at E = 0, and are expressible in terms of the Riemann C- 
function. The difference between the fits and the analytic values 
is very small.) 

Now recall that we really need the derivative with respect to 
the volume fraction. This requires a modeling step, and the chain 
rule from calculus. Hence we use 

So last thing needed here is to relate the separation number 6 to the 
dispersed field volume fraction. For regular arrays of spheres, this 
can be transformed exactly into a function of o d  and the volume 
fraction at closepacking O c p .  It turns out that 

where k is the dimensionality; k = 3 corresponds to a cubic array 
of spheres, k = 2 is a 2-D array of spheres in a plane, and k = 1 
is a 1-D line of spheres. (In 2-D the depth of fluid normal to 
the plane, and in I-D the radius of fluid normal to the line, both 
factor out because o d  and Ocp both depend on the same arbitrary 
dimension.) 

For k = 3, Ocp = 7r/6 x 0.524 (a bit smaller than random 
close-packed uniform spheres, for which Ocp x 0.644). To fur- 
nish a quantitative feel for the separation number, < ( o d )  is plotted 
in Fig.2, for k = 1,2 ,3 .  Figure 2a shows 4 for Od down to one 
percent. Figure 2b displays the range lov8 < o d  < 

The main point of this figure is to show that the separation number 
exhibits a strong dependence on the dimensionality k .  At large 
separation, the multibody effects vanish. A separation number 
of 200 radii is 100 diameters; this occurs, roughly, at values of 
volume fraction of < lo-‘, < lo-* and < for k = 3 , 2 , 1  
respectively. The modeling performed in this paper is to general- 
ize 1-D forces into multidimensional ones - a process that leaves 
k uncertain. For this reason, we shall leave the dimensionality as 
a parameter, lying somewhere in the physical range 1 5 k 5 3, 
that is yet to be determined. Because the fits in Eq.(27) are all 
decaying exponentials the nonviscous behavior is insensitive to k ;  
however the corresponding fit for the viscous force can depend 
strongly on k ,  as will be seen in the next section. 

Finally the net coefficients can be displayed as functions of o d .  

Using Eq.(29) the net repulsive coefficient becomes 

where we retain the unspecified dimensionality k .  Figure 3 shows 
both of the net coefficients, plotted for k = 1 ,2 ,3 .  The important 
point here is that these coefficients are nonnegative for all val- 
ues of o d ,  right up to the point of close-packing. [Two remarks: 
1) Holding the directional derivative fixed while averaging over 
directions is a crucial feature of the foregoing procedure. If the 
directional derivative is not held fixed the model is fully isotropic, 
and the net repulsive coefficient CT is (3/5) times smaller. 2) It 



is the net coefficients that are important here; they go together 
hand-in-hand.] 
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Figure 2. Net coefficients. (a) &(Od), (b) C,.(Bd). 

5. THE TWO-BODY VISCOUS FLOW FORCE 

The contribution to frs that is due to the motion of one body rel- 
ative to another in a viscous fluid, is included here. The force con- 
tribution is a multidimensional generalization of the zero Reynolds 
number I-D force, developed by Batchelor & Green [14], aver- 
aged. For two identical spheres moving in the line of centers, the 
force on one sphere is, using the nomenclature of [14] 

where the function is 

which becomes singular at E = 0. (A term proportional to a con- 
stant fluid straining is not needed here, and is therefore omitted.) 
This is accurate for << 1 where again = ( c  - 2a)/a is the 
separation number; F, is the total force on one sphere in the z- 
component direction, p the fluid viscosity, a is the sphere radius, 
V, is the relative velocity between spheres (confined to the z axis). 
As before, c is the distance between sphere centers. The line of 
centers coincides with the z axis. 

This force is also known classically. The viscous force acts in 
such a direction to resist the relative motion of the two spheres; 
it is the reason that two bodies falling in a viscous fluid will tend 
to remain the same distance apart. [Two remarks: 1) Any motion 
perpendicular to the line of centers tends to make the spheres 
spin, because the total rotational moment is zero; the spheres spin 
in opposite directions (like a pair of gears). Hence the falling 
spheres may orbit one another at a fixed distance, while rotating 
in opposite directions. 2) The classical streaming viscous force, 
due to Stokes, is -67rpaV where V is the velocity of a sphere 
relative to a uniform fluid; this part is already included as part 
of the standard force. The force given in Eq.(30), due to relative 
motion between two identical spheres, is an additional one.] 

The function h, in Eq.(30b) is a fit to an infinite series, accurate 
for E << 1 which corresponds to large Od  near close-packing). For 
this paper it will be assumed valid for all Od, but with unknown 
dimensionality k.' 

0.1 0.2 0.3 0 4  0.5 od 

Figure 4. The function hv[E(Od)]. 

Figure 3 displays h,,[[(Od)] for IC = 1,2 ,3 ,  where it is clear that a 
low-dimensionality k = 1 permits the viscous effect to diminish 
much faster as the volume fraction diminishes from O,,, where the 
effect is infinite. 

The task now is to place Eq.(30a) in general coordinates, and 
average. Consider sphere A in Fig.1; its velocity relative to B is 
-c . VU, whose projection in the line of centers is -E  . c . VU. 
As before we assume that U is continuous, and therefore already 
averaged. Hence in general coordinates the force magnitude is 

F =  $7rpahVcE.E.VU. (31) 

Now average, assuming isotropic C, as in the previous section, and 
identify U with the averaged velocity of the sphere field us. Let us 
suppose that the direction of action is &(us - uf),  which is along 
the mean relative velocity between fields; the correct sign will 
be chosen in the last step. (Choosing this direction assumes that 
the sphere-sphere relative velocity and the sphere-fluid relative 
velocity are similar.) The force vector becomes 

F = f [+7rpac/w] h,,(us - uf )V .  us (32) 

where w = Ius - ufl. As before the force density fsf is nF, with 
n = The coefficient in square brackets is cast in terms of 
the relative Reynolds number R e  = wd/pFp (based on diameter 
d = 2a). The result is 

(34) 

where the coefficient 

C, = [$(c /a)Re- l ]  = [ ! ( E  + 2)Re-l] x [$Re-l] (35) 

is accurate only for Re << 1. The approximation on is made 
because the Eq.(30) is accurate only for separation number E << 1. 
[Important remark: Because significant relative motion can only 
occur when the Reynolds number exceeds about one, multifield 
problems will typically have Re > 1. This means that some 
empiricism will be needed for determining C,,, which takes some 
of the pressure off from not knowing k.] Again because the back- 
ground fluid may have gradients that generate a force, we add the 
factor Of(V. uf) and use the identity in Eq.(nn) to place the force 
in terms of VO,. Let wsf = us - uf and the viscous force becomes 

where the first factor makes the direction definite (the sign func- 
tion has a unit value times the sign of its argument). The direction 
is chosen so that the averaged equation has the same attractive- 
repulsive nature that the single-body force had to begin with. In 
the one dimensional fluidized bed waves, described in the Intro- 
duction, the expansion wave has a positive vertical gradient of 
solids volume fraction, and us - uf is negative. The foregoing 
force acts upward, and therefore it appears that the grains are 
attracting one another as they are pulling apart. Conversely in 
the compression wave the vertical component of VO, is negative 
while the relative velocity is also negative. The force again acts 
upward, so the grains appear to be repulsive to one another as they 



are coming closer together. Note that if the relative velocity is 
perpendicular to VO,, the force is zero. 

This force contributes a destabilizing term in the expansion 
case. That is, a volume fraction gradient that is positive produces 
a force that is positive - which acts to increase the gradient. In the 
case of compression the force is stabilizing because the force acts 
in order to diminish the volume fraction gradient. 

Now observe that f,f is in the symmetric form that is desirable 
for general use; the interchange of s-f indices gives the force on 
the f-field due to interaction with s-field, and fsf + ff, = 0. To 
summarize, the full force density used in the studies that follow, 
is s = 

where the potential flow lift force is omitted because we are inter- 
ested only in the I-D case, and the net viscous coefficient is 

C,, = sign[w,f . ves]cv (26b) 

which simply absorbs the sign into the unknown coefficient C,,. 
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0 
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6. CHARACTER OF THE 1-D EQUATIONS 

The character of the 1-D model equations, using only the stan- 
dard force, is well known [2,10,11,19,20]. The eigenvalues of the 
characteristic equation are complex, so the equation system is said 
to be illposed, in the mathematical sense. Stewart & Wendroff [ 101 
comment that illposed problems are difficult, but not impossible, 
in the context of two-phase flow. Indeed this has been the case; 
a great deal of useful analysis has been accomplished with the 
standard force, in a large collection of problems. For the study of 
waves in fluidized beds the illposedness has slowed the progress, 
but not stopped it altogether [ 11. Nevertheless a well-posed model 
is helpful for the study of waves because real-valued eigenvalues 
permit analytic solutions to be found for the wave speeds and wave 
structures. The main purpose of this section is to demonstrate that 
the addition of a two-body potential flow force is sufficient to 
guarantee real eigenvalues, unconditionally. 

Let us first consider the two-field case, and postpone the study 
of three or more fields for future work. Let the state vector be 
V = [ p l ,  p2, u1, u2, pIT, and let 2012 = u1- u2, with z the single 
coordinate direction. The force density acting on field 1 due to 
interaction with field 2 is, from the summary of the last section, 

The corresponding I-D model equations, expressed in matrix 
form, are 

where 

A =  

A& + BV, = S 

1 0  0 0 0  
0 1  0 0 0  
0 0 p i + A  - A  0 
0 0 - A  p 2 + A  0 
u1 v2 0 0 0  

and the right side vector is 

The dummy variables are 

and 

The densities (p1 + A )  and (p2 + A )  could be called virtual mass 
densities, for each field, and the density A could be called an 
added mass density. Because the material specific volumes are 
constant, this is a complete set of equations. The corresponding 
characteristic equation is Det[B - XA] = 0, which turns out to 
be quadratic in the eigenvalues A. The eigenvalues are exactly 
analogous to “characteristic speeds” in gas dynamics. Let field 1 
be the continuous field, so that py2 = py. The eigenvalues are 

where y = p;/py is the material density ratio of dispersed to 
continuous fields, and in which 

is a positive number whose value lies between zero and one; 
because Ca is always near $, p depends only on the density ratio 
y and the volume fractions. The factor D, which must be positive 
if the eigenvalues are to be real, is 

The character of the equations can be observed by plotting D. 
Consider the nonviscous case first. Figure 5 shows D for k = 3, 
and various values of the ratio of material density y; and for two 
values of eCp. For Ocp = 7r/6 M 0.524, appropriate for the coeffi- 
cients derived here, D is positive for all values of Bd and y, so it 
is possible to conclude that the nonviscous equations are uncondi- 
tionally hyperbolic. This is true for values of k = 2 and k = 1 as 
well. For Ocp somewhat greater than 7r/6, and for which the coef- 
ficients are not appropriate, the large y case can exhibit negative 
D; the significance of this will be discussed shortly. 
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Figure 5. D for C,, = 0. (a) Ocp  = 0.524, (b) Ocp = 0.644. 

Now let us consider addition of the viscous attractive-repulsive 
force, and its corresponding effect on the system character. Recall 
that the direction of action is given by sign[wl~(Ol),] which is 
positive in the case of a compression wave; in the expa_nsion wave 
the coefficient is negative. The analytic magnitude of C, M Re-l 
is only valid for Re  << 1, and so for practical conditions this 
coefficient is an unknown parameter. Its value, in relation to all 
of the other modeling assumptions associated with the drag force 
and added mass force, can only be grossly estimated, as follows. 
Figure 6 displays the condition D ,  plotted versus dispersed field 
volume fraction, for two cases: a) e,, = + o . o ~  (compression); 
and b) e,, = -0.01 (expansion). 

Figure 6. D for Ocp = 0.524. (a) C, = +0.01, (b) C, = -0.01. 

In Fig.6, the volume fraction at close packing is again Ocp = 0.524 
corresponding to rigid uniform spheres in a regular cubic array. In 
the compression case D is positive, and becomes large near close- 
packing, which is to be expected because the viscous force is stable 
in compression waves. In the expansion case D becomes negative 
near close-packing; because the function h,, becomes infinite at 
O,, D will be negative there for any negative C,, regardless of 
the magnitude of C,, . 

Recall that when the bed of grains becomes close-packed, the 
configuration stress is nonzero (Sec.3). This brings in a large pos- 
itive contribution to D that is not included here, but the effect is 
to produce I-D wave speeds that depend on the elasticity of the 
grains themselves. So the issue with negative D near Ocp becomes 
a question of how the state in a packed bed can transition to smaller 
values of Od in an expansion wave, by passing over those states for 
which D is negative. The answer is that such a transition can only 
occur through a discontinuity of O d ,  so the expansion wave takes on 
a compound structure. The compound structure is a discontinuity 
from Ocp to some lower value, after which the wave is smooth, and 
travels with the speed of an eigenvalue. Which eigenvalue will 
depend on the value of Cv; for this reason, the data from Wallis et 
al. [ I ]  is extremely important. Those data permit an experimental 
determination of the,coefficient that is not possible to determine 
from theory alone, at least at the present time. 

Because solutions to the 1-D wave problems depend on the 
eigenvalues, additional insight into the physical wave behavior 
can be gained by observing X in certain limits. The main obser- 
vation is that the behavior always depends on the magnitude of 
y compared to the net added mass coefficient (?a. Recall that y 

is the ratio of dispersed to continuous material density; so y is 
small for gas bubbles in liquid, of order one for solid grains in 
liquid, and very large for solid grains in a gas. Now consider 
the infinitely dilute limit, for which ed -+ 0, p -+ 1, D -+ 1, 
and the relative velocity becomes the terminal velocity WT. Thus 
X = u1 - W T [ ~  f (y + For small y (gas-in-liquid) the 
X will be similar to the fluid velocity, plus or minus the terminal 
velocity. For large y (solid-in-gas) the dilute eigenvalues can 
become very large relative to the fluid velocity. Not surprisingly, 
this means that expansion waves can travel very fast when the fluid 
is light compared to the dispersed material. 

Near the close-packing limit, the value volume fraction is 
always near 4. Now the relative velocity is much smaller than 
the terminal velocity, and is related to the minimum fluidization 
velocity and the value of O c p .  For small y the wave speeds are 
still not far from the fluid velocity. For large 7, /3 -+ 0, so that 
X = u1 f W T ( D ~ )  ‘ I2 .  The large-y value of D near close packing 
is always small in expansion waves. This means that conditions 
can exist for which the square root evaluates to one, and because u1 

is also like WT, one of the eigenvalues can tend toward zero. If this 
corresponds to the direction of the expansion wave, it means that 
the expansion wave will come to rest relative to the region where 
the bed is packed. This nature of the expansion wave explains the 
very unstable (and well known) behavior grain beds fluidized with 
gas, compared to the more stable behavior of grain beds fluidized 
with liquid. 

7. SUMMARY 

A study of two-body forces due to both inertial (potential flow) 
and viscous (Stokes flow) effects has yielded multifield model 
equations that exhibit features that are new. The model is low- 
order because gradients that generate the two-body forces are 
linear, time-independent, and one-dimensional. The nonviscous 
model is shown to be unconditionally hyperbolic; a feature that is 
helpful for developing analytic solutions for I-D wave problems, 
and for ensuring physical statistics from three-dimensional LES 
results used for turbulence closures. The viscous force acts in 
such a way that an expanding fluidized bed appears to have grains 
attracted to one another. This attractive force gives the expand- 
ing bed a sort of “strength” that must be overcome in order to 
expand. If the magnitude is large enough, the attraction will slow 
the expansion wave at the packed bed limit, and could bring the 
wave to rest relative to the packed bed. 

The next step is to find the analytic solutions for 1-D nonvis- 
cous, and viscous problems. In the viscous case, experimental 
data are needed in order to gauge one of the coefficients in the 
new model. The data from Wallis, et al. [ I ]  will serve that pur- 
pose well. After that a higher-order model could be developed 
by considering fully general relative motions between two grains 
in the potential flow problem. This should lead to a two-body 
correction to the potential-flow lift force found by Drew & Lahey 
[SI; and the hyperbolic character of the 1-D nonviscous model 
should remain. 

NOMENCLATURE 

A - like B ,  U ,  2, x, U . . . , the Roman alphabet, in both plain 
and bold face, is used for dummy variables defined locally in 
the text. 



a - sphere radius [length] 
c - distance between sphere centers [length] 
d - sphere diameter [length] 
f - force density [force/volume] 
g - gravity component [velocity/time] 
h - close-spacing function [nondimensional] 
n - number density [number/volume] 
p - hydrodynamic pressure [forcelareal 
q - derivative close-spacing function [nondimensional] 
t -time 
u - velocity component [lengthhime] 
w - specific volume [volume/mass] 
w - relative velocity component [lengthltime] 
2 - coordinate component [length] 
z - coordinate component [length] 
C - nondimensional coefficient 
7-1 - Saffman’s function (nondimensional) 

Re -Reynolds number based on the mean relative velocity, sphere 
diameter, and fluid properties (nondimensional) 

c - vector from sphere A center to sphere B center [length] 
f - force density [force/volume] 
g - acceleration due to gravity [velocity/time] 
u - velocity [length/time] 
w -relative velocity [lengthhime] 
x -position [length] 
y -position [length] 
I -the identity tensor [nondimensional] 

R - Reynolds stress [force/mass] 
U - velocity of sphere at position x, called A 
V - velocity of sphere at position y, called B 

p - mass density [mass/volume] 
0 - volume fraction [nondimensional] 
p - viscosity [mass/length/time] 
E - separation gap in sphere radii [nondimensional] 
u - stress [force/area] 
Subscripts, superscripts, and over-symbols 

()a -having to do with added mass 
( ) d  -having to do with the dispersed material field 
(),, - a point in space-time (x, t )  

- integer material index 
0,. - having to do with a repulsive force 
( ) v  - having to do with viscosity 
( ) 11 - parallel 
()I -perpendicular 

() - The Lagrangian (material) derivative, sometimes ( 

() - a unit vector 
()’ - a dummy symbol for: a fluctuation, a derivative, or mass of 

). for 
clarity of the operator, if the operand is a compound quantity. 

displaced fluid (defined in the text). 
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