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Viscoplastic Selfconsistent Modelling of the Anisotropic
Behavior of Voided Polycrystals

Ricardo A. Lebensohn, Paul J. Maudlin, and Carlos N. Tomé

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract. In this work we consider the presence of ellipsoidal voids inside polycrystals submitted to large strain
deformation. For this purpose, the originally incompressible viscoplastic selfconsistent (VPSC) formulation has been
extended to deal with compressible polycrystals. Such an extended mode! allows us to account for porosity evolution in
voided polycrystals, while preserving the anisotropy and crystallographic capabilities of the VPSC formulation. We
present several applications of this extended VPSC model, which address the coupling between texture, plastic
anisotropy, void shape, triaxiality, and porosity evolution. We also discuss the implementation of a multiscale
calculation using the present compressible VPSC as constitutive routine inside dynamic FEM codes, for the simulation
of deformation processes in which both anisotropy and cavitation become relevant aspects of microstructural evolution.

INTRODUCTION

The evolution of porosity is of relevance for
assessing damage during both quasi-static and high-
strainrate deformation of metallic aggregates. The
Gurson criterion [1], which provides a constitutive
description of yield stress and porosity evolution, is
widely used in simulations of metal deformation. The
Gurson model is based on a number of simple
assumptions (isotropic behavior of the matrix material,
spherical voids, and rate independence). Such
assumptions do not adequately represent many
situations in which the anisotropy associated with void
shape and material properties and/or rate effects may
play a role. In this work we present a 3D viscoplastic
selfconsistent (VPSC) model for polycrystal with
prexisiting voids, which allows consideration of the
full anisotropy associated with morphologic evolution
of voids and grains and with crystallographic texture
development in the aggregate, as well as rate effects.
This formulation is a generalization of the tangent
incompressible fully anisotropic VPSC formulation
developed by Lebensohn and Tomé [2]. This model
treated each grain as a viscoplastic ellipsoidal
inclusion embedded in a Homogeneous Effective
Medium (HEM). Both, the inclusion and the HEM
were anisotropic and incompressible. As a
consequence, the model was formulated in the
deviatoric 5-dim space. In the present extension,
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cavities are also assumed to be ellipsoidal inclusions,
but the assumption of incompressibility does not apply
neither to the pores nor to the HEM (the inclusions
representing grains, however, remain incompressible).
Dilatation and hydrostatic pressure have to be
accounted for and represent now the sixth dimension
of the problem,

In what follows, we present a compact description
of the formalism, and then illustrate some of the
capabilities of the model. A full derivation of the
formulation can be found elsewhere [3,4].

MODEL

The deviatoric part of the constitutive behavior of
the material at local level is described by means of the
non-linear rate-sensitivity equation:
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where ¢'(X) and o(X) are the deviatoric strain-

rate and stress fields; mfj and t° are the Schmid



tensor and the threshold stress of slip (s); ¥, is a
normalization factor and n is the rate-sensitivity
exponent. Linearizing (1) inside the domain of a grain
and adding the spherical local relation gives:

&j = My Ofy + & @

where € and ¢” are the average local quantities in
the grains; My and e:;’ are the local compliance and
the back extrapolated term and £, , p and K are
average local dilatation-rate, pressure and viscoplastic
bulk modulus, respectively. My, and é;j" can be

chosen differently. The best choice of them for the
case of voided polycrystals is discussed later in this
section. Performing homogenization consists in
assuming a constitutive relation analogous to (2) at
polycrystal level:

E:J = Mijld Zid + Eg’
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where, by comparison with (2), the meaning of the
macroscopic state variables and moduli' becomes
aparent. Using the equivalent inclusion method the
local (heterogeneous) constitutive behavior can be
rewritten in terms of the (homogeneous) macroscopic
moduli as:
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where e; and ¢* are the deviatoric eigen-strain-
rate and a newly defined eigen-dilatation-rate,
respectively. Rearranging and subtracting (3) from (4)
gives:
% =Tyl -e0)
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where the "~" quantities are local deviations from
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macroscopic values and Eiju =M;|:1 . Using the
equilibrium  condition: oy =G j=Gj,;—P; and
having in mind the relation between strain-rate and
velocity-gradient, i.e.: E,, = %(Ei, i +3 j,i), gives:

Eu:l ﬁk,lj~+i;.i +fi =0 - (6)
Kuk'k—p+F=0

where the heterogeneity terms are: f; =‘—L-ijklél:l, i

and F=-K&*. Equation (6) represents a system of 4
differential equations with 4 unknowns (3 components
of the deviation in velocity 1; and one deviation in
hydrostatic pressure p). After solving these

differential equations using Green functions and
Fourier transforms [3,4] we obtain:
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where Sy is the fourth order viscoplastic

deviatoric Eshelby tensor, ¥ =S}y (¥ and S are
the newly defined viscoplastic spherical Eshelby factor
and tensor, respectively) and B; =S}/ ‘P—-;-Sij is a

tensor that vanishes if the medium is isotropic.
Inverting (7) and replacing in (5) we obtain the
interaction equations:

B = My Fog — B
:1, | ~ukl ki —Bu ®
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where M=(1-8):57":M; B=-S":B%, and
K=(01-¥)¥'K. Replacing the constitutive
relations (2) and (3) in (8) gives the following self-
consistent equations for the macroscopic moduli:
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where <> indicates spatial average. The

localization tensors are functions of the local and
macroscopic moduli, i.e.: B=(M+ ﬁ).l :(ﬁ+ﬁ)
and <I>=(M+f4)—l :_(é'° —-E’® +§) ; Wy and P, are
the Eshelby factors of grains and voids and ¢ is the
porosity. Equations (9-11) are fix-point equations that

- allow us to obtain improved estimates of the



macroscopic moduli M,Eand K. Once K is

adjusted, the macroscopic dilatation-rate is given by:
Ey =P/K and the porosity-rate can be calculated
by means of the well-known kinematic relation:

0=01-0)Ey (12)

The deviatoric local constitutive behavior (1) can
be linearized in different ways. The macroscopic
response resulting of the selfconsistent formulation
will eventually depend on the choice made for that
local linearization. For instance, if the back-

extrapolated term e:;’ is a priori set to zero, the

resulting model is a secant one, which has been proved
to be in general too stiff, leading to close-to-upper-
bound resuit. On the other hand, taking
M;j = 0€(0’)/ 30}y, the resulting model is the so-

called affine formulation [S], a less stiff approach.
However any homogenization scheme whose local
linearization depends only on the average of local
states in the phases (or grains) fails in reproducing
Gurson’s results at high triaxialities, leading to
completely rigid response in the pure hydrostatic limit.
This result is connected to the high deformation
gradients that physically appear inside the phases (or
grains), in the vicinities of a void, when high
hydrostatic pressure is applied to the aggregate. These
strong gradients make the effective response of the
phases (or grains) softer than the one that would be
obtained by linearization using just the average local
states (first order moments).

There are different ways of avoiding this unrealistic
rigid response. One procedure consists in using a
supertangent formulation [3,4] by defining the local
compliance as the one that fulfills:

Miji (6% -G'kl)=(é§j -éij) (13)
where:
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where X =P/Z,, and 0.(¢,X) is a parameter that

should be fitted so that the VPSC results match with
Gurson’s, in the limit of rate-independent isotropic
media and spherical voids. The results shown in next
section were obtained by means of this Gurson-based
fitting procedure.

A more formal way of dealing with the effect of
high triaxialities and porosities consists in extending a
recently proposed second-order variational method [6]

to compressible polycrystals. This method, originally
formulated for incompressible materials, makes use of
the SC approximation for a linear thermoelastic
polycrystal to generate more accurate SC estimates for
viscoplastic polycrystals taking into account not only
the mean values (first-order moments) but also the
average field fluctuations (second-order moments) of
the mechanical fields in the grains. This e*tension of
the second-order SC model to compressible
polycrystals is currently under development and won’t
be discussed further here.

RESULTS

Effect of rate-sensitivity

A characteristic of the present formulation is that
its results depend on the rate-sensitivity of the
material. This feature can be easily visualized by
plotting normalized equal-dissipation-rate surfaces,
corresponding to different rate-sensitivity exponents.
Figure 1 shows these surfaces for 0.5%, 1% and 5%
porosity, calculated with VPSC for a random
polycrystal with spherical voids, using rate-sensitivity
exponents n=1, n=3, n=5 and n=20.
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FIGURE 1. Effect of rate-sensitivity. Normalized equal-
dissipation-rate surfaces, for porosities 0.5%, 1% and 5%,
calculated with VPSC for a random fec polycrystal with
spherical voids, for different rate-sensitivity exponents.

If one assumes that the normal to an equal-
dissipation-surface is a reasonable estimate of the
strain-rate, it can be seen that: a) as porosity increases,
the relative difference between the surfaces
corresponding to different rate-sensitivities decreases.
In other words, the material becomes less rate-



sensitive as porosity increases, since the cavities
themselves are, essentially, rate-insensitive domains;
b) at a given porosity and for a fixed stress triaxiality
(straight line through the origin), higher rate-
sensitivities (lower exponent) give smaller dilatation
components and, as a consequence, lower strain
triaxialities. Another way of visualizing this effect is
displayed in Fig. 2 that shows the porosity evolution of
a random fcc polycrystal with 1% initial volume
fraction of spherical voids, for different values of the
rate-sensitivity exponent and a fixed triaxiality X=1.
Evidently, the present model predicts a faster porosity
evolution as the rate-sensitivity of the solid material
decreases.
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FIGURE 2. Effect of rate-sensitivity on porosity evolution,
for a random polycrystal with spherical voids, deforming in

tension, for X=1 and different rate-sensitivity exponents.

Initial porosity: 1%. Total longitudinal strain: 0.5.

Effect of void morphology

In order to isolate the effects of void morphology
from the full anisotropy evolution due to morphologic
and crystallographic texture development, we show
here results from simulations where neither texture
development nor void morphology evolution were
allowed. Figure 3 shows the VPSC predictions of
porosity evolution during a uniaxial creep test
(X=1/3), for a random fcc polycrystal with different
void shapes (spherical, oblate and prolate). In the
oblate (prolate) case, the short (long) axis of the
ellipsoidal void is aligned with the tensile axis. In all
cases the rate-sensitivity exponent is n=10, initial
porosity is 0.5%, and the total longitudinal strain
imposed is 0.5. Oblate voids (axes ratios 5:5:1) tend to
grow significantly faster than prolate ones (axes ratios
1:1:5), independent of the triaxiality. This intuitively
correct result has also been reported by other authors,

using different approaches (e.g.: [7]). Under the
present model, the void morphology enters naturally
into the formulation via the Eshelby tensor, whose
components depend on the orientation and the shape of
the cavities present in the material. In addition, it is
possible to treat both, aligned or arbitrarily distributed
void shapes.
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FIGURE 3. Effect of void shape. VPSC predictions of
porosity evolution during a creep test performed on an fcc
polycrystal with random texture, for different wvoid

- morphologies, with no texture or morphology evolution.

Initial porosity: 0.5%, n=10, total longitudinal strain: 0.5.

Comparison with unit cell FE model

At this point, it is interesting to compare the results
of the present theory with those of a Finite Element
calculation of a porous viscoplastic unit cell. Figure 4
shows relative porosity (¢/¢,, ), void aspect-ratio and
longitudinal strain, as functions of time, during a creep
test, as predicted with VPSC and the corresponding FE
results, reported by Garajeu et al. [8]. In both
simulations, the initial porosity ¢, is 0.1%, the void
shape is initially spherical and the rate-sensitivity
exponent is n=5. Cases for two different triaxialities
(X=0.762 and X=1.833) are compared. At a lower
triaxiality, VPSC slightly overestimates porosity
evolution while, at a higher triaxiality, porosity
evolution and, consequently, longitudinal strain are
underestimated by VPSC. Moreover, for both
triaxilities considered here, VPSC overestimates the
void aspect-ratio evolution, with respect to FE results.
The underestimation of porosity evolution (and,
consequently, of longitudinal strain) at high
triaxialities (i.e.. when the volume fraction of vo
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FIGURE 4. Comparison with unit cell FE results. Finite
Element predictions for a 3D porous viscoplastic unit cell
(afier Garajeu et al. {8]) vs. VPSC predictions of: relative
porosity, void aspect-ratio and longitudinal strain as function
of time. Initial porosity: 0.1%; initial void shape: spherical;
rate-sensitivity: n=5.

Coupling between texture and porosity
evolution

The present model allows us to account for the
anisotropic response of voided polycrystals induced by
- the development of crystallographic and/or
morphologic texture. While the former is due to crystal
rotations associated with plastic distortion of the
grains, the latter refers to changes in the shape of both,
voids and grains. The anisotropy induced by texture
development in a polycrystal with initial random
texture gradually affects the porosity evolution. As a
consequence, it is to be expected that a simulation
carried out in an initially textured polycrystal along
different directions should predict a different trend of
void growth, from the very beginning of the
deformation. Furthermore, this anisotropic behavior
should be more marked if the plastic anisotropy of the
single crystal is higher. For this reason, the next
example concemns texture and porosity evolution
simulations carried on an hcp material, with easy

(0001) <1210 > basal and (1010) <1210 > prismatic
<a> slip . and four times harder
(1011) <1123 > pyramidal <ct+a> slip and an initial
texture consisting of a strong basal component along
the axis x, (Fig. 5c, left). The imposed stress states
were axisymmetric, with the tensile axis paralle! to x;
or parallel to x,, with a constant axial strain-rate of
1 s and constant lateral stresses chosen to give an
initial triaxiality of 1. The initial porosity was 1% of
spherical voids and the final Jongitudinal strain was
0.5. Other conditions of these simulations were: n=10,
texture and morphology evolution allowed, and no
mechanical strain-hardening (i.e.: constant threshold
stresses for every slip system throughout deformation).
Figure 5 shows: a) the predicted stress-strain curves
(including analogous cases without voids), b) the
triaxiality and porosity evolution and ¢) the initial and
final textures. It can be seen that the texture evolution
depends on the orientation of the tensile axis relative
to the initial texture (Fig. 5c) and, that the porosity
evolution is also strongly influenced by the direction
of loading, relative to the texture (Fig. 5b). Indeed, the
case of tension along x, (i.e.: most crystals with their
<c>-axis aligned in tensile direction and therefore hard
to deform) exhibits a faster void growth than the case
of tension along x;. The reason for this is that the
material chooses to accommodate deformation by
opening the voids, rather than by deforming plastically
along the hard direction. The coupling between the
hydrostatic component and the material plastic
anisotropy is strong: the hydrostatic component
leverages the latter mechanism, and promotes the void
contribution to deformation. The response of this hcp
aggregate provides a dramatic example of a case where
the combined anisotropy of the single crystal and of
the polycrystal (texture) affect the evolution of
porosity substantially. The difference in porosity
evolution predicted above when the textured hep plate
is made to deform in tension along different directions,
should also manifest itself in the overall mechanical
response. Note that, unlike a creep test simulation,
these mixed boundary conditions determine changes in
triaxiality (an increase, in these cases) as deformation
proceeds (Fig. 5b). The stress-strain curves (Fig. 5a)
without porosity show a geometric softening
consistent with the texture evolution shown in Fig. 5c.
Furthermore, if the textured plate is initially voided
and porosity evolution is allowed, in the case of
tension along x; a fast porosity evolution induces a
significant additional softening (and, consequently, a
marked increase of the triaxiality), while, in the case of
tension along x,, the contribution to softening of the
slow porosity evolution is only marginal.
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FIGURE 5. VPSC predictions of (a) stress-strain curves for a textured hep polycrystal, deformed in tension along x; and x,, at
a constant longitudinal strain-rate of 1 s and an initial triaxiality of 1. Cases with and without porosity. (b) corresponding
porosity (right axis) and triaxiality (left axis) evolution. (c) initial and final (0001) basal poles figures. Initial porosity: 1%, n=10,
prismatic and basal slip (t* =100 MPa) and pyramidal <c+a> slip (¥ =400 MPa). Total longitudinal strain: 0.5.

CONCLUSIONS AND FUTURE WORK

The earlier incompressible version of VPSC has

been interfaced with FEM to perform multiscale

calculations where the former was used to get the
constitutive response of each material point, inside
larger plastic forming codes [9]. Likewise, the present
compressible VPSC can be used as a constitutive
routine inside dynamic FE codes, for the simulation of
high strain-rate deformation processes in which both
anisotropy and cavitation become relevant aspects of
microstructural  evolution. In doing this, a
polycrystalline aggregate should be associated with
each FE integration point. The VPSC-FE code should
impose the computed velocity gradient on each of
these polycrystals, then update the shape, orientation
and hardening of the individual grains, as well as the
shape and volume fraction of voids, depending on the
deformation history of the element, and finally get the
macroscopic stress for use in the solution of the
continuum equilibrium equations. This compressible
VPSC-dynamic FE coupling is presently in progress.

REFERENCES

. Gurson AL. J Eng. Mater. Technol. 99, 2-15 (1977).

. Lebensohn R.A. and Tomé C.N. Acta metall. mater. 41,

2611-2624 (1993).

. Lebensohn R.A., Maudlin P.J. and Tomé C.N. LANL

Internal Report LA-UR-03-1193, http://www.lanl.gow
mst/ivoids.shiml, 2003.

. Lebensohn R.A., Maudlin P.J. and Tomé C.N. J Mech.

Phys. Solids 52, 249-258 (2004).

Masson R., Bornert M., Suquet P, and Zaoui A. J. Mech.
Phys. Solids 48, 1203-1227 (2000).

. Ponte Castafieda P. J. Mech. Phys. Solids 50, 737-757

(2002).

. Lee B.J. and Mear M.E. J. Mech. Phys. Solids 39, 45-71

(1991).

. Garajeu M, Michel J.C. and Suquet P. Comput. Methods

in Appl. Mech. Engrg.183, 223-246 (2000).

. Tomé C.N., Maudlin P.J., Lebensohn R.A. and Kaschner

G.A., Acta mater 49, 3085-3096 (2001).



