

LA-UR-04-0540

Approved for public release;
distribution is unlimited.

Title: Coordination Behavior and Electrochemical Studies of Actinide and Transition Metal Complexes in Room Temperature Ionic Liquids

Author(s): Michael E. Stoll, David A. Costa, Brian L. Scott, Warren J. Oldham

Submitted to: 227th National American Chemical Society Meeting,
Anaheim, California

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Coordination Behavior and Electrochemical Studies of Actinide and Transition Metal Complexes in Room Temperature Ionic Liquids

Michael E. Stoll, David A. Costa, Brian L. Scott, Warren J. Oldham

Our current research efforts are centered around the behavior of actinide and transition metal complexes in room temperature ionic liquids (RTIL's). The RTIL's typically employed in our studies are based upon either cyclic or acyclic quaternary ammonium and 1, 3-dialkylimidazolium cations with the bis(trifluoromethylsulfonyl)imide anion, $[\text{N}(\text{SO}_2\text{CF}_3)_2]^-$. Previous work in our group indicated that this anion has the ability to coordinate to metal centers, since which time we have undertaken studies to learn more about the fundamental coordination chemistry of this important anion. We have found that the $[\text{N}(\text{SO}_2\text{CF}_3)_2]^-$ anion can coordinate to a metal center in both mono- and bidentate modes through oxygen and nitrogen atoms. These results will be demonstrated with single crystal structure representations of selected examples. Another aspect of our research includes electron transfer studies of metal complexes utilizing RTIL's as neat electrochemical solvents. Electrochemical experiments can provide insight into the reactivity and stability of charged species within RTIL's, an area of current fundamental importance. Results from voltammetric and bulk coulometric electron transfer studies on formal U(IV)/U(VI) complexes and transition metal systems will be presented.