
LA-UR-0 4-047
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Re-Architecting Flow-Control Adaptation for Grid
Environments

Adam Engelhart, Mark K. Gardner, and Wu-chun Feng

18th International Parallel and Distributed Processing
Symposium (IEEE IPDPS 2004)

r

A Los Alamos
N A T I O N A L L A B O R A T O R Y

Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the US. Department of Energy.’Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (WOO)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Re- Architecting Flow-Control Adaptation for Grid Environments

Adam Engelhart, Mark K. Gardner, and Wu-chun Feng
{adame, mkg, feng}@lanl .gov

Research & Development in Advanced Network Technology (RADIANT)
Computer & Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

The performance of TCP in wide-area networks (WANs) is becoming increasingly important with the deployment of com-
putational and data grids. At WAN speeds, TCP does not provide good performance for data-intensive applications without
the tuning ofjlow-control buffer sizes. Manual adjustment of buffer sizes is tedious even for network experts. For scientists,
tuning is often an impediment to getting work done. Thus, buffer tuning should be automated.

Existing techniques for automatic buffer tuning only measure the bandwidth-delay product (BDP) during connection
establishment. This ignores the (large) jluctuation of the BDP over the lifetime of the connection. In contrast, the Dynamic
Right-Sizing algorithm dynamically changes buffer sizes in response to changing network conditions.

i n this paper; we describe a new user-space implementation of Dynamic Right-Sizing in FTP (drsFTP) that supports third-
party data transfers, a mainstay of scientific computing. I n addition to comparing the performance of the new implementation
with the old, we give performance results over a live WAN. The new implementation gives transfer rates of up toJive times
higher than untuned FTP

Re- Architecting Flow-Control Adaptation for Grid Environments*

Adam Engelhart, Mark K. Gardner, and Wu-chun Feng
{adame, mkg, feng}@lanl.gov

Research & Development in Advanced Network Technology (RADIANT)
Computer & Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

The performance of TCP in wide-area networks { WANs)
is becoming increasingly important with the deployment of
computational and data grids. I n WAN environments, TCP
does not provide good perfortnance for data-intensive ap-
plications without the tuning of $ow-control buffer sizes.
Manual adjustment of buffer sizes is tedious even for net-
work experts. For scientists, tuning is ojien an impediment
to getting work done. Thus, buffer tuning should be auto-
mated.

Existing techniques for automatic buffer tuning only
measure the bandwidth-delay product (BDP) during con-
nection establishment. This ignores the {large) $fluctuation
of the BDP over the Igetime of the connection. In contrast,
the dynamic right-sizing algorithtn dynamically changes
buffer sizes in response to changing network conditions.

In this paper, we describe a new user-space implementa-
tion of dynamic riglzt-sizing in FTP {drsFTP) that supports
third-party data transfers, a mainstay of scientiJic cotnput-
ing. I n addition to comparing the performance of the new
irizplementation with the old in a WAN-emulated environ-
ment, we give performance results over a live WAN. The
new implernentatiorz produces transfer rates of up to five
times higher than untuned FTI?

1. Introduction

For over twenty years, TCP has provided reliable ser-
The algorithms used have been

*This work was supported by the US. Department of Energy through
Los Alamos National Laboratory contract W-7405-ENG-36 with funding
provided by the Office of Science Base Program of DOE. Any opinions,
findings, and conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of DOE or
Los Alamos National Laboratory.

vice to Internet users.

tuned, extended, and tested over decades to adapt to vary-
ing conditions in the global Internet and serve as the ba-
sis for Internet-based applications such as FTP, the World
Wide Web, and distributed computing infrastructures, such
as grids [2,5,6,10,11].

Unfortunately, stock TCP is not well-suited for widely-
distributed grid environments running over networks with
high bandwidth-delay products (BDPs). The problem lies
in the parameters of the TCP flow-control algorithm-the
default buffer sizes are static, and are only appropriate
for local-area network environments. Since only one full
buffer’s worth of data can be in transit at any time, small
buffers hobble data transfers by leaving network resources
relatively unused.

This problem is well-known and has been solved by ad-
justing the buffer sizes manually [4,25]. However, this so-
lution requires specialized experience to do well, including
proficiency with various network measurement tools, such
as iperf [27], netspec [28], nettest [14], nettimer [15-171,
pchar [191, or pipechar [131, and a knowledge of how to set
the operating system’s networking parameters.

This gives rise to the so-called “wizard gap” [20], the
gap between the performance seen when the system is tuned
by a networking expert versus the performance that a non-
networking expert gets. However, users whose expertise
lies in other areas (e.g., visualization or bioinformatics)
should be able to take advantage of modern WAN technol-
ogy without becoming networking experts as well.

There are several techniques for adjusting buffer sizes
automatically, including AutoNcETP [181 and Enable [26].
While these tools eliminate the need for a network expert,
they only set the buffer size once-at the start of the con-
nection. This is fine if the BDP is relatively static, but it is
not. The BDP of a WAN can vary widely over the course
of a connection, as demonstrated in Section 2. In order
to achieve the best performance possible, TCP buffer sizes
must be adjusted throughout the lifetime of the connection

for proper flow-control adaptation.
Two approaches to dynamically tuning buffer sizes are

auto-tuning [23] and dynamic right-sizing (DRS) [7,9]. The
former is a sender-based approach to flow control, while
the latter is a receiver-based approach. While the sender-
based approach yields excellent performance, there is a risk
of overflowing the receiver’s buffers. As a receiver-based
approach, DRS ensures no buffers will overflow while still
providing excellent performance.

We are working to ensure that DRS is widely adopted
by operating system vendors where it will be available to
all applications without modification. Until then, we make
a patch available for the Linux kernel. However, end users
are often unable to patch and recompile the kernel due to
lack of knowledge or lack of administrative permissions on
the machines involved. As an alternative solution, we de-
veloped an earlier user-space implementation for bulk-data
transfer [12].

In this paper, we describe a new implementation of dy-
namic right-sizing in FTP (drsFTP) which uses a different
mechanism for computing round-trip times. Unlike the pre-
vious version [12], the new mechanism also allows third-
party bulk-data transfer connections to use the DRS algo-
rithm. In addition to comparing the performance of the new
and old implementations in an emulated environment, we
present the performance of the new implementation in a live
WAN environment, for third-party as well as client-server
transfers.

GO

’0 50

k. 40

8

5
h

3 0 -

2. Background

-

-

-

TCP can apply two independent “brakes” to network
traffic. The first, flow control, ensures that the sender does
not overrun the receiver’s available buffer space. The sec-
ond, congestion control, ensures that the sender does not
overrun the capacity of the network.

To do this, TCP maintains a flow-control window,
fwn,d,’ and a congestion-control window, cwnd. The
sender infers cwnd from the network’s loss behavior and
receives fwnd from advertisements sent by the receiver. It
then uses the smaller of the two (rn in(fwnd, cwnd)) as the
effective window (ewnd) and adjusts its rate to send at most
one ewnd worth of data per round-trip time (RTT).

Traditionally, fwn,d has been a relatively small static
value, as TCP was first implemented when BDPs were small
and receivers were short on memory for buffer space. By
default, most TCP implementations set fwnd to the largest
size available without scaling, approximately 64 kB [3].
However, BDPs commonly range from a few bytes for
short-haul modem connections (56 kbps x 5 ms = 36 bytes)
to several megabytes for high-speed WANs (10 Gbps x 200

‘This vanablc is traditionally called awn& for “adverhsed window,”
because the receiver advertises it to the sender in each packet.

70 I

8:OOaiii ’ 9:OOain 10:OOam I 1 :OOain Noon I :OOpin
Tiine of day

Figure 1. Bandwidth-delay product at 20-
second intervals.

ms = 25 MB). Default buffer sizes waste resources to the
point of profligacy-the modem connection above wastes
over 99% of the buffer space (36 bytes / 64 kB = 0.05%
buffer utilization), while the WAN connection could over to
99% of the network’s capacity (64 kB / 25 MB = 0.26%
network utilization).

Furthermore, both bandwidth and delay can change
within the lifetime of a single connection, particularly in
a WAN, due to congestion, queueing, and routing changes.
This effect is clearly illustrated in Figure 1, which plots the
BDP of a link between Los Alamos and New York at 20-
second intervals. The bandwidth of the link ranges from 26
kbps to 28.5 Mbps, with an average of 17.2 Mbps. The RTT
ranges from 119 ms to 475 ms, with an average of 157 ms.
The BDP can therefore vary by as much as 61 Mb or 7.6
MB .

Since the BDP fluctuates so widely, even on an intra-
transfer timescale, any solution that does not re-adjust fwnd
throughout the connection potentially wastes memory or
bandwidth. For the purposes of efficiency and high through-
put, dynamic flow-control adaptation is essential, and DRS
provides this adaptation.

3. Algorithm

DRS attempts to maximize the transfer rate of TCP con-
nections by ensuring that the flow-control window is always
larger than the congestion-control window (within the lim-
its of available buffer space on the hosts), thus making the
network the limiting factor in the transfer. It does this by
setting the send and receive buffer sizes to the BDP. *

In kernel space, the DRS algorithm has access to the TCP
connection state and can derive the BDP by calculating the

21n order not to throttle the connection during slow start, when thc flow-
control window is doubling every round-trip time, drsITP sets the buffer
sizes to twice the BDP.

bandwidth from the rate at which the sequence number ad-
vances and by using TCP's estimate of the round-trip time.
However, in user space, this information is not available;
DRS-enabled applications must rely on their own coarser-
grained measurements. As will be seen in Section 5, these
measurements still result in significantly improved network
throughput.

3.1. Determining bandwidth

As long as an FTP data connection is open, the sender
will attempt to send data as quickly as possible but within
the constraints of the congestion- and flow-control windows
and the receiver will accept that data as quickly as possible.
The end hosts can therefore estimate the bandwidth simply
by dividing the amount of data received (or sent) by the time
required to receive (or send) it.

When DRS is implemented in the kernel, it must cal-
culate the bandwidth on the recieving host, because the
new bandwidth-delay product must be communicated to the
sender in the advertised window. However, drsFTP is under
no such constraint, because buffer sizing information is ex-
changed on a bidirectional DRS channel (Figure 2).

Because applications can write data in larger bursts than
the network can transmit due to buffering, the bandwidth
estimate computed by the sender may exceed the theoreti-
cal capacity of the network over some intervals. The band-
width estimate on the receiver, on the other hand, is much
more realistic. Therefore, we calculate the bandwidth on
the receiver.

Selecting the interval over which to compute the band-
width presents a problem. If the interval is too short, the
overhead increases and the bandwidth estimate can fluctu-
ate wildly. If the interval is too long, DRS loses its ability
to respond quickly to rapidly changing network conditions.
Currently, drsFTP computes the bandwidth every time the
round-trip time is calculated.

3.2. Determining round-trip time

Unlike bandwidth, round-trip time can not be measured
from user space without injecting additional data into the
network-user-space programs have no access to the TCP
state variables where the information is kept and therefore
must resort to their own devices.

In drsFTP, messages are sent on a DRS channel (as
shown in Figure 2), which is separate from the standard FTP
control channel. The addition of the separate DRS channel
not only ensures that the stream on the control channel is
compatible with existing FTP implementations, but also al-
lows third-party transfers in which the control channel and
data channel involve different pairs of machines, as shown
in Figure 3.

d r s m Client drsFTP Server

' Figure 2. A drsFTP transfer.

n drsFTP Client

Control Channel

Data Channel

drsFTP Server A drslTP Server B

DRS Channel

Figure 3. A third-party drsFTP transfer.

3.3. Setting the flow-control window

The techniques described above allow drsFTP to esti-
mate the bandwidth-delay product. Since user-space appli-
cations cannot directly set the flow-control window, drsFTP
uses the set sockopt call to set the receive buffer to twice
the measured BDP. (The BDP is doubled because it is pos-
sible that the sender is in slow start, and therefore doubling
its window size with every RTT. Since it is difficult to deter-
mine when slow start ends in user space, we always double
the buffer size.)

For maximum performance, the sender should keep its
buffer size synchronized with the receiver's. This requires
the receiver to inform the sender whenever it changes its
buffer. Since we are already sending RTT probes over the
DRS control channel, we combine the buffer size communi-
cation and RTT computation mechanisms into a single type
of message exchange.

The format of the message resembles the SBUF com-
mand from the draft GridFTP standard [11. While the old
drsFTP implementation [121 uses the GridFTP SBUF com-
mand format, the new implementation'uses an extended for-
mat for probing the RTT and setting the window size, and
restricts its use to the DRS control channel. We will return
to the extended SBUF format in Section 4.

3.4. On window scaling

For DRS to work properly, the TCP window scaling fac-
tor must be set high enough to enable sufficiently large
buffers. Since the scaling factor is set when the connection
is established, drsFTP must increase the buffer sizes before
the connection is open, and then return the buffer sizes to
the initial value once the connection is established. Cur-

rently, drsFTP uses a scaling factor that allows windows of
up to 16 MB, if allowed by the operating system.

Most operating systems’ limits on buffer sizes must be
set to larger sizes in order to allow 16 MB windows. In-
structions for doing this can be found in [4].

3.5. TCP-friendliness

DRS is TCP-friendly in the sense that on a fully uti-
lized network, the bandwidth of N flows (whether or not
they are DRS-enabled) will eventually converge to l/Nth
the total bandwidth of the network. To see this, consider
what happens in the presence of network congestion. DRS-
enabled flows, which have exactly the same congestion-
control mechanism as the stock flows, will be constrained
by their diminishing congestion windows in exactly the
same way as non-DRS flows. Thus, the available bandwidth
will be fairly shared, and DRS is TCP-friendly.

On the other hand, when the congestion dissipates, the
stock flows will once again be artificially limited by their
flow-control windows, while the DRS flows will not. As a
result, the DRS flows will consume the leftover bandwidth
not used by the stock flows. This is not unfriendliness on
the part of DRS; it is purely an artifact of the flow-control
throttling of the stock flows.

4. Reimplementation of drsFTP

Previous versions of drsFTP interpret RFC959 [21] as
allowing multiple outstanding commands3 and hence the
SBUF dialogue took place on the control channel during
the data transfer. The majority, if not all, of the extant
FTP implementations do not expect a new command be-
fore the previous one completes. Multiple outstanding com-
mands prevent complete compatibility with existing clients
and servers.

While motivated by a desire to improve compatibility,
the real reason for the redesign is to allow automatic buffer
sizing during third-party transfers, which was not possible
under the previous approach.

In the new implementation, the dialogue over the FTP
command channel maintains a single outstanding command
at a time, as expected by extant clients and servers. All DRS
traffic that occurs during a transfer is sent over a separate
channel, the DRS channel. (See Figure 2.)

While the command channel is clientlserver-oriented,
the DRS channel is peer-to-peer. As with the previous im-
plementation, SBUF messages are used to synchronize the
receiver and sender buffer sizes. The SBUF message is also

~~

3RFC 959 statcs, “The communication between the user and server is
iiitctidcd to be an alternating dialogue . . .The uscr should watt for . . ,”
emphasis added.

used to compute RTT. However, the syntax of the SBUF
.message has also changed in the new implementation:

sbuf : := SBUF <SP> <timestamp>
<SP> <buffer-size>

timestamp : : = <number>
buffer-size : : = <number>

This command is always sent over the DRS channel, which
has the same endpoints as the data transfer channel.

When a sender receives an SBUF command, it sets its
buffer size to buf fer-size, subject to the limitations of
its available buffer space, and echoes the command exactly
as received. When a receiver receives the echoed SBUF,
it determines the RTT using the timestamp. Using the
bandwidth estimate it computes, the receiver computes a
new BDP. The process is then repeated.

Previously, the receiver in drsFTP would wait for the
SBUF to return before setting the buffer size, so the re-
ceiver’s buffer space stays synchronized with the sender
when the sender had limited buffer space available. The
new implementation sets the receiver buffer size before
sending the SBUF message, favoring network performance
over memory frugality.

The timestamp field is new. It is generated when the
receiver sends the SBUF message. The current implemen-
tation sends the time returned by get t imeof day, in sec-
onds, with as much precision as is available.

The sender’s response to the SBUF message is to sim-
ply echo the SBUF message it received. (The DRS chan-
nel is peer-to-peer; there is no notion of independent “com-
mands” and “replies” as on the standard FTP control chan-
nel.) Upon receipt of an SBUF message, the receiver com-
putes the RTT. The estimated bandwidth and the RTT are
then used to compute the new BDP.

We note using a separate DRS channel eliminates a limi-
tation of the previous version of drsFTP [12]-the inability
of the technique to support DRS-enabled third-party data
transfers. Since the DRS channel connects the same two
machines as does the data channel (Figure 3), SBUF mes-
sages traverse the same route as data packets, and hence the
BDP is correctly computed during a third-party transfer.

The previous implementation of drsFTP only allows one
outstanding SBUF message. This becomes a problem when
the RTT increases to the point where a new SBUF message
is sent before the previous echo is received. Since SBUF
messages in the new implementation contains all the in-
formation necessary to determine the RTT, the server does
not need to maintain any state regarding outstanding SBUF
messages.

5. Experiments

80 i
In this section we quantify the improvement in bulk-data

transfer performance as a result of the re-architectured drs-
FTP. We measure the performance of four different cases-
FTP with stock buffer sizes, FTP with statically-tuned
buffer sizes set to the BDP, FTP with over-provisioned
buffer sizes, and drsFTP. We present results for both emu-
lated and live WAN environments and for both client-server
and third-party transfers.

5.1. Experimental setup

For the emulated WAN environment, we use three identi-
cal machines with 100-Mbps Fast Ethernet cards. Each ma-
chine has two 500-MHz Pentium I11 processors and l GB
of memory. (While a Fast Ethernet connection might seem
underpowered in a cluster environment, it is still represen-
tative of many current grid nodes. Furthermore, it demon-
strates the benefits of DRS even in smaller-BDP networks-
benefits which are magnified in larger-BDP networks.) One
machine, running TICKET [30], acts as the WAN emulator;
it forwards packets at line rate between the two machines
with a user-settable delay. For these tests, the delay is set
to 100 ms. The peak bandwidth between the machines, as
measured by iperf [27], is 95 Mbps. The bandwidth-delay
product is therefore approximately 1.2 MB.

In the live WAN tests, we use an FTP server in Los
Alamos and an FTP client at the Oregon Graduate Insti-
tute. The server has two 933-MHz Pentium I11 processors,
I GB of RAM, and a 3Com 3C985 Gigabit Ethernet card.
The client has one 1.8-GHz Pentium 4 processor, 512 MB
of RAM, and an ADMtek Comet Fast Ethernet card.

Over a two-hour period of time, the average bandwidth
and RTT measured every second by iperf [27] and ping
ranges from 0-93 Mbps and 72-257 ms, respectively. The
bandwidth-delay product ranges from 0.175-268 kB. The
connection behaves very much like that shown in Figure 1
with respect to the variance in the BDP.

In addition the stock and drsFTP cases, we report re-
sults for an over-provisioned buffer size of 16 MB and
an “optimally”-tuned buffer size. (The “optimally”- tuned
buffer size is set equal to the highest measured bandwidth-
delay product, 268 kB, measured a b ~ v e . ~) The OS parame-
ters are set such that DRS connections can use up to 16 MB
of buffer space.

4We were very generous in selecting a large BDP sample (one that cor-
responds to one of the few high points in Figure 1). Had we sampled the
BDP at a low point, the statically-tuned performance would be much worse
than that shown in Figure 5.

- 70

60

50

& 40

$ 30
F

20

....;.*_.._...*...I..*..Ic

0 200 400 600 800 1000

File size (MB)

Figure 4. Comparison of drsFTP versions and
stock FTP using an emulated WAN.

5.2. Experimental method

We transfer a set of files ranging from 1 MB to 1024 MB
in size using each of the four FTP variants. (The exact file
sizes range from 1 to 128 MB by powers of two and from
128 MB to 1024 MB in increments of 128 MB.) We perform
at least 30 transfers at each file size. For the live WAN tests,
we also vary the times of day at which the transfers take
place.

5.3. Comparison of old and new drsFTP

We compare the performance of the old and new drsFTP
implementations over the WAN emulator. The results are
shown in Figure 4. The new drsFTP compares quite well
with the old drsFTP. There is no significant difference be-
tween the two. Stock FTP with default (64 kB) buffers is
also presented. Compared to stock FTP, DRS can speed up
transfers by as much as nine times when file sizes are suffi-
ciently large.

5.4. Live WAN results

We now examine the behavior of drsFTP in a live WAN
environment. Figure 5 shows the performance of all four
FTP variants over the live WAN. drsFTP attains a maximum
bandwidth of approximately 55 Mbps, over 5.5 times better
than the 10 Mbps of stock FTP.

Perhaps paradoxically, drsFTP performs better than the
“optimally”-tuned connection at large file sizes (55 Mbps
vs. 33 Mbps). We found that while the drsFTP bandwidth
estimates are approximately what we would have expected,
the RTT estimates often are significantly higher than those
mentioned in Section 5.1. We believe that this is due to
ping’s use of ICMP to determine RTT versus our use of
SBUF messages.

.. .,.._ ~_.._... .i * Ij - * -_._.....

0 200 400 600 800 1000
File size (MB)

Figure 5. Comparison of the FTP variants over
a live WAN.

ICMP packets are processed by the kernel, whereas
SBUF messages require application processing, and hence
RTTs computed using SBUF messages will be longer. The
mean RTT for ICMP, from Section 5.1, is 76.7 ms, while the
mean RTT as measured by drsFTP during a 128 MB trans-
fer is 180.6 ms. The difference is due to protocol overhead,
the need to go between kernel space and user space, and
scheduling latency. Hence, for static buffer tuning, a larger
buffer size than would be predicted by the usual manual-
tuning method is likely needed to achieve the best perfor-
mance. For this reason, it is possible for dynamic tech-
niques, such as DRS, to outperform static tuning that is per-
formed at connection ~ e t - u p . ~

Figure 6 shows the DRS buffer size growing over time
for four 128 MB transfers. Note the wide range in final
buffer sizes-from 3.3 MB to nearly G MB-due to the
varying BDP of the network. We acquire the measure-
ments from which we generate this graph during the day-
time, making the effect more pronounced. However, the ef-
fect is still clearly visible in data gathered during the night
and early morning. Transfers with larger average buffer
sizes finish earlier.

Figure 7 shows the bandwidth estimates used by drsFTP
to calculate the buffer sizes in one 128-MB transfer. The
transfer rate rises very quickly during the first two seconds
of the transfer, suggesting that the connection is in slow
start. At this point, the connection experiences congestion,
and the rate begins to increase linearly due to the additive-
increase phase of congestion control.

Figure 8 shows the RTT estimates from the run in Fig-
ure 7. The estimates are scattered widely over a range from

SThis is in addition to thc fact that DRS's dynamic nature not only
makes it immune to getting a bad sample at the stm of the connection
(corresponding to onc of the low points in Figure I) , but also lets it take
advantage of any extra bandwidth that should become available during the
transfer.

"
0 5 10 15 20 25 30 35

Time (s)

Figure 6. drsFTP buffer sizes for 128-MB
transfers in the daytime.

' . 0.
50

45 ._. *..*@*. .

& I $::I/ , , , , ' , t-"
10

5 :
0

30 15 20 25 0 5 IO
Time (s)

Figure 7. Delivered bandwidth during a 128-
MB WAN file transfer.

450

400

z 350

,? 250 3 200

300
E .." I

150

1

* - i .* 100 t- : ' . . . e . ..
50 ' I

15 20 25 30 0 5 10

Time (s)

Figure 8. Round-trip time as measured by drs-
FTP during a 128-MB WAN file transfer.

' i
'Over-provisioned Fl? -

h f q - p ._... x
Stock fq-p _..__.I __.._

X . X . __._ *I I; I ___.._..__ *

1000.0

P 100.0
B

70

0.0 I

0 200 400 600 800 1000
File size (MB)

Third-party drsFTP -
Third-party stock FIT -----x----- -

Figure 9. Bandwidth attained over the WAN
per MB of buffer space for the FTP variants.

75 ms to 434 ms, showing the extreme volatility of WAN
and host conditions.

5.5. Memory efficiency

We now turn our attention to the efficiency of the variants
with respect to memory. One relevant metric here is band-
width achieved per megabyte of buffer space, measured in
Mbps/MB.

When grids become part of production environments,
there will be more competition for memory, and grid users
will have to be careful not to reserve too much of the sys-
tem's memory for buffer space. Therefore, achieving the
best bandwidth for the quantity of buffer space allocated
becomes a priority.

Figure 9 shows that drsFTP is significantly more efficient
in its use of buffer space than FTP with over-provisioned
buffers. DRS ranges from 14.8 Mbps/MB for 1-MB trans-
fers to 4 Mbps/MB at 1024-MB transfers, while the over-
provisioned variant approaches 3.6 Mbps/MB for a 1024-
MB transfer.
. We caution, however, that this metric does not supersede
the more traditional metric of bandwidth. As a case in point,
while stock FTP is much more frugal in its use of buffer
space than drsFTP, attaining over 100 MbpsMB, it only at-
tains one-sixth the transfer rate of the DRS case. Clearly,
users must take both buffer usage and transfer rate into ac-
count when making comparisons.

5.6. Third-party transfers

In this section, we present the performance results for
third-party transfers, comparing drsFTP to stock FTP.

The FTP specification, RFC 959 [21], allows direct
server-to-server data transfers. The process is diagrammed
in Figure 3. In brief, the user issues the PASV command to

2o t!
0 ' I
0 200 400 600 800 1000

File size (MB)

Figure 10. Bandwidth attained over the WAN
by third-party drsFTP transfers.

one FTP server, causing it to listen on an arbitrary port and
return the IP address and port on which it is listening. The
user then issues a PORT command to the other FTP server,
instructing it to connect to the given port on the first server.
Finally, the user issues the STOR and RETR commands to
the appropriate servers to start the transfer. Section 5.2 of
RFC 959 gives more information on this.

The results are presented in Figure 10. For the series of
runs shown, third-party drsFTP attains over six times the
bandwidth of stock FTP.

6. Conclusions

In this paper, we present a new implementation of drs-
FTP, a user-space dynamic right-sizing technique for in-
creasing the performance of bulk-data transfers over con-
nections with high bandwidth-delay products. drsFTP re-
quires no kernel modifications or expert assistance to use,
apart from setting the maximum buffer size sufficiently
large to allow DRS room to increase the flow-control win-
dow. (This would also have to be done to statically set buffer
sizes by hand.)

We have shown a bandwidth increase of a factor of five
to nine over stock FTP and an increase in buffer-usage
efficiency of a factor of up to four over FTP with over-
provisioned buffers. Furthermore, once drsFTP is installed
and set-up, it requires no further attention from the user.
drsFTP therefore provides significant gains in transfer rate,
memory efficiency, and convenience over existing user-
space buffer-tuning techniques.

The interval over which drsFTP computes the bandwidth
attained by the connection was determined arbitrarily. Cur-
rently, it is statically set at compile time. While the ex-
isting algorithm gives good performance, we believe that
additional research is required. It is possible that changing

this interval in response to network conditions will result in
more reliable bandwidth data and therefore better efficiency
with respect to memory. In a similar vein, w e have several
ideas for validating the accuracy and reliability of round-
trip time estimates. Care is needed to retain responsiveness
to changing WAN conditions, however.

Like the previous version of drsFTP, the new implemen-
tation will be released as open-source software.

Acknowledgements

We gratefully acknowledge the kind support of Wu-
chang Feng of the OGI School of Science & Engineering
at the Oregon Health & Science University for providing a
remote machine for live WAN testing.

References

W. Allcock et al. GridFTP: Protocol Extensions to FTP
for the Grid. http: //www-fp.mcs.anl.gov/dsl/
GridFTP-Protocol-RFC-Draft .pdf,March2001.
ANL, CalTech, LBL, SLAC, JF, U. Wisconsin, BNL, FNL,
and SDSC. The Particle Physics Data Grid. http : / /www .
cacr.caltech.edu/ppdg/.
D. Borman, R. Braden, and V. Jacobson. TCP Extensions
for High Performance (RFC 1323), May 1992.
Pittsburgh Supercomputing Center. Enabling High-
Performance Data Transfers on Hosts. http: / /www.
psc.edu/networking/perf-tune.htm1.
A. Chervenak, I . Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets. International Journal of Si~perconiputer Applica-
tions, 23(3): 187-200, July 2001.
L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and
T. Udeshi. Access Grid: lmmersive Group-to-Group Col-
laborative Visualization. In Proceedings of the 4th Intenia-
tional Imniersive Projection Workshop, 2000.
M. Fisk and W. Feng. Dynamic Adjustment of TCP Window
Sizes. Technical Report Los Alamos Unclassified Report
(LAUR) 00-3221, Los Alamos National Laboratory, July
2000.
M. Fisk and W. Feng. Dynamic Right-Sizing in TCP. In
Proceedings of the Los Alanzos Computer Science lnstitute
Syniposium, Oct 2001. LA-UR 01-5460.
M. Fisk and W. Feng. Automatic Flow-Control Adapta-
tion for Enhancing Network Performance in Computational
Grids. In Journal of Grid Computing, Vol. 1, No. 1, 2003,

I. Foster and C. Kesselman, editors. 'The Grid: Blueprint for
a New Computing Iifrastructure. Morgan Kaufmann Pub-
lishers, 1999.
I. Foster, C. Kcsselman, and S . Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. lnteriia-
tiorial Journul of Supercomputer Applications, 2001.

pp. 63-74.

[I21 M. K. Gardner, W. Feng, and M. Fisk Dynamic Right-
Sizing in FTP (drsFTP): Enhancing Grid Performance in
User-Space In Proceedings of the Eleventh IEEE Interna-
tional Symposium on High Performance Distributed Coni-
puting (HPDC-1 I) , July 2002.

[I31 G. Jin, G. Yang, B. Crowley, and D. Agrawal. Network
Characterization Service. In Proceedings ofthe IEEE syi7i-
posiuni on High-Performance Distributed Computing, Au-

[141 Lawrence Berkley National Laboratory. Nettest: Secure
Network Testing and Monitoring. http: //www-itg.
lbl.gov/nettest/.

[15] K. Lai and M. Baker. Measuring Bandwidth. In Proceedings
of IEEEINFOCOMM 1999, March 1999.

[16] K. Lai and M. Baker. Measuring Link Bandwidths Using
a Deterministic Model of Packet Delay. In Proceedings of
ACM SIGCOMM 2000, August 2000.

[17] K. Lai and M. Baker. Nettimer: A Tool for Measuring Bot-
tleneck Link Bandwidth. In Proceedings of the USENIX
Symposium on Internet Technologies and Systenis, March
2001.

[18] J. Liu and J. Ferguson. Automatic TCP Socket
Buffer Tuning. In Proceedings of SC 2000: Higfi-
Perforniance Networking and Computirig Corference (Re-
search Gem), November 2000. http: / /dast . nlanr.
net/Projects/Autobuf.

[19] B. Mah. pchar: A Tool for Measuring Intcmet Path Char-
acteristics. http: / /www. employees. erg/'-bmahl
Software/pchar.

[20] M. Mathis. Pushing Up Performance for Every-
one. http://www.ncne.nlanr.net/news/
workshop/19999/991205/Talks/mathis-
991205-Pushing-UpJ?erformance/.

[21] J. Postel and J. Reynolds. File Transfer Protocol (FTP), Oc-
tober 1985.

[22] SC2001 Bandwidth Challenge Proposal: Bandwidth to the
World. http: / /www-iepm. slac . stanford. edu/
monitoring/bulk/sc20Ol/proposal.html.

[23] J. Semke, J . Mahdavi, and M. Mathis. Automatic TCP
Buffer Tuning. Computer Conimunicatiorzs Review, ACM
SIGCOMM, 28(4), October 2001.

[24] S. Thulasidasan, W. Feng, and M. K. Gardner Optimizing
GridFTP through Dynamic Right-Sizing In Proceedings of
the Eleventh IEEE International Symposium on High Per-
forniartce Distributed Computing (HPDC-l2), June 2003.

[25] B. Tierney. TCP Tuning Guide for Distributed Applications
on Wide-Area Networks. In USENIX & SAGE Login, Febru-
ary 2001. ht tp : / /www-didc . lbl . gov/ tcp-wan .
html.

[26] B. Tierney, D. Gunter, J. Lee, and M. Stoufer. Enabling
Network-Aware Applications. In Proceedings of the IEEE
International Symposium on High-Performance Distributed
Computing, August 2001.

[27] A. Tirumala and J. Ferguson. IPERF. http: / /dast .
nlanr.net/Projects/Iperf/index.html.

[28] Information & Telecommunication Technology Center, Uni-
versity of Kansas. NetSpec: A Tool for Network Experimen-
tation and Measurement. http: //www. ittc.ukans.
edu/netspec / .

gust 2001.

c

[29] E. Weigle and W. Feng. A Comparison of TCP Automatic-
Tuning Techniques for Distributed Computing. In Pro-
ceedings of the Eleventh IEEE International Symposium on
High Performance Distributed Computing (HPDC-II), July
2002.

[30] E. Weigle and W. Feng. TICKETing High-speed Traffic
with Commodity Hardware and Software. In Proceedings
of the Third Annual Passive and Active Measurement Work-
shop (PAM2002), March 2002.

