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Abstract 

The performance of TCP in wide-area networks ( WANs) is becoming increasingly important with the deployment of com- 
putational and data grids. At WAN speeds, TCP does not provide good performance for  data-intensive applications without 
the tuning ofjlow-control buffer sizes. Manual adjustment of buffer sizes is tedious even for  network experts. For scientists, 
tuning is often an impediment to getting work done. Thus, buffer tuning should be automated. 

Existing techniques for  automatic buffer tuning only measure the bandwidth-delay product (BDP) during connection 
establishment. This ignores the (large) jluctuation of the BDP over the lifetime of the connection. In contrast, the Dynamic 
Right-Sizing algorithm dynamically changes buffer sizes in response to changing network conditions. 

i n  this paper; we describe a new user-space implementation of Dynamic Right-Sizing in FTP (drsFTP) that supports third- 
party data transfers, a mainstay of scientific computing. I n  addition to comparing the performance of the new implementation 
with the old, we give performance results over a live WAN. The new implementation gives transfer rates of up toJive times 
higher than untuned FTP 
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Abstract 

The performance of TCP in wide-area networks { WANs) 
is becoming increasingly important with the deployment of 
computational and data grids. I n  WAN environments, TCP 
does not provide good perfortnance for  data-intensive ap- 
plications without the tuning of $ow-control buffer sizes. 
Manual adjustment of buffer sizes is tedious even for net- 
work experts. For scientists, tuning is ojien an impediment 
to getting work done. Thus, buffer tuning should be auto- 
mated. 

Existing techniques for  automatic buffer tuning only 
measure the bandwidth-delay product (BDP) during con- 
nection establishment. This ignores the {large) $fluctuation 
of the BDP over the Igetime of the connection. In contrast, 
the dynamic right-sizing algorithtn dynamically changes 
buffer sizes in response to changing network conditions. 

In this paper, we describe a new user-space implementa- 
tion of dynamic riglzt-sizing in FTP {drsFTP) that supports 
third-party data transfers, a mainstay of scientiJic cotnput- 
ing. I n  addition to comparing the performance of the new 
irizplementation with the old in a WAN-emulated environ- 
ment, we give performance results over a live WAN. The 
new implernentatiorz produces transfer rates of up to five 
times higher than untuned FTI? 

1. Introduction 

For over twenty years, TCP has provided reliable ser- 
The algorithms used have been 

*This work was supported by the US. Department of Energy through 
Los Alamos National Laboratory contract W-7405-ENG-36 with funding 
provided by the Office of Science Base Program of DOE. Any opinions, 
findings, and conclusions, or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the views of DOE or 
Los Alamos National Laboratory. 

vice to Internet users. 

tuned, extended, and tested over decades to adapt to vary- 
ing conditions in the global Internet and serve as the ba- 
sis for Internet-based applications such as FTP, the World 
Wide Web, and distributed computing infrastructures, such 
as grids [2,5,6,10,11]. 

Unfortunately, stock TCP is not well-suited for widely- 
distributed grid environments running over networks with 
high bandwidth-delay products (BDPs). The problem lies 
in the parameters of the TCP flow-control algorithm-the 
default buffer sizes are static, and are only appropriate 
for local-area network environments. Since only one full 
buffer’s worth of data can be in transit at any time, small 
buffers hobble data transfers by leaving network resources 
relatively unused. 

This problem is well-known and has been solved by ad- 
justing the buffer sizes manually [4,25]. However, this so- 
lution requires specialized experience to do well, including 
proficiency with various network measurement tools, such 
as iperf [27], netspec [28], nettest [14], nettimer [15-171, 
pchar [ 191, or pipechar [ 131, and a knowledge of how to set 
the operating system’s networking parameters. 

This gives rise to the so-called “wizard gap” [20], the 
gap between the performance seen when the system is tuned 
by a networking expert versus the performance that a non- 
networking expert gets. However, users whose expertise 
lies in other areas (e.g., visualization or bioinformatics) 
should be able to take advantage of modern WAN technol- 
ogy without becoming networking experts as well. 

There are several techniques for adjusting buffer sizes 
automatically, including AutoNcETP [ 181 and Enable [26]. 
While these tools eliminate the need for a network expert, 
they only set the buffer size once-at the start of the con- 
nection. This is fine if the BDP is relatively static, but it is 
not. The BDP of a WAN can vary widely over the course 
of a connection, as demonstrated in Section 2. In order 
to achieve the best performance possible, TCP buffer sizes 
must be adjusted throughout the lifetime of the connection 



for proper flow-control adaptation. 
Two approaches to dynamically tuning buffer sizes are 

auto-tuning [23] and dynamic right-sizing (DRS) [7,9]. The 
former is a sender-based approach to flow control, while 
the latter is a receiver-based approach. While the sender- 
based approach yields excellent performance, there is a risk 
of overflowing the receiver’s buffers. As a receiver-based 
approach, DRS ensures no buffers will overflow while still 
providing excellent performance. 

We are working to ensure that DRS is widely adopted 
by operating system vendors where it will be available to 
all applications without modification. Until then, we make 
a patch available for the Linux kernel. However, end users 
are often unable to patch and recompile the kernel due to 
lack of knowledge or lack of administrative permissions on 
the machines involved. As an alternative solution, we de- 
veloped an earlier user-space implementation for bulk-data 
transfer [12]. 

In this paper, we describe a new implementation of dy- 
namic right-sizing in FTP (drsFTP) which uses a different 
mechanism for computing round-trip times. Unlike the pre- 
vious version [12], the new mechanism also allows third- 
party bulk-data transfer connections to use the DRS algo- 
rithm. In addition to comparing the performance of the new 
and old implementations in an emulated environment, we 
present the performance of the new implementation in a live 
WAN environment, for third-party as well as client-server 
transfers. 
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TCP can apply two independent “brakes” to network 
traffic. The first, flow control, ensures that the sender does 
not overrun the receiver’s available buffer space. The sec- 
ond, congestion control, ensures that the sender does not 
overrun the capacity of the network. 

To do this, TCP maintains a flow-control window, 
fwn,d,’ and a congestion-control window, cwnd. The 
sender infers cwnd from the network’s loss behavior and 
receives fwnd from advertisements sent by the receiver. It 
then uses the smaller of the two ( rn in( fwnd,  cwnd)) as the 
effective window (ewnd) and adjusts its rate to send at most 
one ewnd worth of data per round-trip time (RTT). 

Traditionally, fwn,d has been a relatively small static 
value, as TCP was first implemented when BDPs were small 
and receivers were short on memory for buffer space. By 
default, most TCP implementations set fwnd to the largest 
size available without scaling, approximately 64 kB [3]. 
However, BDPs commonly range from a few bytes for 
short-haul modem connections (56 kbps x 5 ms = 36 bytes) 
to several megabytes for high-speed WANs (10 Gbps x 200 

‘This vanablc is traditionally called awn& for “adverhsed window,” 
because the receiver advertises it to the sender in each packet. 
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Figure 1. Bandwidth-delay product at 20- 
second intervals. 

ms = 25 MB). Default buffer sizes waste resources to the 
point of profligacy-the modem connection above wastes 
over 99% of the buffer space (36 bytes / 64 kB = 0.05% 
buffer utilization), while the WAN connection could over to 
99% of the network’s capacity (64 kB / 25 MB = 0.26% 
network utilization). 

Furthermore, both bandwidth and delay can change 
within the lifetime of a single connection, particularly in 
a WAN, due to congestion, queueing, and routing changes. 
This effect is clearly illustrated in Figure 1, which plots the 
BDP of a link between Los Alamos and New York at 20- 
second intervals. The bandwidth of the link ranges from 26 
kbps to 28.5 Mbps, with an average of 17.2 Mbps. The RTT 
ranges from 119 ms to 475 ms, with an average of 157 ms. 
The BDP can therefore vary by as much as 61 Mb or 7.6 
MB . 

Since the BDP fluctuates so widely, even on an intra- 
transfer timescale, any solution that does not re-adjust fwnd 
throughout the connection potentially wastes memory or 
bandwidth. For the purposes of efficiency and high through- 
put, dynamic flow-control adaptation is essential, and DRS 
provides this adaptation. 

3. Algorithm 

DRS attempts to maximize the transfer rate of TCP con- 
nections by ensuring that the flow-control window is always 
larger than the congestion-control window (within the lim- 
its of available buffer space on the hosts), thus making the 
network the limiting factor in the transfer. It does this by 
setting the send and receive buffer sizes to the BDP. * 

In kernel space, the DRS algorithm has access to the TCP 
connection state and can derive the BDP by calculating the 

21n order not to throttle the connection during slow start, when thc flow- 
control window is doubling every round-trip time, drsITP sets the buffer 
sizes to twice the BDP. 



bandwidth from the rate at which the sequence number ad- 
vances and by using TCP's estimate of the round-trip time. 
However, in user space, this information is not available; 
DRS-enabled applications must rely on their own coarser- 
grained measurements. As will be seen in Section 5, these 
measurements still result in significantly improved network 
throughput. 

3.1. Determining bandwidth 

As long as an FTP data connection is open, the sender 
will attempt to send data as quickly as possible but within 
the constraints of the congestion- and flow-control windows 
and the receiver will accept that data as quickly as possible. 
The end hosts can therefore estimate the bandwidth simply 
by dividing the amount of data received (or sent) by the time 
required to receive (or send) it. 

When DRS is implemented in the kernel, it must cal- 
culate the bandwidth on the recieving host, because the 
new bandwidth-delay product must be communicated to the 
sender in the advertised window. However, drsFTP is under 
no such constraint, because buffer sizing information is ex- 
changed on a bidirectional DRS channel (Figure 2). 

Because applications can write data in larger bursts than 
the network can transmit due to buffering, the bandwidth 
estimate computed by the sender may exceed the theoreti- 
cal capacity of the network over some intervals. The band- 
width estimate on the receiver, on the other hand, is much 
more realistic. Therefore, we calculate the bandwidth on 
the receiver. 

Selecting the interval over which to compute the band- 
width presents a problem. If the interval is too short, the 
overhead increases and the bandwidth estimate can fluctu- 
ate wildly. If the interval is too long, DRS loses its ability 
to respond quickly to rapidly changing network conditions. 
Currently, drsFTP computes the bandwidth every time the 
round-trip time is calculated. 

3.2. Determining round-trip time 

Unlike bandwidth, round-trip time can not be measured 
from user space without injecting additional data into the 
network-user-space programs have no access to the TCP 
state variables where the information is kept and therefore 
must resort to their own devices. 

In drsFTP, messages are sent on a DRS channel (as 
shown in Figure 2), which is separate from the standard FTP 
control channel. The addition of the separate DRS channel 
not only ensures that the stream on the control channel is 
compatible with existing FTP implementations, but also al- 
lows third-party transfers in which the control channel and 
data channel involve different pairs of machines, as shown 
in  Figure 3. 

d r s m  Client drsFTP Server 

' Figure 2. A drsFTP transfer. 

n drsFTP Client 

Control Channel 

Data Channel 

drsFTP Server A drslTP Server B 

DRS Channel 

Figure 3. A third-party drsFTP transfer. 

3.3. Setting the flow-control window 

The techniques described above allow drsFTP to esti- 
mate the bandwidth-delay product. Since user-space appli- 
cations cannot directly set the flow-control window, drsFTP 
uses the set sockopt call to set the receive buffer to twice 
the measured BDP. (The BDP is doubled because it is pos- 
sible that the sender is in slow start, and therefore doubling 
its window size with every RTT. Since it is difficult to deter- 
mine when slow start ends in user space, we always double 
the buffer size.) 

For maximum performance, the sender should keep its 
buffer size synchronized with the receiver's. This requires 
the receiver to inform the sender whenever it changes its 
buffer. Since we are already sending RTT probes over the 
DRS control channel, we combine the buffer size communi- 
cation and RTT computation mechanisms into a single type 
of message exchange. 

The format of the message resembles the SBUF com- 
mand from the draft GridFTP standard [ 11. While the old 
drsFTP implementation [ 121 uses the GridFTP SBUF com- 
mand format, the new implementation'uses an extended for- 
mat for probing the RTT and setting the window size, and 
restricts its use to the DRS control channel. We will return 
to the extended SBUF format in Section 4. 

3.4. On window scaling 

For DRS to work properly, the TCP window scaling fac- 
tor must be set high enough to enable sufficiently large 
buffers. Since the scaling factor is set when the connection 
is established, drsFTP must increase the buffer sizes before 
the connection is open, and then return the buffer sizes to 
the initial value once the connection is established. Cur- 



rently, drsFTP uses a scaling factor that allows windows of 
up to 16 MB, if allowed by the operating system. 

Most operating systems’ limits on buffer sizes must be 
set to larger sizes in order to allow 16 MB windows. In- 
structions for doing this can be found in [4]. 

3.5. TCP-friendliness 

DRS is TCP-friendly in the sense that on a fully uti- 
lized network, the bandwidth of N flows (whether or not 
they are DRS-enabled) will eventually converge to l/Nth 
the total bandwidth of the network. To see this, consider 
what happens in the presence of network congestion. DRS- 
enabled flows, which have exactly the same congestion- 
control mechanism as the stock flows, will be constrained 
by their diminishing congestion windows in exactly the 
same way as non-DRS flows. Thus, the available bandwidth 
will be fairly shared, and DRS is TCP-friendly. 

On the other hand, when the congestion dissipates, the 
stock flows will once again be artificially limited by their 
flow-control windows, while the DRS flows will not. As a 
result, the DRS flows will consume the leftover bandwidth 
not used by the stock flows. This is not unfriendliness on 
the part of DRS; it is purely an artifact of the flow-control 
throttling of the stock flows. 

4. Reimplementation of drsFTP 

Previous versions of drsFTP interpret RFC959 [21] as 
allowing multiple outstanding commands3 and hence the 
SBUF dialogue took place on the control channel during 
the data transfer. The majority, if not all, of the extant 
FTP implementations do not expect a new command be- 
fore the previous one completes. Multiple outstanding com- 
mands prevent complete compatibility with existing clients 
and servers. 

While motivated by a desire to improve compatibility, 
the real reason for the redesign is to allow automatic buffer 
sizing during third-party transfers, which was not possible 
under the previous approach. 

In the new implementation, the dialogue over the FTP 
command channel maintains a single outstanding command 
at a time, as expected by extant clients and servers. All DRS 
traffic that occurs during a transfer is sent over a separate 
channel, the DRS channel. (See Figure 2.) 

While the command channel is clientlserver-oriented, 
the DRS channel is peer-to-peer. As with the previous im- 
plementation, SBUF messages are used to synchronize the 
receiver and sender buffer sizes. The SBUF message is also 

~~ 

3RFC 959 statcs, “The communication between the user and server is 
iiitctidcd to be an alternating dialogue . . .The uscr should watt for . . ,” 
emphasis added. 

used to compute RTT. However, the syntax of the SBUF 
.message has also changed in the new implementation: 

sbuf : := SBUF <SP> <timestamp> 
<SP> <buffer-size> 

timestamp : : =  <number> 
buffer-size : : =  <number> 

This command is always sent over the DRS channel, which 
has the same endpoints as the data transfer channel. 

When a sender receives an SBUF command, it  sets its 
buffer size to buf fer-size, subject to the limitations of 
its available buffer space, and echoes the command exactly 
as received. When a receiver receives the echoed SBUF, 
it determines the RTT using the timestamp. Using the 
bandwidth estimate it computes, the receiver computes a 
new BDP. The process is then repeated. 

Previously, the receiver in drsFTP would wait for the 
SBUF to return before setting the buffer size, so the re- 
ceiver’s buffer space stays synchronized with the sender 
when the sender had limited buffer space available. The 
new implementation sets the receiver buffer size before 
sending the SBUF message, favoring network performance 
over memory frugality. 

The timestamp field is new. It is generated when the 
receiver sends the SBUF message. The current implemen- 
tation sends the time returned by get t imeof day, in sec- 
onds, with as much precision as is available. 

The sender’s response to the SBUF message is to sim- 
ply echo the SBUF message it received. (The DRS chan- 
nel is peer-to-peer; there is no notion of independent “com- 
mands” and “replies” as on the standard FTP control chan- 
nel.) Upon receipt of an SBUF message, the receiver com- 
putes the RTT. The estimated bandwidth and the RTT are 
then used to compute the new BDP. 

We note using a separate DRS channel eliminates a limi- 
tation of the previous version of drsFTP [12]-the inability 
of the technique to support DRS-enabled third-party data 
transfers. Since the DRS channel connects the same two 
machines as does the data channel (Figure 3), SBUF mes- 
sages traverse the same route as data packets, and hence the 
BDP is correctly computed during a third-party transfer. 

The previous implementation of drsFTP only allows one 
outstanding SBUF message. This becomes a problem when 
the RTT increases to the point where a new SBUF message 
is sent before the previous echo is received. Since SBUF 
messages in the new implementation contains all the in- 
formation necessary to determine the RTT, the server does 
not need to maintain any state regarding outstanding SBUF 
messages. 



5. Experiments 

80 i 
In this section we quantify the improvement in bulk-data 

transfer performance as a result of the re-architectured drs- 
FTP. We measure the performance of four different cases- 
FTP with stock buffer sizes, FTP with statically-tuned 
buffer sizes set to the BDP, FTP with over-provisioned 
buffer sizes, and drsFTP. We present results for both emu- 
lated and live WAN environments and for both client-server 
and third-party transfers. 

5.1. Experimental setup 

For the emulated WAN environment, we use three identi- 
cal machines with 100-Mbps Fast Ethernet cards. Each ma- 
chine has two 500-MHz Pentium I11 processors and l GB 
of memory. (While a Fast Ethernet connection might seem 
underpowered in a cluster environment, it is still represen- 
tative of many current grid nodes. Furthermore, it demon- 
strates the benefits of DRS even in smaller-BDP networks- 
benefits which are magnified in larger-BDP networks.) One 
machine, running TICKET [30], acts as the WAN emulator; 
it forwards packets at line rate between the two machines 
with a user-settable delay. For these tests, the delay is set 
to 100 ms. The peak bandwidth between the machines, as 
measured by iperf [27], is 95 Mbps. The bandwidth-delay 
product is therefore approximately 1.2 MB. 

In the live WAN tests, we use an FTP server in Los 
Alamos and an FTP client at the Oregon Graduate Insti- 
tute. The server has two 933-MHz Pentium I11 processors, 
I GB of RAM, and a 3Com 3C985 Gigabit Ethernet card. 
The client has one 1.8-GHz Pentium 4 processor, 512 MB 
of RAM, and an ADMtek Comet Fast Ethernet card. 

Over a two-hour period of time, the average bandwidth 
and RTT measured every second by iperf [27] and ping 
ranges from 0-93 Mbps and 72-257 ms, respectively. The 
bandwidth-delay product ranges from 0.175-268 kB. The 
connection behaves very much like that shown in Figure 1 
with respect to the variance in the BDP. 

In addition the stock and drsFTP cases, we report re- 
sults for an over-provisioned buffer size of 16 MB and 
an “optimally”-tuned buffer size. (The “optimally”- tuned 
buffer size is set equal to the highest measured bandwidth- 
delay product, 268 kB, measured a b ~ v e . ~ )  The OS parame- 
ters are set such that DRS connections can use up to 16 MB 
of buffer space. 

4We were very generous in selecting a large BDP sample (one that cor- 
responds to one of the few high points in Figure 1). Had we sampled the 
BDP at a low point, the statically-tuned performance would be much worse 
than that shown in Figure 5. 

- 70 

60 

50 

& 40 

$ 30 
F 

20 

*.*...;.* ........................ . . ._.._...*... . . . . . . . . .I.. . . . . . . . . . .*.. . . . . . . . . . .Ic ............ 

0 200 400 600 800 1000 

File size (MB) 

Figure 4. Comparison of drsFTP versions and 
stock FTP using an emulated WAN. 

5.2. Experimental method 

We transfer a set of files ranging from 1 MB to 1024 MB 
in size using each of the four FTP variants. (The exact file 
sizes range from 1 to 128 MB by powers of two and from 
128 MB to 1024 MB in increments of 128 MB.) We perform 
at least 30 transfers at each file size. For the live WAN tests, 
we also vary the times of day at which the transfers take 
place. 

5.3. Comparison of old and new drsFTP 

We compare the performance of the old and new drsFTP 
implementations over the WAN emulator. The results are 
shown in Figure 4. The new drsFTP compares quite well 
with the old drsFTP. There is no significant difference be- 
tween the two. Stock FTP with default (64 kB) buffers is 
also presented. Compared to stock FTP, DRS can speed up 
transfers by as much as nine times when file sizes are suffi- 
ciently large. 

5.4. Live WAN results 

We now examine the behavior of drsFTP in a live WAN 
environment. Figure 5 shows the performance of all four 
FTP variants over the live WAN. drsFTP attains a maximum 
bandwidth of approximately 55 Mbps, over 5.5 times better 
than the 10 Mbps of stock FTP. 

Perhaps paradoxically, drsFTP performs better than the 
“optimally”-tuned connection at large file sizes (55 Mbps 
vs. 33 Mbps). We found that while the drsFTP bandwidth 
estimates are approximately what we would have expected, 
the RTT estimates often are significantly higher than those 
mentioned in Section 5.1. We believe that this is due to 
ping’s use of ICMP to determine RTT versus our use of 
SBUF messages. 
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Figure 5. Comparison of the FTP variants over 
a live WAN. 

ICMP packets are processed by the kernel, whereas 
SBUF messages require application processing, and hence 
RTTs computed using SBUF messages will be longer. The 
mean RTT for ICMP, from Section 5.1, is 76.7 ms, while the 
mean RTT as measured by drsFTP during a 128 MB trans- 
fer is 180.6 ms. The difference is due to protocol overhead, 
the need to go between kernel space and user space, and 
scheduling latency. Hence, for static buffer tuning, a larger 
buffer size than would be predicted by the usual manual- 
tuning method is likely needed to achieve the best perfor- 
mance. For this reason, it is possible for dynamic tech- 
niques, such as DRS, to outperform static tuning that is per- 
formed at connection ~ e t - u p . ~  

Figure 6 shows the DRS buffer size growing over time 
for four 128 MB transfers. Note the wide range in final 
buffer sizes-from 3.3 MB to nearly G MB-due  to the 
varying BDP of the network. We acquire the measure- 
ments from which we generate this graph during the day- 
time, making the effect more pronounced. However, the ef- 
fect is still clearly visible in data gathered during the night 
and early morning. Transfers with larger average buffer 
sizes finish earlier. 

Figure 7 shows the bandwidth estimates used by drsFTP 
to calculate the buffer sizes in one 128-MB transfer. The 
transfer rate rises very quickly during the first two seconds 
of the transfer, suggesting that the connection is in slow 
start. At this point, the connection experiences congestion, 
and the rate begins to increase linearly due to the additive- 
increase phase of congestion control. 

Figure 8 shows the RTT estimates from the run in Fig- 
ure 7. The estimates are scattered widely over a range from 

SThis is in addition to thc fact that DRS's dynamic nature not only 
makes it  immune to getting a bad sample at the stm of the connection 
(corresponding to onc of the low points in Figure I ) ,  but also lets it take 
advantage of any extra bandwidth that should become available during the 
transfer. 

" 
0 5 10 15 20 25 30 35 

Time (s) 

Figure 6. drsFTP buffer sizes for 128-MB 
transfers in the daytime. 
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Figure 7. Delivered bandwidth during a 128- 
MB WAN file transfer. 
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Figure 8. Round-trip time as measured by drs- 
FTP during a 128-MB WAN file transfer. 



' i  
'Over-provisioned Fl? - 

h f q - p  ._... x ..... 
Stock fq-p _..__.I __.._ 

X . X .  __._ ........... * .......... ...........I ........... I ........... .; ........... I ___.._..__ * 

1000.0 

P 100.0 
B 

70 

0.0 I 

0 200 400 600 800 1000 
File size (MB) 

Third-party drsFTP - 
Third-party stock FIT -----x----- - 

Figure 9. Bandwidth attained over the WAN 
per MB of buffer space for the FTP variants. 

75 ms to 434 ms, showing the extreme volatility of WAN 
and host conditions. 

5.5. Memory efficiency 

We now turn our attention to the efficiency of the variants 
with respect to memory. One relevant metric here is band- 
width achieved per megabyte of buffer space, measured in 
Mbps/MB. 

When grids become part of production environments, 
there will be more competition for memory, and grid users 
will have to be careful not to reserve too much of the sys- 
tem's memory for buffer space. Therefore, achieving the 
best bandwidth for the quantity of buffer space allocated 
becomes a priority. 

Figure 9 shows that drsFTP is significantly more efficient 
in its use of buffer space than FTP with over-provisioned 
buffers. DRS ranges from 14.8 Mbps/MB for 1-MB trans- 
fers to 4 Mbps/MB at 1024-MB transfers, while the over- 
provisioned variant approaches 3.6 Mbps/MB for a 1024- 
MB transfer. 
. We caution, however, that this metric does not supersede 
the more traditional metric of bandwidth. As a case in point, 
while stock FTP is much more frugal in its use of buffer 
space than drsFTP, attaining over 100 MbpsMB, it only at- 
tains one-sixth the transfer rate of the DRS case. Clearly, 
users must take both buffer usage and transfer rate into ac- 
count when making comparisons. 

5.6. Third-party transfers 

In this section, we present the performance results for 
third-party transfers, comparing drsFTP to stock FTP. 

The FTP specification, RFC 959 [21], allows direct 
server-to-server data transfers. The process is diagrammed 
in Figure 3. In brief, the user issues the PASV command to 
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Figure 10. Bandwidth attained over the WAN 
by third-party drsFTP transfers. 

one FTP server, causing it to listen on an arbitrary port and 
return the IP address and port on which it is listening. The 
user then issues a PORT command to the other FTP server, 
instructing it to connect to the given port on the first server. 
Finally, the user issues the STOR and RETR commands to 
the appropriate servers to start the transfer. Section 5.2 of 
RFC 959 gives more information on this. 

The results are presented in Figure 10. For the series of 
runs shown, third-party drsFTP attains over six times the 
bandwidth of stock FTP. 

6. Conclusions 

In this paper, we present a new implementation of drs- 
FTP, a user-space dynamic right-sizing technique for in- 
creasing the performance of bulk-data transfers over con- 
nections with high bandwidth-delay products. drsFTP re- 
quires no kernel modifications or expert assistance to use, 
apart from setting the maximum buffer size sufficiently 
large to allow DRS room to increase the flow-control win- 
dow. (This would also have to be done to statically set buffer 
sizes by hand.) 

We have shown a bandwidth increase of a factor of five 
to nine over stock FTP and an increase in buffer-usage 
efficiency of a factor of up to four over FTP with over- 
provisioned buffers. Furthermore, once drsFTP is installed 
and set-up, it requires no further attention from the user. 
drsFTP therefore provides significant gains in transfer rate, 
memory efficiency, and convenience over existing user- 
space buffer-tuning techniques. 

The interval over which drsFTP computes the bandwidth 
attained by the connection was determined arbitrarily. Cur- 
rently, it is statically set at compile time. While the ex- 
isting algorithm gives good performance, we believe that 
additional research is required. It is possible that changing 



this interval in response to network conditions will result in 
more reliable bandwidth data and therefore better efficiency 
with respect to memory. In a similar vein, w e  have several 
ideas for validating the accuracy and reliability of round- 
trip time estimates. Care is needed to retain responsiveness 
to changing WAN conditions, however. 

Like the previous version of drsFTP, the new implemen- 
tation will be released as open-source software. 
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