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Uncertainty quantification for flow in highly heterogeneous porous media 

D. Xiu and D. M. Tartakovsky"* 

"Theoretical Division, Los Alamos National Laboratory, 
Mathematical Modeling and Analysis Group (T-7), MS B284, Los Alamos, NM 87545 

Natural porous media are highly heterogeneous and characterized by parameters that 
are often uncertain due to the lack of sufficient data. This uncertainty (randomness) 
occurs on a multiplicity of scales. We focus on geologic formations with the two dominant 
scales of uncertainty: a large-scale uncertainty in the spatial arrangement of geologic 
facies and a small-scale uncertainty in the parameters within each facies. We propose an 
approach that combines random domain decompositions (RDD) and polynomial chaos 
expansions (PCE) to account for the large- and small-scales of uncertainty, respectively. 
We present a general framework and use a one-dimensional flow example to demonstrate 
that our combined approach provides robust, non-perturbative approximations for the 
statistics of the system states. 

1. INTRODUCTION 

Modeling of flow and transport in natural porous media is hampered by the insufficiency 
of available data. To make predictions under such conditions, one needs to assign the 
values of parameters to the points (cells) on a computational grid, where parameter data 
are absent. This is commonly done by treating such parameters as random fields, whose 
statistics are inferred from available data. This renders governing flow and transport 
equations stochastic even though the underlying physical phenomena are deterministic. 
While the parameter statistics are often highly non-Gaussian, and exhibit non-trivial 
correlation structures, most stochastic approaches assume the opposite. 

Consider, for instance, the moment equations approach [l-41 that derives a set of deter- 
ministic equations for the statistical moments, usually the ensemble mean and (co)varian- 
ce, of system states (hydraulic head, saturation, concentration, etc.). This approach re- 
quires closure approximations, such as perturbation expansions in the variances of system 
parameters (e.g., log hydraulic conductivity). This formally limits the applicability of 
these methods to mildly heterogeneous media, Le., to media whose parameter variances 
are small. While this approach might work remarkably well even for some nonlinear 
problems [5], it often fails for others [6]. 

*This research was performed under the auspices of the U.S. Department of Energy, under contract W- 
7405-ENG-36. This work was supported in part by the U.S. Department of Energy under the DOE/BES 
Program in the Applied Mathematical Sciences, Contract KC-07-01-01, and in part by the LDRD Program 
at Los Alamos National Laboratory. This work made use of shared facilities supported by SAHRA 
(Sustainability of semi-Arid Hydrology and Riparian Areas) under the STC Program of the National 
Science Foundation under agreement EAR-9876800. 
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A non-perturbative alternative relies on polynomial chaos expansions. The classical 
Wiener polynomial chaos [7] defines the span of Hermite polynomial functionals of a 
Gaussian process and converges to any L2 functional in the L2 sense [8]. While the 
Wiener-Hermite polynomial chaos expansions have been applied successfully to analyze 
the propagation of uncertainty in some porous media [9], their theoretical limitations are 
well established [10,11]. Some of these limitations can be overcome by the use of general- 
ized polynomial chaos expansions, which employ a wide range of orthogonal polynomials 
mostly from the Askey scheme [la]. The main advantage of the generalized polynomial 
chaos is its ability to represent accurately and efficiently many non-Gaussian stochastic 
processes [13--161. However, as we demonstrate in this study, the generalized polynomial 
chaos might become computationally inefficient when applied to multi-modal processes 
that arise routinely in modeling flow and,transport in composite porous media. The 
present study is devoted to overcoming this shortcoming. 

A computational framework that we adopt here combines the generalized polynomial 
chaos with the random domain decomposition (RDD) approach [17-191. The key advan- 
tage of RDD is that it provides robust closures (accurate approximations) for moment 
equations even when environments are highly heterogeneous and the statistical distribu- 
tions and correlation structures of parameters are complex. RDD relies on the fact that a 
high degree of heterogeneity usually arises from the presence of different materials (pop- 
ulations) in the environment. Specifically, RDD replaces a non-Gaussian, multi-modal 
parameter field Y ( z )  with a two-scale random process. The large scale randomness' arises 
due to uncertainty in internal boundaries of materials (populations). The small scale ran- 
domness corresponds to uncertainty in parameters within each material. In other words, 
a non-Gaussian, multi-modal probability density function py(y) is replaced with a joint 
probability density function py(y, y) = py(yly)pr(y). The conditional probability density 
function py(yly) describes the distribution of Y within each material conditioned on the 
boundary location I?, whose probability density function is pr(7). Hence it has convenient 
properties, such as unimodality and convenient correlations. 

Section 2 formulates the problem of diffusion in random composite media. We outline 
the generalized polynomial chaos expansion approach in Section 3 and demonstrate its 
limitations for multi-modal distributions of system parameters. In Section 4, we ernploy 
a random domain decomposition to extend the range of applicability of the polynomial 
chaos expansions to such parameters. Section 5 provides two computational examples, 
and analyzes the accuracy of the proposed approach. 

2. PROBLEM FORMULATION 

Consider steady-state saturated flow in a domain R, 
v ' K V h ( z )  + f = 0, x E R. 
The hydraulic conductivity K ( z )  of a porous medium is sampled at selected locations 
xi, i = l , ,  . . , N ,  as shown in Figure la.  To simplify presentation, we assume that the 
source function f (z) and boundary conditions are deterministic. Randomness in these 
quantities is additive and can be easily incorporated in subsequent analysis [ZO]. 

The flow equation ( l ) , is  under-determined, since the values of K at points other than 
{xi}, are unknown. To quantify the uncertainty in K ,  it is common [l-41 to model it 
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3. GENERALIZED POLYNOMIAL CHAOS 

The generalized polynomial chaos represents a second-order stochastic process X ( w ) ,  
viewed as a function of a random event w ,  as 

Here { Q j  ( S )  } are (multi-dimensional) orthogonal polynomials of the multi-dimensional 
random vector e,  which satisfies the orthogonality relation 

where bij is the Kronecker delta. The ensemble average of the product @i@j is an inner 
product in the Hilbert space determined by the support of the random variables, 

with w ( t )  denoting the weighting function. In the discrete case, the above orthogonal 
relation takes the form 

Equation (3) defines a one-to-one correspondence between the type of the orthogonal 
polynomials {a} and the type of the random variables [. It is determined by choosing the 
type of orthogonal polynomials {a} in such a way that their weighting function w(6) in 
the orthogonality relation (5) has the same form as the probability distribution function 
of the underlying random variables [. For example, the weighting function of Hermite or- 
thogonal polynomials is e x p ( - E T ( / 2 ) / d m ,  and is the same as the probability density 
function of the n-dimensional Gaussian random variables S .  Hence, the classical Wiener 
polynomial chaos is an expansion of Hermite polynomials in terms of Gaussian random 
variables. 

In practice, one has to truncate the infinite summation in (3)) so that 

where is an n-dimensional random vector. If the highest order of a polynomial {a} is 
m, then the total number of expansion terms is ( M  + 1) = (n + m)!/(n!m!).  Cameron 
and Martin [8] proved the convergence of Hermite-chaos expansion. The convergence 
of general non-Hermite expansions has been demonstrated both numerically [ 13-15] and 
analytically [all for linear elliptic equations. 

To demonstrate the robustness of the generalized polynomial chaos expansions, let us 
consider a highly non-Gaussian unimodal random variable X = 1 + B(1,6) + N(O,4) + 
5U(O, 1) + E(3), where B(1,6) is a ,8 random variable with parameters a = 1 and ,8 = 6, 
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Figure 2. The Hermite expansions for the cumulative distribution functions of (a) a highly 
non-Gaussian, but, unimodal random process and (b) a bi-modal process corresponding 
to the data in Fig 1. 

N(O,4) is a Gaussian random variable with zero mean and standard deviation 4, U(0 , l )  
is a uniform random variable in (0, l), and E(3)  is an exponential random variable with 
mean 3 .  The total variance is 0% = 26.8, which clearly makes it unsuitable for small 
perturbation expansions. The fifth degree Hermite polynomial is sufficient to accurately 
approximate this distribution, as demonstrated in Figure 2a. 

The situation is radically different, when one deals with system parameters that are 
neither Gaussian, nor unimodal. Figure 2b demonstrates that the Hermite polynomials 
are not adequate to represent the bi-modal cumulative density function corresponding to 
p K ( k )  shown in Figure lb .  

4. RANDOM DOMAIN DECOMPOSITION 

To apply the generalized polynomial chaos expansions to systems whose parameters are 
multi-modal, we reformulate the problem (1) in terms of the random domain decompo- 
sition [17,18]. Within this framework, the randomness of K ( z )  stems from two factors: 
large-scale uncertainty in the spatial arrangement of N sub-domains { C&}L1 (or, equiv- 
alently, the boundaries {rij} between sub-domains Ri and R j  for i # j ) ,  and small-scale 
uncertainty of K within each sub-domain. Then p K ( k ) ,  the probability density function 
of K ,  is replaced with a joint probability density function p K ( k ,  7 )  = p K ( k l y ) p r ( ~ ) .  

The reconstruction of p r ( ~ ) ,  the probability density function of the random boundary 
F, from measurements of K ( z )  is a subject of an ongoing research [22], which we do 
not pursue here. The reverse relationship, however, is more straightforward. Indeed, if 
pKi  (i = 1,. . . , N )  are the probability density functions of K = Ki within each random 
sub-domain Q, then the probability density function of the mixture is 
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Here Pi(x) is the probability that a point 2 E 6 2 i ,  which is uniquely defined by pr(7). 

rewritten as 

v * KiVh(X) + f = 0, 

Boundary conditions for (1) are supplemented by the conditions of the continuity of the 
state variable, h, and the normal component of g i j  = -KVh, the flux across the random 
boundaries rij,’di f j. Generalized polynomial chaos expansions are then applied to 
the relevant random fields within each sub-domain, and the resulting probability density 
function of h is matched along the random boundaries rij, Vi # j .  

To simplify presentation, we consider a two-subdomain problem R = RIUf l2  and denote 
the boundary between these two sub-domains by 

4.1. Conditional statistics 

within each sub-domain Ri ( i  = 1 ,2 ) ,  

Let K ( z )  = Ki(x)1oi(x) ,  where lai(z) is the indicator function. Then (1) can be 

(9) x E Ri, i =  1, . . . ,  N .  

= r12. 

In the first step of the averaging procedure, we apply the polynomial chaos expansion 

M M 

m=O m=O 

By applying these expansions to  (9) and using a Galerkin projection onto each basis of 
{ Q m } ~ = o ,  we obtain 

M M  

m=O n=O 

Denoting Hi = [ k i , ~ ,  . . . , j Z i , ~ ] ~  and Fi = [ f i ,  0 , .  . . I T  allows us to rewrite (11) in a matrix 
form 

V * BTOHi + F, = 0, i = 1,2 ,  (12) 
where Bi(z) = [b,,nl]rl-o is a symmetric matrix of size ( M  + 1) x (Ad + 1) whose entries 
are 

, -  

M 

m=O 

The continuity of head and flux is enforced at the inner boundary, i.e. 

which leads to 

Equations (12), (14), and external boundary conditions define a complete system for the 
stochastic head h conditioned on the random interface I?. Solutions of this system provide 
the conditional statistics of hydraulic head, such as its conditional mean (h(z)JF) = ho(x) 
conditional variance a;lr = E,”=, h&(x)(@&). 
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4.2. Averaging over geometries 
In the second step, the statistics of h is obtained by averaging over the random geometry 

r, e.g.7 

(h ( z ) )  = JJ h(z;  Y ) P K ( ~ ,  y ) d k d ~  JJ h(z; k ,  y)pK(k)y)pr(y)dkdy 
(15) = S(h(z)ly)pr(y)dy. 

To evaluate the above integral, we employ a quadrature rule, 

Q 

q= 1 

Here {aq, w,}$, are the quadrature' points and corresponding weights of the orthogonal 
polynomials gQ (7) , which satisfy 

1 Sm(Y)Sn(Y)Pr(Y)dY = d 3 m n .  

For example, if r can be parameterized by Gaussian random variables, {gnz} take form of 
the Hermite polynomials. Expressions for the head variance and other statistics can be 
obtained in a similar manner. 

5. COMPUTATIONAL EXAMPLE 

To simplify presentation, we consider the one-dimensional version of (1) with f = 0 
defined on R = (0 , l ) .  This equation is subject to the following boundary conditions, 
q(0)  = qo and h(1) = 0. 

Two random materials [0, a)  and (a ,  11 are joined at the random location a. Then 
p K ( k ) ,  the probability density function of K shown in Figure lb ,  is replaced with a joint 
probability density function p ~ ( k ,  a )  = p K ( k ( a ) p , ( a ) .  We assume that both V,  = In &(z) 
are Gaussian random fields with the exponential correlation functions. We further assume 
that the fields K l ( z )  and K2(z )  are mutually uncorrelated, and that a is a Gaussian 
random variable. 

This problem admits an analytical solution for random h, 

where X ( x )  is the Heaviside function, 

1 x 2 0  { 0 x < 0 .  X ( x )  = 

Equation (17) leads to exact expressions for the mean and variance of hydraulic head. 
Figure 3 demonstrates that the ensemble mean, ( h ) ,  and standard deviation, ofL, of h 

computed by the RDD-PCE approach outlined in Section 4 practically coincide with their 
exact counterparts. The first twenty terms are retained in the polynomial expansion. In 
these calculations, we set Q = N(0.5,0.05), Yl(z)  = N(O,O.l), Y2(z) = N(2,0 .2) ,  lyl = 5, 
lyz = 1, and qo = 1. 
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Figure 3. The ensemble mean (a) and standard deviation (b) of h given by the exact 
analytical solutions (circles) and by the polynomial chaos expansion (solid lines), 

6. Conclusions 

Polynomial chaos expansions (PCE) provide a valuable tool for quantifying uncer- 
tainty in physical systems with uncertain (random) system parameters. However they 
might become less efficient if these parameter have highly non-Gaussian, multi-modal 
distributions and/or short correlation lengths. To extend the range of applicability of 
PCE approaches, we combined them with a random domain decomposition (RDD). We 
used one-dimensional flow to demonstrate that this combined approach provides robust, 
perturbation-free approximations for the statistics of hydraulic head. 
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