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Uncertainty quantification for flow in highly heterogeneous porous media
D. Xiu and D. M. Tartakovsky?*

2Theoretical Division, Los Alamos National Laboratory,
Mathematical Modeling and Analysis Group (T-7), MS B284, Los Alamos, NM 87545

Natural porous media are highly heterogeneous and characterized by parameters that
are often uncertain due to the lack of sufficient data. This uncertainty (randomness)
occurs on a multiplicity of scales. We focus on geologic formations with the two dominant
scales of uncertainty: a large-scale uncertainty in the spatial arrangement of geologic
facies and a small-scale uncertainty in the parameters within each facies. We propose an
approach that combines random domain decompositions (RDD) and polynomial chaos
expansions (PCE) to account for the large- and small-scales of uncertainty, respectively.
We present a general framework and use a one-dimensional flow example to demonstrate
that our combined approach provides robust, non-perturbative approximations for the
statistics of the system states.

1. INTRODUCTION

Modeling of flow and transport in natural porous media is hampered by the insufficiency
of available data. To make predictions under such conditions, one needs to assign the
values of parameters to the points (cells) on a computational grid, where parameter data
are absent. This is commonly done by treating such parameters as random fields, whose
statistics are inferred from available data. This renders governing flow and transport
equations stochastic even though the underlying physical phenomena are deterministic.
While the parameter statistics are often highly non-Gaussian, and exhibit non-trivial
correlation structures, most stochastic approaches assume the opposite.

Consider, for instance, the moment equations approach [1-4] that derives a set of deter-
ministic equations for the statistical moments, usually the ensemble mean and (co)varian-
ce, of system states (hydraulic head, saturation, concentration, etc.). This approach re-
quires closure approximations, such as perturbation expansions in the variances of system
parameters (e.g., log hydraulic conductivity). This formally limits the applicability of
these methods to mildly heterogeneous media, i.e., to media whose parameter variances
are small. While this approach might work remarkably well even for some nonlinear
problems [5], it often fails for others [6].

*This research was performed under the auspices of the U.S. Department of Energy, under contract W-
7405-ENG-36. This work was supported in part by the U.S. Department of Energy under the DOE/BES
Program in the Applied Mathematical Sciences, Contract KC-07-01-01, and in part by the LDRD Program
at Los Alamos National Laboratory. This work made use of shared facilities supported by SAHRA
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A non-perturbative alternative relies on polynomial chaos expansions. The classical
Wiener polynomial chaos [7] defines the span of Hermite polynomial functionals of a
Gaussian process and converges to any L? functional in the L? sense [8]. While the
Wiener-Hermite polynomial chaos expansions have been applied successfully to analyze
the propagation of uncertainty in some porous media [9], their theoretical limitations are
well established [10,11]. Some of these limitations can be overcome by the use of general-
ized polynomial chaos expansions, which employ a wide range of orthogonal polynomials
mostly from the Askey scheme [12]. The main advantage of the generalized polynomial
chaos is its ability to represent accurately and efficiently many non-Gaussian stochastic
processes [13-16]. However, as we demonstrate in this study, the generalized polynomial
chaos might become computationally inefficient when applied to multi-modal processes
that arise routinely in modeling flow and transport in composite porous media. The
present study is devoted to overcoming this shortcoming.

- A computational framework that we adopt here combines the generalized polynomial

chaos with the random domain decomposition (RDD) approach [17-19]. The key advan-
tage of RDD is that it provides robust closures (accurate approximations) for moment
equations even when environments are highly heterogeneous and the statistical distribu-
tions and correlation structures of parameters are complex. RDD relies on the fact that a
high degree of heterogeneity usually arises from the presence of different materials (pop-
ulations) in the environment. Specifically, RDD replaces a non-Gaussian, multi-modal
parameter field Y (x) with a two-scale random process. The large scale randomness arises
“due to uncertainty in internal boundaries of materials (populations). The small scale ran-
domness corresponds to uncertainty in parameters within each material. In other words,
a non-Gaussian, multi-modal probability density function py(y) is replaced with a joint
probability density function py (y,) = py (y|v)pr(v). The conditional probability density
function py (y|7y) describes the distribution of ¥ within each material conditioned on the
boundary location I', whose probability density function is pr(y). Hence it has convenient
properties, such as unimodality and convenient correlations.

Section 2 formulates the problem of diffusion in random composite media. We outline
the generalized polynomial chaos expansion approach in Section 3 and demonstrate its
limitations for multi-modal distributions of system parameters. In Section 4, we employ
a random domain decomposition to extend the range of applicability of the polynomial
chaos expansions to such parameters. Section 5 provides two computational examples,
and analyzes the accuracy of the proposed approach.

2. PROBLEM FORMULATION

Consider steady-state saturated flow in a domain £,
V- -KVh(x)+ f=0, x €. (1)

The hydraulic conductivity K(x) of a porous medium is sampled at selected locations
x;, « = 1,..., N, as shown in Figure la. To simplify presentation, we assume that the
source function f(x) and boundary conditions are deterministic. Randomness in these
quantities is additive and can be easily incorporated in subsequent analysis [20].

The flow equation (1) is under-determined, since the values of K at points other than
{;}, are unknown. To quantify the uncertainty in K, it is common [1-4] to model it
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Figure 1. (a) Measurements of hydraulic conductivity K at selected locations in a one-
dimensional porous medium, and (b) the corresponding statistically homogeneous proba-
bility density function px (k).

as a random field, whose sample statistics are inferred from data. Figure 1b depicts
a stationary (statistically homogeneous) probability density function pg (k) constructed
from the K data in Figure 1la.

The randomness of K renders the flow equation (1) stochastic, so that its solution, a
distribution of hydraulic head h(x), is a probability density function or, equivalently, the
corresponding ensemble moments.

We use the Reynolds decomposition to represent random fields R = (R) + R’ as the
sum of their ensemble means (R) and zero-mean fluctuations R’. Taking the ensemble
mean of (1) yields the mean flow equation

V(KR + (K'VI) +f=0, ®xeQ 2)

that contains the second mixed moment, (K'Vh'), an expression for which is not known.
The need to approximate this term is often referred to as a closure problem. One of the
most widely used closures relies on perturbation expansions in o% or o3, the variances
of K or Y = InK [1-4]. This requires the perturbation parameter o% (or o%) to be
small, which is not the case for most multi-modal distributions, such as the one shown in
Figure 1b.

A two-scale non-perturbative closure that we pursue here is based on a combination of
random domain decompositions (RDD) and polynomial chaos expansions (PCE). RDD
is used to decompose the computational domain into sub-domains that have convenient
statistical properties, such as unimodality. PCE takes advantage of these properties to
compute efficiently and accurately the statistics of the system states. The main features
of this approach are described in the following sections.



3. GENERALIZED POLYNOMIAL CHAOS

The generalized polynomial chaos represents a second-order stochastic process X (w),
viewed as a function of a random event w, as

X(w) = Z a;0;[€(w)]- (3)

Jj=0

Here {®;(£€)} are (multi-dimensional) orthogonal polynomials of the multi-dimensional
random vector &, which satisfies the orthogonality relation

(®:05) = (®7)y5, (4)

where dy; is the Kronecker delta. The ensemble average of the product ®;®; is an inner
product in the Hilbert space determined by the support of the random variables,

(©a(©) = [ POaErue (5)

with w(€) denoting the weighting function. In the discrete case, the above orthogonal
relation takes the form

(p(€)q(8)) = > _ p(&)g(&)w(€). (6)
3

Equation (3) defines a one-to-one correspondence between the type of the orthogonal
polynomials {®} and the type of the random variables £. It is determined by choosing the
type of orthogonal polynomials {®} in such a way that their weighting function w(£) in
the orthogonality relation (5) has the same form as the probability distribution function
of the underlying random variables &. For example, the weighting function of Hermite or-
thogonal polynomials is exp(—£7&/2)/+/(2m)", and is the same as the probability density
function of the n—dimensional Gaussian random variables €. Hence, the classical Wiener
polynomial chaos is an expansion of Hermite polynomials in terms of Gaussian random
variables.

In practice, one has to truncate the infinite summation in (3), so that

X(w) =2 a;2(€), (7)

where £ is an n—dimensional random vector. If the highest order of a polynomial {®} is
m, then the total number of expansion terms is (M + 1) = (n + m)!/(n!m!). Cameron
and Martin [8] proved the convergence of Hermite-chaos expansion. The convergence
of general non-Hermite expansions has been demonstrated both numerically [13-15] and
analytically [21] for linear elliptic equations.

To demonstrate the robustness of the generalized polynomial chaos expansions, let us
consider a highly non-Gaussian unimodal random variable X = 1 + B(1,6) + N(0,4) +
5U(0,1) + E(3), where B(1,6) is a 8 random variable with parameters o = 1 and £ = 6,
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Figure 2. The Hermite expansions for the cumulative distribution functions of (a) a highly
non-Gaussian, but unimodal random process and (b) a bi-modal process corresponding
to the data in Fig 1.

N(0,4) is a Gaussian random variable with zero mean and standard deviation 4, U(0,1)
is a uniform random variable in (0,1), and E(3) is an exponential random variable with
mean 3. The total variance is 0% = 26.8, which clearly makes it unsuitable for small
perturbation expansions. The fifth degree Hermite polynomial is sufficient to accurately
approximate this distribution, as demonstrated in Figure 2a.

The situation is radically different, when one deals with system parameters that are
neither Gaussian, nor unimodal. Figure 2b demonstrates that the Hermite polynomials
are not adequate to represent the bi-modal cumulative density function corresponding to
pi (k) shown in Figure 1b.

4. RANDOM DOMAIN DECOMPOSITION

To apply the generalized polynomial chaos expansions to systems whose parameters are
multi-modal, we reformulate the problem (1) in terms of the random domain decompo-
sition [17,18]. Within this framework, the randomness of K (&) stems from two factors:
large-scale uncertainty in the spatial arrangement of N sub-domains {Q@}iil (or, equiv-
alently, the boundaries {I';;} between sub-domains §2; and Q; for ¢ # j), and small-scale
uncertainty of K within each sub-domain. Then px(k), the probability density function
of K, is replaced with a joint probability density function px (k,~) = px(k|y)pr (7).

The reconstruction of pr(y), the probability density function of the random boundary
', from measurements of K () is a subject of an ongoing research [22], which we do
not pursue here. The reverse relationship, however, is more straightforward. Indeed, if
pk, (i =1,...,N) are the probability density functions of K = K; within each random
sub-domain €2;, then the probability density function of the mixture is

p(k;x) = Z Pi(x)px, (k). (8)



Here P(x) is the probability that a point @ € €;, which is uniquely defined by pr(7y).
Let K(z) = K;(z)lg,(x), where Ig,(x) is the indicator function. Then (1) can be
rewritten as

V.KVhiz)+f=0  @e  i=1,..,N 9)

Boundary conditions for (1) are supplemented by the conditions of the continuity of the
state variable, h, and the normal component of q;; = —K'Vh, the flux across the random
boundaries I';;,¥i # j. Generalized polynomial chaos expansions are then applied to
the relevant random fields within each sub-domain, and the resulting probability density
function of h is matched along the random boundaries [';;, Vi # j.

To simplify presentation, we consider a two-subdomain problem €2 = ; U, and denote
the boundary between these two sub-domains by I' = I'1o.

4.1. Conditional statistics ‘
In the first step of the averaging procedure, we apply the polynomial chaos expansion
within each sub-domain ; (i = 1,2),

M M
hi(@) = hin®m(8),  Ki(@) =D Kim®n(£), for z € Qs (10)

m=0 m=0

By applying these expansions to (9) and using a Galerkin projection onto each basis of
{ @}, we obtain

M M ) )

DNV KimVhin(®n®a®) + fifi =0,  i=1,2, (11)
m=0 n=0

Denoting H; = [711-,0, . ,lAzi,M]T and F; = [f;,0,...]7 allows us to rewrite (11) in a matrix
form

V-BIVH,+F,=0, i=12, (12)

where Bj(z) = [biull,_, is a symmetric matrix of size (M + 1) x (M + 1) whose entries
are

bin = f: K (@ ®,3)), i =1,2. (13)
The coZ’?iZluity of head and flux is enforced at the inner boundary, i.e.

Mep- = Moorr K@ =K@F|

which leads to

Hy|,p- = Halpepe BlT%g“l e = 5%’3 e (14)

Equations (12), (14), and external boundary conditions define a complete system for the
stochastic head A conditioned on the random interface I". Solutions of this system provide
the conditional statistics of hydraulic head, such as its conditional mean (h(z)|T") = ho()
conditional variance o2|I" = 3" __ 72 (z)(®2,).




4.2. Averaging over geometries ‘
In the second step, the statistics of h is obtained by averaging over the random geometry
I eg.,

(hz)) = [[h(z;k,7)px(k,v)dkdy = [[ h(x; k,v)px (k|v)pr(y)dkdy (15)
= [{h(@)|mpr(v)dy.

To evaluate the above integral, we employ a quadrature rule,

Z ) |og)w (16)

g=1

Here {ay, wq}(?:1 are the quadrature points and corresponding weights of the orthogonal
polynomials go(7y), which satisfy

/ Im (V) gn(V)pr()dy = d2,0mn.

For example, if I' can be parameterized by Gaussian random variables, {g,,} take form of
the Hermite polynomials. Expressions for the head variance and other statistics can be
obtained in a similar manner.

5. COMPUTATIONAL EXAMPLE

To simplify presentation, we consider the one-dimensional version of (1) with f = 0
defined on 2 = (0,1). This equation is subject to the following boundary conditions,
q(0) = go and A(1) =

Two random materials [0, @) and (o, 1] are joined at the random location a. Then
Pk (k), the probability density function of K shown in Figure 1b, is replaced with a joint
probability density function px (k, @) = pr(k|a)ps(a). We assume that both ¥; = In K;(x)
are Gaussian random fields with the exponential correlation functions. We further assume
that the fields K(z) and Ky(x) are mutually uncorrelated, and that « is a Gaussian
random variable.

This problem admits an analytical solution for random A,

M) = wH(o U o / g J " / o (17)

where H(z) is the Heaviside function,

1 220
Equation (17) leads to exact expressions for the mean and variance of hydraulic head.

Figure 3 demonstrates that the ensemble mean, (h), and standard deviation, o, of &
computed by the RDD-PCE approach outlined in Section 4 practically coincide with their
exact counterparts. The first twenty terms are retained in the polynomial expansion. In
these calculations, we set o = N(0.5,0.05), Yi(z) = N(0,0.1), Ya(x) = N(2,0.2), ly, = 5,
ly, =1, and go = 1.
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Figure 3. The ensemble mean (a) and standard deviation (b) of i given by the exact
analytical solutions (circles) and by the polynomial chaos expansion (solid lines).

6. Conclusions

Polynomial chaos expansions (PCE) provide a valuable tool for quantifying uncer-
tainty in physical systems with uncertain (random) system parameters. However they
might become less efficient if these parameter have highly non-Gaussian, multi-modal
distributions and/or short correlation lengths. To extend the range of applicability of
PCE approaches, we combined them with a random domain decomposition (RDD). We
used one-dimensional flow to demonstrate that this combined approach provides robust,
perturbation-free approximations for the statistics of hydraulic head.
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