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Background

-Hydrosilylation of Acrylonitrile and Acrylates

CH2=CH-X  +  HSiCl3  Cl3Si-CH2CH2-X

X = CN, COOR

Catalyzed by Cu, Co halides or oxides with diamines

High yields, regiospecific



Looking for Intermediates in the Catalysis Reaction 

Me2N NMe2
+   HSiCl3 tmeda:SiCl3H

Abundant literature on monoamine adducts of silanes,

very little on diamine and triamine adducts



(tmeda)SiHCl3

Structural features

H-Si-Cl (1,3) 90.20; 92.90

H-Si-Cl(2) 175.50

N-Si-N       85.00

d(Si-H) = 1.363Å [Cl3Si-H 1.454 calcd]

d(Si-Cl(1,2,3) ) = 2.205; 2.152; 2.202

d (Si-N(1,2) ) = 2.075; 2.087

Less stable isomer by ~16 kj/mol is formed 

(using enSiH2Cl2 as model in MP2, MP4 calcns)

Dominant trend in 5 & 6 coordinate silanes is for more electronegative atoms to 

be trans
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Improve solubility with teeda?  Yes, but with REDISTRIBUTION!

(teeda)SiH2Cl2 is nonflammable. Deliquesces in air

A very useful synthetic equivalent to H2SiCl2:

(teeda)SiH2Cl2 +  2 RMgX      R2SiH2 >90%

(teeda)SiH2Cl2 +  2 RO+ M-
 (RO)2SiH2 >80%

Et2N NEt2

+  2HSiCl3 +    SiCl4(teeda)SiH2Cl2



Structural Features of (teeda)SiH2Cl2

d(Si-H) = 1.266 Å; 1.314   d (Si-N) = 2.134; 2.126    d (Si-Cl) = 2.223; 2.233 

H1-Si-H2 163.40 H1-Si-Cl2 94.90 N1-Si-N2 84.80

[SiCl2H2 calcd 1.469]    [SiCl2H2 e.d. 2.02]

Kinetic product is favored



392 (tmeda)SiHCl3 368 SiHCl3

404 (teeda)SiH2Cl2 288 SiH2Cl2

Si 29  NMR data

Complexing of simple chlorosilanes with diamines 

leads to very large Si-H coupling constants (Hz)               



Moving on to triamines
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H2SiCl2 : Complexation + displacement with N-methyl and N-ethyl groups



Attack on least hindered face (or edge) could explain stereochemistry
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Reactions with tetraamines led to the complexation 

of only 3 of the 4 amines, no evidence of 

tetradentates



S.-B. Choi, B.-K. Kim, P. Boudjouk, D.G. Grier, J. Am. Chem. Soc. 2001, 123, 8117.

Amine-promoted displacement and redistribution: 

Si-Si bond formation
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(80 ° C/10 mTorr)

mp. 18 °C

0.97 g/mL

Cyclohexasilane Si6H12 Chemistry
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2[pedeta•H2SiCl]+ [Si6Cl14]
=

The PM3 calculated structure of Si6Cl12 has 

D3d symmetry with Si -Si bond lengths of 

2.463 Å, and Si-Cl bond lengths of 2.059 Å.

[i] Stuger, H.; Janoschek, R. Phophorus, Sulfur, 

and Silicon, 1992, 68, 129.
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Si

Cleq
Clax

R (Si-Si) = 2.34Å (calc), ~2.32Å (expt) 

R (Si-Cleq) = 2.10Å (calc), ~2.08Å (expt) 

R (Si-Clax) = 3.06Å (calc), 3.00Å (expt)

STRUCTURE



Selected Bond Lengths of [Si6X14]
2-

 

                                                X = Cl, X' = Cl         X = Br, X' = Br

Si - X                                             2.078                        2.237

Si - X'                                            3.000                        3.114

Si - Si                                            2. 319                        2.345

X - plane of Si6 ring                      1.60                        1.73

X' - plane of Si6 ring                     1.91                        2.05

X' - X'                                            3.81                        4.100

   rcov (Si)  = 1.17 Å, rvdw(Si) = 2.10 Å

   rcov (Cl) = 0.99 Å, rvdw(Cl) = 1.80 Å;  rcov (Si-Cl) = 2.16 Å; rvdw(Si-Cl) = 3.90 Å)

   rcov (Br) = 1.14 Å; rvdw(Br) = 1.90 Å; rcov (Si-Br) = 2.31 Å; rvdw(Si-Cl) = 4.00 Å)

Crystal structures

[pedeta•H2SiCl]+
2 [Si6Cl14]

=

[pedeta•H2SiBr]+
2 [Si6Br14]

=



1H & 29Si NMR study in CD2Cl2

SiCl4, HSiCl3 and Cl3Si:- observed by 29Si nmr

Complexed, protonated, and free amines observed by 1H nmr
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Alternate Routes to Si6X14
2-

[pedeta•H2SiCl]+ Cl- +  SiCl4  2[pedeta•H2SiCl]+ [Si6Cl14]
2-

[pedeta•H2SiCl]+ Cl- +  SiBr4  2[pedeta•H2SiBr]+ [Si6Br14]
2-

pedeta   +  Cl3SiH  +  Ph4PCl     2[Ph4P]+ [Si6Cl14]
2-

(good quality crystals)



1.5 Kg of [Si6Cl14
= ] 2[NR4

+]



Si6Cl14
2- Useful Precursor to Si6H12 and Si6X12

Ph2SiCl2
Li Ph12Si6

HX, RX

AlCl3
Si6X12

LAH
Si6H12

1.8% 60% >90%

Cl3SiH
pedeta

Si6Cl14
2- Si6H12 Si6X12

80% >90% >90%

65%

LAH X2

Approximately 72% yield of  Si6H12 from Cl3SiH



Basic Reactions of Si6Cl14
2-

2R+ Si6Cl14
2- +   xs MeMgBr    Si6Me12 

2R+ Si6Cl14
2- +   xs PhMgBr     Si6Ph12

2R+ Si6Cl14
2- +   xs LiAlH4  Si6H12

Yields  > 90%
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Intermolecular Complexation of Multidentate 
Lewis Acid hosts and Lewis Base Guests



Dodecachlorocyclohexasilane as a

Multidentate Lewis Acid Host 
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X =  Cl, Br, I R =  [Pedeta•H2SiCl], BnEt3N and Ph4P

Compound C/H(/N) (Cal) C/H(/N) (Found)

1 X =  Cl, R = H2SiCl•pedeta 26.22/5.50/ 6.55 26.25/5.42/6.45

2 X =  Br, R = BnEt3N 27.43/3.90/2.46 27.22/3.75/2.39

3 X =  Br, R = Ph4P 40.24/2.81 39.32/2.81

4 X =  I, R = Ph4P 37.77/2.64 36.44/2.54

Si6Cl12 +    2R+ X-
 2 R+ [Si6Cl12X2]

White crystals, yield:  75 - 95%

Synthesis of R2 [Si6Cl12X2] from Si6Cl12
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29Si (ppm) = -22.05 ([pedeta•H2SiCl]+
2 [Si6Cl14]= in CD3CN)

=  -22.71 ([n-Bu4N]+
2 [Si6Cl12Br2]

= in CD2Cl2)

29Si NMR of Si6Cl12 from Si6H12 
single-pulse sequence,  CDCl3, TMS = 0.00

downfield from that of dodecachlorocyclohexasilane (-2.5 ppm).[i] Hengge, E. Monatsh. Chem. 1979, 110, 1295.

= -2.38 ppm -25.56 ppm Corriu, R. J. P. ACIEE. 1996, 35, 324.

29Si NMR Data

-2.30 ppm



29Si-NMR Study of the reaction of Si6Cl12 with n-Bu4NBr

White crystal, high yieldSi6Cl12      +       2n-Bu4NBr                        (n-Bu4N)2Si6Cl12Br2
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Possible Mechanism

SiCl3H   +   teeda           teedaH+   +   Cl3Si-

Cl3Si-   +   SiCl3H           Si2Cl5H   +   Cl-

Cl3Si-   +  Si2Cl5H          Si3C7H   +   Cl-

Si3Cl7H   +   teeda          Si3Cl7
-   +    teedaH+

                  2Si3Cl7
-           Si6Cl14

2-



Some Properties of CHS

• Clear colorless liquid, bp 80
o
/10-15 torr

• Flammable in air

• Stores indefinitely at 0
o
C under nitrogen

• Amenable to Direct Write Applications

• Can be monochlorinated with HgCl2 … 

• Thermally stable at 100
o
C for 12 hr

• Loses H rapidly above 220
o
C



CHS is stable at 100 degC for at least 12 h



Si6Cl12 +  2 AdN3  white crystals

simple addition of one or two AdN3?

In Search of Neutral Adducts to the Si-6 Ring



Surprise!

R (I>2 (I)]: 0.0632

R (all data): 0.2279

Si-Si: 2.33-2.35 (Å),        

Si-Cl: 2.05-2.08 (Å)

Si-Cl': 3.07-3.15 (Å)

Si- N: 3.03 – 3.20 (Å)       

Si-Si-Si: 119.15(8)-120.95(8)˚

N3-Si6(centroid): 2.043 (Å) 

Cl-Si6(centroid): 1.897 (Å)
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Comparison of Coordinated Azide and Free Organoazide

Compound Bond Distance (Å) Angles (deg.)

C-N1 N1-N2 N2-N3 C-N1-N2 N1-N2-N3

[AdN3 Si6Cl12 Cl]- 1.523(8) 1.21(1) 1.112(8) 116.7(7) 174.4(7)

[HBPzF
3]Cu-N3Ad a 1.509(4) 1.219(4) 1.136(4) 116.1(3) 173.1(3)

MeN3 
b 1.472 1.244 1.162 115.2 172.5

a: Dias, H. V. R. et al, Inorg. Chem., 2000, 39, 3894.

b: Nguyen, M. T., et al, J. Phys. Chem., 1996, 100, 6499, 

the data are calculated results.

N3
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Inverse Sandwich Chemistry

Addition of Tolunitrile to Si6Cl12
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Printed Silicon – Thicker Films Crack

~3 μm~1 μm
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Si6H12 readily transforms to a-Si:H and rc-Si

Cyclohexasilane Polysilane

a-Si:H

Heat or UV irradiation

Heat Heat or laser
rc-Si

a-Si:H and rc-Si used as 

photon absorber 

layers for solar cells and 

active layer in TFTs

amorphous silicon recrystallized silicon
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Cyclohexasilane-Enabled Printed Silicon 

Potential Benefits in the Field of Printed Flexible Electronics

• Superior and proven electronic characteristics (vs. organic 

semiconductors)

• Improved shelf-life using “neat” ink (vs. doped Si-

nanoparticle/ liquid silane)

• Lower temperature transformation to a-Si:H (plastic substrates)

•Other potential applications: solar cells, transistors

Si
6
H

12
(l)    printed circuits (5 um) via 

Collimated Aerosol Beam-Direct Write Technology



Electrospinning SiNWs from Si6H12-based Inks

Si

Si

Si Si

Si

Si
H

H

H

H

H
HH

H

HH
H H

- H2

1) electrospin

2) heat

Si nanofibers as Li Ion Battery Anode
1) >10-fold increase in energy density 

compared to graphite

2) d<100 nm, amorphous structure

3) scalable process

4) low cycle loss

-(SiH2)n-

based 

precursor

mixture

e--spin
statistical mixturesnanowire

Co-polymers

surface energy,

phase miscibility

core-shell nanowirecore-shell nanowire

Potential for New Copolymer Physical Chemistry
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Optical Micrographs of Printed Silicon via CAB-DW  
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Having Si6H12 Enables: Printing Silicon Lines  



PECVD a-Si Deposition Rates

Si6H12 with H2 Dilution Is Superior
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34th IEEE Photovoltaics Specialist Conference, pp. 1758-1760



Liquid Silane Precursors to Printed Silicon
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SnO2:F on Glass

p-type a-Si:H (57 nm)

n-type a-Si:H (81 nm)

Ag paste

Film thicknesses < 200 nm
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J. Non-Cryst. Solids, 2008, 354, 2623-2626
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