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Background

B-Hydrosilylation of Acrylonitrile and Acrylates
CH,=CH-X + HSIiCl, - CI;Si-CH,CH,-X
X =CN, COOR
Catalyzed by Cu, Co halides or oxides with diamines

High yields, regiospecific



Looking for Intermediates in the Catalysis Reaction

' —— tmeda:SiCl;H
Me,N NMe, T FSICls 3

Abundant literature on monoamine adducts of silanes,
very little on diamine and triamine adducts



(tmeda)SIHCI,

Structural features

H-Si-Cl (3 £ 90.2%; 92.9°
H-Si-Cl, £ 175.5°
N-Si-N £ 85.0°

d(Si-H) = 1.363A [CI,Si-H 1.454 calcd]
d(Si-Cl 5 5)) = 2.205; 2.152; 2.202
d (Si-Ny 5 ) = 2.075; 2.087

Less stable isomer by ~16 kj/mol is formed
(using enSiH,Cl, as model in MP2, MP4 calcns)

Dominant trend in 5 & 6 coordinate silanes is for more electronegative atoms to
be trans



(tmeda)SiCl;H

Attack at least hindered face produces final stereochemistry



S Improve solubility with teeda? Yes, but with REDISTRIBUTION!

/ \ + 2HSICI; »  (teeda)SiH,Cl, + SiCl,
Et,N NEt,

(teeda)SiH,CI, is nonflammable. Deliquesces in air
A very useful synthetic equivalent to H,SICl,:
(teeda)SIH,Cl, + 2RMgX - R,SIH, >90%

(teeda)SiH,Cl, + 2RO*M- > (RO),SiH, >80%



Structural Features of (teeda)SiH,Cl,

d(Si-H) =1.266 A: 1.314 d (Si-N)=2.134:2.126 d (Si-Cl) = 2.223: 2.233

H,-Si-H, £ 163.4° H,-Si-Cl, £ 94.9°  N,-Si-N, £ 84.8°
[SICI,H, calcd 1.469] [SiCl,H, e.d. 2.02]

Kinetic product is favored



S129 NMR data

Complexing of simple chlorosilanes with diamines
leads to very large Si-H coupling constants (Hz)

392 (tmeda)SiHCIl, 368 SiHClI,

404 (teeda)SIH,Cl, 288 SiH,CI,



NS Moving on to triamines

H,SICl, : Complexation + displacement with N-methyl and N-ethyl groups

R | R\ 1t
R\ I R\N H CI CI-
N - N
[ + 2H,SiCl, ( .
R = Me, Et 71>
N N-R ’ —R
RO/ R R/Nd/N\R







Reactions with tetraamines led to the complexation
of only 3 of the 4 amines, no evidence of
tetradentates



NEt,

(

Et

pedeta

.

CH,Cl,
40 Deg. /48 h

N NEt,

Cyclohexasilane SigH,, Chemistry
Amine-promoted displacement and redistribution:

Si-Si bond formation

CH,CI, / Hexane
'

+ 2HSICl;

RT /5 min

B Et2 1+
\ | S
( ‘ Cl + S|C|4
N7 | VNEt,
_ ) LiAIH, _
ether

bp.~220 C
(80 ° C/10 mTorr)
mp. 18 °C
p 0.97 g/mL

S.-B. Choi, B.-K. Kim, P. Boudjouk, D.G. Grier, J. Am. Chem. Soc. 2001, 123, 8117.
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X /Sigring = 719.5 (obs.)

720.0 (cal.)
o cl cl cl
| C|s| cl S'/CI \s cl
— — I\C| | |
\ S|I S \ __—Cl | \\\Si— —S||/CI
i C Cl
?\ | S i
|94 [\ ¢
Cl cl cl cl
D3d C2v

The PM3 calculated structure of SizCl,, has
D3d symmetry with Si -Si bond lengths of
2.463 A, and Si-Cl bond lengths of 2.059 A.

Stuger, H.; Janoschek, R. Phophorus, Sulfur,
and Silicon, 1992, 68, 129.
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STRUCTURE

R (Si-Si) = 2.34A (calc), ~2.32A (expt)
R (Si-Cl.g) = 2.10A (calc), ~2.08A (expt)
R (Si-Cl,,) = 3.06A (calc), 3.00A (expt)
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Crystal structures

»"V’ ”}

Si4 ;‘! i /
TRSIS — = %’ 7 4
X \

[pedetasH,SICI]*, [SICl ]~

[pedetaeH,SiBr]*, [SigBry,]”

Selected Bond Lengths of [Si6X14]2'

X=CI, X' =Cl X=Br, X"=Br
Si - X 2.078 2.237
Si- X' 3.000 3.114
Si - Si 2.319 2.345
X - plane of Si6 ring 1.60 1.73
- plane of Si6 ring 1.91 2.05
X -X 3.81 4.100

Feov (Si) =21.17 A, ryg(Si) =2.10 A
Fooy (C1) = 0.99 A, ryg(C1) = 1.80 A: repy (Si-CI) = 2.16 A: rygy(Si-Cl) = 3.90 A)
Feoy (Br) = 1.14 A; rygw(Br) = 1.90 A; roy (Si-Br) = 2.31 A; r,4,,(Si-Cl) = 4.00 A)



'H & 2°Si NMR study in CD,Cl,

_ _ Et
+ U
Et\I.EtH Et N
NQlDCI : CD2C|2 i [
Si Clr + SiCl; = =~ 2HSICl; + N N—-Et
SN’ | N-Et E" /' gy
Et \ H / ‘Et

SiCl,, HSIiCl, and CI,Si:” observed by 2°Si nmr

Complexed, protonated, and free amines observed by *H nmr



Alternate Routes to SigX,, 2

[pedetaeH,SICI]* CI- + SiCl, > 2[pedetasH,SiCI]* [Si;Cl,]*
[pedetaeH,SiCI]* CI- + SiBr, > 2[pedetasH,SiBr]* [SizBr,]*

pedeta + CI;SiH + Ph,PClI > 2[Ph,P]* [Si,Cl,]?*
(good quality crystals)






SisCl,,# Useful Precursor to SigH,, and SizX,,

_ ¥ . HX,RX . LAH .
thSlCIz —_— Ph128|6 3 S|6X12 S|6H12
1.8% 60% >90%
. pedeta : - LAH - X :
Cl;SIH > S|6C|142 SigH 1 “— SigX1o
80% >90% >90%

65%

Approximately 72% yield of SigH,, from CI;SiH



Basic Reactions of Si;Cl,,*

2R* Si,Cl,,~ + xsMeMgBr - Si;Me,,
2R* Si,Cl,,~ + xsPhMgBr - SisPh,,

Yields > 90%
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S, Intermolecular Complexation of Multidentate

F
FPh,Si” SiPh,F

1990, Tamao & Ito
13¢, 19k, 293i NMR, X-ray

1988, Jung
Transport studies

Lewis Acid hosts and Lewis Base Guests

(CH5 « B/Cl\BX C|\ /x\ /C|
2 2 Hg  Hg
r~ (Crizhy
Cl—Sn F—Sn—Cl
k (CHy)n
1987, 1989, Newcomb 1987, Katz 1985, Wuest
11950 NMR, X-ray X-ray X-ray

BioH BioH10
R .F J Hg S
s -

1996, Corriu, X-ray 1992, Hawthorne,
9k, 295§ NMR (-25.56, s) X-ray



AN Dodecachlorocyclohexasilane as a
Multidentate Lewis Acid Host

Si.Cl, + 2RX == R,[Si.Cl,X,]
‘ ?
T C\ic T ? cl /\
" \\|/‘/\\/ X \s/c/ \ /
A \
MR el
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Synthesis of R, [SI;Cl,X,] from Si;Cl,,

Si,Cl, + 2R*X° > 2R*[Si,Cl,X,]

X= Cl, Br, | R = [PedetasH,SiCl], BnEt;N and Ph,P

White crystals, yield: 75 - 95%

Compound C/H(/N) (Cal) C/H(/N) (Found)
X = CI, R = H,SiCl+pedeta 26.22/5.50/ 6.55 26.25/5.42/6.45
X = Br, R = BnEt;N 27.43/3.90/2.46 27.22/13.75/2.39

X = Br,R=Ph,P 40.24/2.81 39.32/2.81

X=1R=Ph,P 37.77/2.64 36.44/2.54



&) 295i NMR Data

29S| (ppm) = -22.05 ([pedetasH,SiCI]*, [Si,Cl,,]= in CD,CN)
= -22.71 ([n-Bu,NJ*, [Si,Cl,Br,]7 in CD,CL,)

downfield from that of dodecachlorocyclohexasilane (-2.5 ppm). = Hengge, E. Monatsh. Chem. 1979, 110, 1295.
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o0 =-2.38 ppm -25.56 ppm Corriu, R. J. P. ACIEE. 1996, 35, 324.



29Si-NMR Study of the reaction of SigCly, with n-Bu,NBr

Si6C|12 + 2n'BU4NBr —_—> (n'BU4N)ZSi6CI1zBr2 Wh|te Crystal, hlgh y|6|d

— el T e I

./ \. 2n-BuyNBr _ ./ ! o ./ . .\x—Br
Ny Ny \._:./
o = SiCl, Br 1 Cl 4
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Br—x/. - .\ —Br o/ ; \X—Br o/ | \x—Br
v N
/o
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RN 3
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Possible Mechanism

SiCl;3H + teeda == teedaH™ + CI5Si
ClSi” + SiClH == Si,CItH + CI
Cl,Si~ + Si,ClsH ==Si,C;H + CI
SisCI,H + teeda == Si;Cl,” + teedaH”

2Si.Cl;" —» SigCly4%



Some Properties of CHS

Clear colorless liquid, bp 80°/10-15 torr
Flammable In air

Stores indefinitely at 0°C under nitrogen
Amenable to Direct Write Applications
Can be monochlorinated with HgCl, ...
Thermally stable at 100°C for 12 hr
Loses H rapidly above 220°C



TGA/DSC of Cyclohexasilane

CEE gl
T am

1 ik _1_//:
* TGADSC was conducted in dry box HH - L
* Temp Ramp Rate: 10T/ min : :

* M2 Carrier Gas: 100scocm ﬁ | s

* Sample was in a sealed crucible with a pin hole '*.5

* Black metallic residus was obzerved at the pin hole 11| J |
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CHS is stable at 100 degC for at least 12 h



In Search of Neutral Adducts to the Si-6 Ring

SigCl,, + 2 AdN; - white crystals

simple addition of one or two AdN,?



Surprise!

Si-Si: 2.33-2.35 (A), R (1>25(1)]: 0.0632
Si-Cl: 2.05-2.08 (A) R (all data): 0.2279
Si-Cl': 3.07-3.15 (A) N3-Si6(centroid): 2.043 (A)
Si- N: 3.03-3.20 (A) CI-Si6(centroid): 1.897 (A)

Si-Si-Si: 119.15(8)-120.95(8)°



Comparison of Coordinated Azide and Free Organoazide

Compound Bond Distance (A) Angles (deg.)

N1-N2 N2-N3 C-N1-N2 NI1-N2-N3

C-N1
[AdN; SiCl, CI]  1523(8)  1.21(1)  1.112(8) 116.7(7)  174.4(7)

[HBPZF,JCu-N,Ad2  1.509(4)  1.219(4) 1.136(4) 116.1(3)  173.1(3)

MeN, P 1.472 1.244 1.162 115.2 172.5

N1 N2 N3

a: Dias, H. V. R. et al, Inorg. Chem., 2000, 39, 3894. C
b: Nguyen, M. T, et al, J. Phys. Chem., 1996, 100, 6499, /
the data are calculated results.



Inverse Sandwich Chemistry
Addition of Tolunitrile to Si;Cl,,

N U
>\< X >\< | o AN
i X / CH,Cl X NP RN, X
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X=Cl(1), Br(2) X = CI (3), Br (4)
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N SigH, readily transforms to a-Si:H and rc-Si

Cyclohexasilane

Heat or UV irradiation

» Polysilane

Heat or laser

amorphous silicon

a-Si:H and rc-Si used as
photon absorber
layers for solar cells and
active layer in TFTs

recrystallized silicon
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Cyclohexasilane-Enabled Printed Silicon

SiH, () =2 printed circuits (5 um) via
Collimated Aerosol Beam-Direct Write Technology

Potential Benefits in the Field of Printed Flexible Electronics

e Superior and proven electronic characteristics (vs. organic
semiconductors)

 Improved shelf-life using “neat” ink (vs. doped Si-
nanoparticle/ liguid silane)

 Lower temperature transformation to a-Si:H (plastic substrates)

Other potential applications: solar cells, transistors



Si nanofibers as Li lon Battery Anode

2) heat

1) electrospin .
> )4 e -‘:‘-_’,W Yo

1) >10-fold increase in energy density
compared to graphite
2) d<100 nm, amorphous structure

3) scalable process
4) low cycle loss

Potential for New Copolymer Physical Chemistry

e’-spin

'(SiHZ)n'
based
precursor
mixture

nanowire statistical mixtures

core-shell nanowire Co-polymers

surface energy,
S5  phase miscibility

HE YL L EE
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Having SigH,, Enables: Printing Silicon Lines
Optical Micrographs of Printed Silicon via CAB-DW

After UV

After UV + 350 °C
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PECVD a-Si Deposition Rates
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SigH,, with H, Dilution Is Superior

34" |EEE Photovoltaics Specialist Conference, pp. 1758-1760
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Liquid Silane Precursors to Printed Silicon

First Diode

10"
107

Current density (mA/cm’)
o

Ag paste

p-type a-Si:H (57 nm)

*  Printed diode
= PECVD diode
after Spear et al.

y=logJ/logV  y=5.8-»

*

0.01 0.1 1

Voltage (V)

10

First Transistor

Film thicknesses < 200 nm

J. Non-Cryst. Solids, 2008, 354, 2623-2626
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