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A THREE-DIMENSIONAL KINETIC THEORY OF 
CONTINUOUS-BEAM STABILITY * 

Tai-Sen E Wangt, LANL, Los Alarnos, NM 87545, USA 

Abstract this work will be helpful in the exploring and understand- 
ing of beam stability in non-axisymmetric geometry. 

This work is a three-dimensional stability study based on 
the modal analysis for a continuous beam of Kapchinskij- 
Vladimirskij (KV) distribution. The analysis is carried out 
self-consistently within the context of linearized Vlasov- 
Maxwell equations and electrostatic approximation. The 
emphasis is on investigating the coupling between longi- 
tudinal and transverse perturbations in the high-intensity 
region. The interaction between the transverse modes sup- 
ported by the KV distribution and those modes sustainable 
by the cold beam is examined. We found two classes of 
coupling modes that would not exist if the longitudinal and 
the transverse perturbations are treated separately. The ef- 
fects of wall impedance on beam stability is also studied 
and numerical examples are presented. 

INTRODUCTION 

In a customary stability analysis of a continuous beam in 
an accelerator or storage ring, longitudinal and transverse 
effects are treated separately, an approximation that is valid 
because space-charge forces are relatively weak and char- 
acteristic frequencies differ by orders of magnitude. For 
a very intense beam like the one in the proposed heavy- 
ion fusion facility, the space-charge forces are large and all 
frequencies are of the order of the plasma frequency, the 
separated treatment of longitudinal and transverse pertur- 
bations may not be applicable. Such a concern was raised 
more than two decades ago in the heavy ion fusion studies. 
Since then, some investigations have been exploited in at- 
tempt to address the issue by improving the earlier stability 
theories for laminar beams or nearly laminar beams. In a 
study of two-dimensional, axisymmetric perturbations in a 
beam of KV distribution, an instability caused by the cou- 
pling between the longitudinal and transverse motion was 
discovered in theory.[ I] Later computer simulations con- 
firmed the prediction and found this kind of instability to 
be a mechanism for energy exchange between the longitu- 
dinal and transverse motions in beams with high anisotropy 
in temperatures.[2-4] These findings and many fine papers 
published afterward@] 11 mark a success in exploring the 
three-dimensional beam stability. However, to date, the rig- 
orous theory, though not necessarily computer simulations, 
is still left in the axisymmetric geometry and the three- 
dimensional theory remains to be improved. The purpose 
of this work is to extend the earlier investigation of axisym- 
metric modes in a KV beam to a full three-dimensional sta- 
bility study. It is hoped that the approach and the results of 
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THEORETICAL MODEL 

We consider a continuous, nonrelativistic beam of circu- 
lar cross section with radius a and constant particle density 
po propagating inside a conducting pipe of radius b and 
arbitrary wall impedance. A cylindrical coordinate sys- 
tem (r, (p, z )  is chosen such that the beam is propagating 
in the positive z direction and the z axis coincides with 
the central axis of the beam. The equilibrium state of the 
beam is maintained by a constant linear external transverse 
focusing force which can be represented as Mvir where 
M is the mass of a beam particle and v, is the betatron 
frequency in the absence of the beam's self-field. Tak- 
ing the self-field of the beam into account, one finds the 
relation v2 = vi - ( w i / 2 ) ,  between the effective beta- 
tron frequency of particles, v, and the plasma frequency, 
wp = ( 4 n q ' p 0 / M ) ~ / ~ ,  where q is the charge of a beam 
particle. We assume the equilibrium distribution of beam 
particles in the phase space is described by the distribution 
function fo(x, v) that is a product of the KV distribution in 
the transverse direction and a delta function of the longitu- 
dinal speed, Le. 

fo(x,v) = $s[v: - v"u2 - r2)]6,(v, - 'uo) , (1) 

where v i  = v: +v$, v,., 'up and 'u, are the particle's radial, 
azimuthal and the axial speeds, respectively, v, is the aver- 
aged axial speed of particles, and S(z) is the delta function. 

STABILITY ANALYSIS 

The stability study here is carried out within the context 
of the Vlasov-Maxwell equations and the electrostatic ap- 
proximation for small perturbations evolving in the linear 
regime. Thus, we consider small perturbations in the dis- 
tribution function j@l(x, v, t) and in the electric potential 
41 (x, t) described by the linearized Vlasov-Poisson equa- 
tions 

and 

~ 2 4 ~  = -47qSm Sm Sm fl(x, v, t ) ~  . (3) 
-m -cQ -m 

Assuming the perturbed qucneties vary in space and 
time according to { f1, 41} = { f, +}ei(wt+m~p-ke),  the lin- 
earized Vlasov-Poisson equation can be solved by integrat- 
ing over the unperturbed particle orbit to yield the follow- 
ing differential-integra1 equation in the region of r < a ,  
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where 61 = & [ v i  - v2(a2 - ?) I ,  (1 = (WI/V) sin(v.r), 
Ez = rcos(vT), fl = w - kw, is the Doppler-shifted 
frequency, r’ = (e: + 6; + ~ w ~ & & / w I ) ~ / ~ ,  and m = 0, 
1,2, , . . denotes the azimuthal harmonic number. The right 
hand side of Eq, (4) is zero in the region of a < r 5 b. 

Expanding the perturbed electric potential in Eq. (4) as a 
sum of Jacobi polynomials P/m”o’(x) according to 

we can derive a recursion relation 

w, = a2k2 __ [ 1 + (?) dB’(m’ “‘1 , (8) 
2(m 4- 21 + 1) aa 
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Bl(rn, a)  = id €!+E C O P  zPp(o’”)(cos 2z)dz , (9) 

and a! = Cl/u. Applying the proper boundary conditions at 
r = a together with Eq. (6) leads to the dispersion relation 

where the ratio AljAo can be expressed in terms of infinite 
determinants or a continuous fractions, and 

io(.) N L(kr)Km(ICb) - L ( I c b ) G ( k r )  
- i Z [ l , ( k r ) ~ ~ ~ ( k b )  - ~ ~ ( k r ) ~ A ( k b ) ]  , (11) 

is the potential external to the beam derive from solving 
Eq. (4) in the region of a < r 5 6. Here, In($) and 
K,,(z) are the nth order modified Bessel functions of the 
first and the second kinds, respectively, the prime indicates 
the derivative with respect to the argument, 2 = wZ/ (ck ) ,  
2 is the wall impedance, and c is the speed of light. 

For k = 0, the recursion relation (6) reduces to the dis- 
persion relation Uj = 0 for the transverse modes discussed 

by Gluckstern before.[l2] When rn = 0, the Jacobi poly- 
nomial becomes Legendre polynomials and the dispersion 
relation (10) reduces to the dispersion relation for axisym- 
metrical modes studied previously in Ref. 1. Taking the 
limit of v -+ 0 in Eq. (lo), one finds the cold-beam disper- 
sion relation derived long time ago.[l3] The customary dis- 
persion relation of the “usual dipole mode”[ 141 in a contin- 
uous nonrelativistic beam without axial momentum spread 
can be obtained from Eq. (10) by considering the limit of 
Icb << 1 f o r m =  1. 

The roots of the dispersion relation (10) fall into three 
classes: (i) the ones that approach the pure transverse 
modes, i.e., the solutions of Uj = 0, when k + 0, (ii) 
the “high-frequency coupling modes” having the limit of 
fl t nv when wp -+ 0, and (iii) the “low-frequency cou- 
pling modes” with s2 --+ 0 when wp 4 0. Both types 
of “coupling modes” are fully three-dimensional pertur- 
bations and therefor vanish when IC = 0 or r n  = 0 or 
when the longitudinal and the transverse perturbations are 
treated separately. The high-frequency coupling modes do 
not exist in the axisymmetric perturbations, and the low- 
frequency coupling modes exist only in the perturbations of 
even and zero m. For the low-frequency coupling modes, 
f12 is roughly proportional to the azimuthal average of the 
perturbed field. The “usual transverse mode” found in 
the customary analyses[l4] are similar to the lowest radial 
modes in class (i). When there is no strong necessity to 
distinguish the roots among the solutions of uj = 0, we 
shall use the notation Tm,j to represent the whole family 
of solutions associated with Uj = 0 for the mth azimuthal 
harmonic. The usual transverse modes will be referred to 
as the Tm,0 modes, the high-frequency coupling modes will 
be designated as Cm,j modes, and the low-frequency cou- 
pling modes will be referred to as Lm,n modes for n 2 1, 
in the order of their first appearance in solving the disper- 
sion relation using the (2n - 1) x (2n - 1) determinants. 

NUMERICAL EXAMPLE 

Here, we present a numerical example of the solutions to 
the dispersion relation (10) for some low radial modes as- 
sociated with the dipole (rn = 1) perturbation. Readers are 
referred to Ref. 1 for the numerical results of the axisym- 
metric modes. We consider only the case of b/a = 1.5 and 
Ica = 1 in order to narrow down the parameter space. The 
infinite determinants in the dispersion relation have to be 
truncated to finite ranks for a practical numerical computa- 
tion. We limit our study to the first 16 transverse modes, i.e 
up to the  TI,^ modes, obtainable in the computation using 
the 3 x 3 truncation of the infinite determinants. The roots 
are computed using the determinants truncated at the fourth 
rank for improved accuracy. We have calculated Q/vo from 
v/vo = 0 to v/vo = 1. The real part of Q/v, is shown in 
Fig. 1 as a function of tune depression v/vo. The high- 
intensity, low-frequency region is shown in Fig. 2, where 
the real part of Q2/v,” is plotted as a function of v/vo. 

As shown in Fig. 1, that for all modes, the values of 



Q/uo start from the solutions of Uj = 0 (j = 1,2 ,  and 3 
here), i.e. from 1,3 ,5 ,  and 7, at 11 = u,, and decrease when 
the beam intensity increases. When u -+ 0, the T1,o mode 
approaches the cold-beam limit, while the Cllu, of the up- 
per T1,z and T1,i modes approach 2, and the frequencies of 
all other modes approach zero. 
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Figure 1: The real part of O/u0 for some m = 1 modes as 
a function of u/uo for lca = 1.0, b/a = 1.5, and Z = 0. 

Figure 2: The real part of O2 /u: for some m = 1 modes as 
a function of u/uo in the low-frequency, high tune depres- 
sion region for ka = 1.0, b / a  = 1.5, and Z = 0. 

Mode coupling appears in the high-density, low fre- 
quency region as confluences of modes where two or more 
modes have the same real part of frequency. Up to the 
3 x 3 truncation of the infinite determinants, three con- 
fluences are found: the confluence of T1,o and Ti,2 near 
u = 0.38u0, the confluence of C ~ J  and 7 ' 1 , ~  between u = 0 
and v = 0.26u0, and the confluence of two upper T1,3 
modes between u = 0.121~~ and u = 0 . 5 2 ~ ~ .  The frequen- 
cies in the confluent regions form complex conjugate pairs 
indicating possible instability. In addition, the lower 7'1 ,I 
and two lower C ~ , Z  modes are found to be unstable in the 
high-intensity region. When varying the wall impedance, 
we found that only the usual dipole mode, the T1,o mode, 
is appreciably influenced. The maximal growth rate occurs 
near v M 0 as expected. In the case considered here, we 
found that for T1,o mode, the maximum of IIm(Q/v,)( has 

the values of 0.0,0.034,0.066,0.092 for 2 = 0.0,~.1,0.2, 
and 0.3, respectively. 

CONCLUSIONS 

We have studied the three-dimensional stability of a con- 
tinuous beam of KV distribution. The analysis is car- 
ried out self-consistently within the context of linearized 
Vlasov-Maxwell equations and electrostatic approxima- 
tion. Mode confluence is found to occur in the high- 
intensity region indicating possible instability. A few other 
modes are also found to be unstable in the high-intensity 
region. Since not all instability in a KV beam are realistic, 
computer simulations are suggested for further investiga- 
tion. Two classes of coupling modes are discovered. These 
coupling modes would not exist if the longitudinal and the 
transverse perturbations are treated separately, The effects 
of wall impedance on beam stability is also studied, The 
results indicate that only the usual transverse modes are ap- 
preciably affected by the wall impedance. 
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