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Abstract

This work is a three-dimensional stability study based on
the modal analysis for a continuous beam of Kapchinskij-
Vladimirskij (KV) distribution. The analysis is carried out
self-consistently within the context of linearized Vlasov-
Maxwell equations and electrostatic approximation. The
emphasis is on investigating the coupling between longi-
tudinal and transverse perturbations in the high-intensity
region. The interaction between the transverse modes sup-
ported by the KV distribution and those modes sustainable
by the cold beam is examined. We found two classes of
coupling modes that would not exist if the longitudinal and
the transverse perturbations. are treated separately. The ef-
fects of wall impedance on beam stability is also studied
and numerical examples are presented,

INTRODUCTION

In a customary stability analysis of a continuous beam in
an accelerator or storage ring, longitudinal and transverse
effects are treated separately, an approximation that is valid
because space-charge forces are relatively weak and char-
acteristic frequencies differ by orders of magnitude. For
a very intense beam like the one in the proposed heavy-
ion fusion facility, the space-charge forces are large and all
frequencies are of the order of the plasma frequency, the
separated treatment of longitudinal and transverse pertur-
bations may not be applicable. Such a concern was raised
more than two decades ago in the heavy ion fusion studies.
Since then, some investigations have been exploited in at-
tempt to address the issue by improving the earlier stability
theories for laminar beams or nearly laminar beams. In a
study of two-dimensional, axisymmetric perturbations in a
beam of KV distribution, an instability caused by the cou-
pling between the longitudinal and transverse motion was
discovered in theory.[1] Later computer simulations con-
firmed the prediction and found this kind of instability to
be a mechanism for energy exchange between the longitu-
dinal and transverse motions in beams with high anisotropy
in temperatures.[2-4] These findings and many fine papers
published afterward[5-11] mark a success in exploring the
three-dimensional beam stability, However, to date, the rig-
orous theory, though not necessarily computer simulations,
is still left in the axisymmetric geometry and the three-
dimensional theory remains to be improved. The purpose
of this work is to extend the earlier investigation of axisym-
metric modes in a KV beam to a full three-dimensional sta-
bility study. It is hoped that the approach and the results of

* Research supported by Los Alamos National Laboratory under the
auspices of the US Department of Energy.
T TWANG@LANL.GOV

this work will be helpful in the exploring and understand-
ing of beam stability in non-axisymmetric geometry.

THEORETICAL MODEL

We consider a continuous, nonrelativistic beam of circu-
lar cross section with radius a and constant particle density
po propagating inside a conducting pipe of radius b and
arbitrary wall impedance. A cylindrical coordinate sys-
tem (r, ¢, z) is chosen such that the beam is propagating
in the positive 2 direction and the 2 axis coincides with
the central axis of the beam, The equilibrium state of the
beam is maintained by a constant linear external transverse
focusing force which can be represented as M vér where
M is the mass of a beam particle and v, is the betatron
frequency in the absence of the beam’s self-field. Tak-
ing the self-field of the beam into account, one finds the
relation v? = 1§ ~ (w2/2), between the effective beta-
tron frequency of particles, v, and the plasma frequency,
wp, = (4mq*po/M)'/2, where g is the charge of a beam
particle. We assume the equilibrium distribution of beam
particles in the phase space is described by the distribution
function fo(x, v) that is a product of the KV distribution in
the transverse direction and a delta function of the longitu-
dinal speed, i.e.

fo(x,v) = %J[vi ~ V¥ a? ~ )], (v —vo), (1)

where v3 = v? +v2, vy, v, and v, are the particle’s radial,
azimuthal and the axial speeds, respectively, v, is the aver-
aged axial speed of particles, and d(z) is the delta function.

STABILITY ANALYSIS

The stability study here is carried out within the context
of the Vlasov-Maxwell equations and the electrostatic ap-
proximation for small perturbations evolving in the linear
regime. Thus, we consider small perturbations in the dis-
tribution function f1(x,v,t) and in the electric potential
#1(x, t) described by the linearized Vlasov-Poisson equa-
tions
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Assuming the perturbed quantities vary in space and
time according to { f1, ¢1} = { f, p}ei(@t+me—k), the lin-
earized Vlasov-Poisson equation can be solved by integrat-
ing over the unperturbed particle orbit to yield the follow-
ing differential-integral equation in the region of r < a,

dv 0f; q v dfo
dt  dv M ¢1'6v’ @
and
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where 8, = 6[v2 — v%(a? — 2)], &1 = (vi/v)sin(vT),
&y = reos(vr), @ = w — kv, is the Doppler-shifted
frequency, r' = (£ + £3 + 2v,&:€2/v1 )2, and m = 0,
1,2,... denotes the azimuthal harmonic number. The right
hand side of Eq. (4) is zero in the regionof a < r < b.
Expanding the perturbed electric potential in Eq. (4) as a

sum of Jacobi polynomials Pl(m’o) (z) according to
(" = (m,0) 2r?
-(G) rermt(-F), ©
we can derive a recursion relation
WiAip1 + (Wi +Wis + U)A+ Wi Ay =0, (6)
forl = 1 2 3

Y (=1*Gy,
U: = 2(m+20) + (42 [Bioi(m, 0) — Bi(m, )], (7

, where G is indenpednt of r, A, =
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0

and @ = Q/v. Applying the proper boundary conditions at
r = o together with Eq. (6) leads to the dispersion relation

a dd)o W()A1
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(10)

where the ratio A; / Ay can be expressed in terms of infinite
determinants or a continuous fractions, and

bo(r) ~ Lin(kr) m(kb) Iim (kb) K (7)
i Z I (k) KL, (kb) — Ko (kr) I, (kD)) , (11)

= m—i—(u:jp) [1-Bo(m, )] +Wo+——

r=a

is the potential external to the beam derive from solving
Eq. (4) in the region of a < r < b. Here, I () and
K, (z) are the nth order modified Bessel functions of the
first and the second kinds, respectively, the prime indicates
the derivative with respect to the argument, 2 = wZ/(ck),
Z is the wall impedance, and ¢ is the speed of light.

For k = 0, the recursion relation (6) reduces to the dis-
persion relation U; = 0 for the transverse modes discussed

by Gluckstern before.[12] When m = 0, the Jacobi poly-
nomial becomes Legendre polynomials and the dispersion
relation (10) reduces to the dispersion relation for axisym-
metrical modes studied previously in Ref. 1. Taking the
limit of v — 0 in Eq. (10), one finds the cold-beam disper-
sion relation derived long time ago.[13] The customary dis-
persion relation of the “usual dipole mode”[14] in a contin-
wous nonrelativistic beam without axial momentum spread
can be obtained from Eq. (10) by considering the limit of
kb <« 1form=1.

The roots of the dispersion relation (10) fall into three
classes: (i) the ones that approach the pure transverse
modes, i.e., the solutions of U; = 0, when k — 0, (ii)
the “high-frequency coupling modes” having the limit of
2 — nv when w, — 0, and (iii) the “low-frequency cou-
pling modes” with & — 0 when w, — 0. Both types
of “coupling modes” are fully three-dimensional pertur-
bations and therefor vanish when k = 0 or m = 0 or
when the longitudinal and the transverse perturbations are
treated separately. The high-frequency coupling modes do
not exist in the axisymmetric perturbations, and the low-
frequency coupling modes exist only in the perturbations of
even and zero m. ‘For the low-frequency coupling modes,
02 is roughly proportional to the azimuthal average of the
perturbed field.. The “usual transverse mode” found in
the customary analyses[14] are similar to the lowest radial
modes in class (). When there is no strong necessity to
distingnish the roots among the solutions of U/; = 0, we
shall use the notation T, ; to represent the whole family
of solutions associated with U; = 0 for the mth azimuthal
harmonic. The usual transverse modes will be referred to
as the Th,, o modes, the high-frequency coupling modes will
be designated as C,,, ; modes, and the low-frequency cou-
pling modes will be referred to as L., » modes forn > 1,
in the order of their first appearance in solving the disper-
sion relation using the (2n — 1) x (2n — 1) determinants.

NUMERICAL EXAMPLE

Here, we present a numerical example of the solutions to
the dispersion relation (10) for some low radial modes as-
sociated with the dipole (m = 1) perturbation. Readers are
referred to Ref. 1 for the numerical results of the axisym-
metric modes. We consider only the case of b/a = 1.5 and
ka = 1 in order to narrow down the parameter space. The
infinite determinants in the dispersion relation have to be
truncated to finite ranks for a practical numerical computa-
tion. We limit our study to the first 16 transverse modes, i.e
up to the T 3 modes, obtainable in the computation using
the 3 x 3 truncation of the infinite determinants. The roots
are computed using the determinants truncated at the fourth
rank for improved accuracy, We have calculated /v, from
v/v, = 0to v/v, = 1. The real part of /v, is shown in
Fig. 1 as a function of tune depression v/v,. The high-
intensity, low-frequency region is shown in Fig. 2, where
the real part of (22/12 is plotted as a function of v/,

As shown in Fig. 1, that for all modes, the values of



/v, start from the solutions of U; = 0 (§ = 1,2, and 3
here), i.e. from 1, 3, 5, and 7, at v = v,, and decrease when
the beam intensity increases. When v — 0, the T o mode
approaches the cold-beam limit, while the /v, of the up-
per 712 and T’y ; modes approach 2, and the frequencies of
all other modes approach zero.
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Figure 1: The real part of /v, for some m = 1 modes as
a function of /v, for ka = 1.0, b/a = 1.5,and Z = 0.
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Figure 2: The real part of Q2 /»2 for some m = 1 modes as
a function of /v, in the low-frequency, high tune depres-
sion region for ka = 1.0, b/a = 1.5, and Z = 0.

Mode coupling appears in the high-density, low fre-
quency region as confluences of modes where two or more
modes -have the same real part of frequency. Up to-the
3 x 3 truncation of -the infinite determinants, three con-
fluences are found: the confluence of T ¢ and 71 5 near
v = 0.38u,, the confluence of C 1 and T} p between v = 0
and v = 0.26w,, and the confluence of two upper 773
modes between v = (.12v, and v = 0.52v,. The frequen-
cies in the confluent regions form complex conjugate pairs
indicating possible instability. In addition, the lower T} ;
and two lower C'; 2 modes.are found to be unstable in the
high-intensity region. When varying the wall impedance,
we found that only the usual dipole mode, the Ty o mode,
is appreciably influenced. The maximal growth rate occurs
near v = 0 as expected. In the case considered here, we
found that for T} o mode, the maximum of |Im(£2/v,)| has

the values of 0.0, 0.034, 0.066, 0.092 for £ = 0.0, 0.1, 0.2,
and 0.3, respectively.

CONCLUSIONS

We have studied the three-dimensional stability of a con-
tinuous beam of KV distribution. The analysis is car-
ried out self-consistently within the context of linearized
Vlasov-Maxwell equations and electrostatic approxima-
tion. Mode confluence is found to occur in the high-
intensity region indicating possible instability. A few other
modes are also found to be unstable in the high-intensity
regioni. Since not all instability in a KV beam are realistic,
computer simulations are suggested for further investiga-
tion. Two classes of coupling modes are discovered. These
coupling modes would not exist if the longitudinal and the
transverse perturbations are treated separately. The effects
of wall impedance on beam stability is also studied. The
results indicate that only the usual transverse modes are ap-
preciably affected by the wall impedance,
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