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Quantum Simulations of Physics Problems

Rolando Somma, Gerardo Ortiz, Emanuel Knill, and James Gubernatis
Los Alamos National Laboratory, Los Alamos, USA
(Dated: June 6, 2003)

Abstract
If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently
simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue
that a QC could solve some relevant physical “questions” more efficiently. The existence of one-to-one
mappings between different algebras of observables or between different Hilbert spaces allow us to represent
and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain
how these mappings can be performed, and we show quantum networks useful for the efficient evaluation

of some physical properties, such as correlation functions and energy spectra.

PACS numbers: Keywords: quantum mechanics, quantum computing, identical particles, spin systems, generalized

Jordan-Wigner transformations



I. INTRODUCTION

Quantum simulation of physical systems on a QC has acquired importance during the last
years since it is believed that QCs can simulate quantum physics problems more efficiently than
their classical analogues [1-4]: The number of operations needed for deterministically solving
a quantum many-body problem on a classical computer (CC) increases exponentially with the
number of degrees of freedom of the system.

In quantum mechanics, each physical system has associated with it a language of operators
and an algebra realizing this language, and can be considered as a possible model of quantum
computation [3]. As we discussed in a previous paper [5], the existence of one-to-one mappings
between different languages (e.g., the Jordan-Wigner transformation [6, 7] that maps fermionic
operators onto spin-1/2 operators) and between quantum states of different Hilbert spaces allows
the quantum simulation of one physical system by any other one. For example, a liquid nuclear
magnetic resonance QC (NMR) can simulate a system of *He atoms (hard-core bosons) because
an isomorphic mapping between the two algebras of observables exists.

The existence of mappings between operators allows us to construct quantum networks from
sets of elementary gates, to which we map the operators of our physical system. An important
remark is that these mappings can be performed efficiently: we need a number of steps that scales
polynomially with the system size. However, this fact alone is not sufficient to establish that
any quantum problem can be solved efficiently. One needs to show that all steps involved in
the simulation (i.e., preparation of the initial state, evolution, measurement, and measurement
control) can be performed with polynomial complexity. For example, the number of different
eigenvalues in the two-dimensional Hubbard model scales exponentially with the system size, so
QC algorithms for obtaining its energy spectrum will also require a number of operations that
scales exponentially with the system size [5].

Generically, given a physical system over which we have quantum control, its operator alge-
bra can be associated with a possible model of computation [5, 8]. In this paper, we consider
the simulation of any physical system by the standard model of quantum computation (spin-1/2
system), since this might be the language needed for the practical implementation of the quantum
algorithms (e.g., NMR). Therefore, the complexity of the quantum algorithms is analyzed from
the point of view of the number of resources (elementary gates) needed for their implementation in

the language of the standard model. If another model of computation were used, one would follow



the same qualitative steps (presented in this paper) although the mappings and network structure
would be different.

The main purpose of this manuscript is to present a pedagogical review of previous works
([3, 5]) on the simulation of physical phenomena using a QC, including a new section explaining
the simulation of systems of particles obeying canonical bosons’ commutation relations. We or-
ganized the paper in the following way: In section 1I we describe the standard model of quantum
computation (spin-1/2 system). Section III shows the mappings between physical systems gov-
erned by a generalized Pauli’s exclusion principle (fermions, etc.) and the standard model, giving
examples of algorithms for the first two steps (preparation of the initial state and evolution) of
the quantum simulation. In section IV we develop similar steps for the simulation of quantum
systems whose language has an infinite-dimensional representation, thus, there is no exclusion
principle (e.g., canonical bosons). In section V we explain the measurement process used to ex-
tract information of some relevant and generic physical properties, such as correlation functions
and energy spectra. We conclude with a discussion about efficiency and quantum errors (section

VI) and a summary about the general statements (section VII).

II. STANDARD MODEL OF QUANTUM COMPUTATION

In the standard model of quantum computation, the fundamental unit is the qubit, represented
by a two level quantum system with states of the form |a) = a|0)+b|1). For a spin-1/2 particle, for
example, the two “levels” are the two different orientations of the spin, |1) = |0) and |[|) = |1). In
this model, the algebra assigned to a system of N-qubits is built upon the Pauli spin-1/2 operators

ol, o) and o7 acting on the j-th qubit (individual qubit). The commutation relations for these

N
operators satisfy an € su(2); algebra defined by (u, v, A = z,y, 2)
=1

[,

0—5] - 27;5]’]96;111/\0{\7 (1)

where [A, B] = AB—BA and €, is the totally anti-symmetric Levi-Civita symbol. Sometimes it

is useful to write the commutation relations in terms of the raising and lowering spin-1/2 operators

A= =R 1o
of = =L, @)

Any computation on a QC is represented by a unitary operator U that evolves some initial state

in a way that satisfies the time-dependent Schrodinger equation for some Hamiltonian H (). Any
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unitary operation (evolution) U applied to a system of N qubits can be implemented on a QC
by decomposing it into single qubit rotations RZ(??) = it by an angle ¢ about the p axis,
and two qubits Ising interactions R,; ,x = giwoiot (These elementary operations constitute a
set of elementary gates). That this decomposition is possible is an important result of quantum
information. It implies that with the given elementary gates one can perform universal quantum
computation. Other, equivalent sets of elementary gates can be chosen. For example, we could also
perform universal quantum computation with single qubit rotations and C-NOT gates [9] or even
with different control Hamiltonians. The crucial point is that we need to have quantum control
over those elementary operations in the real physical system. The complexity of a computation
is given by the number of (elementary) gates used. Which universal gate set is used does not
significantly affect the complexity of a computation, provided that the gates act on at most two
qubits at a time.

In the following, we will write down our algorithms in terms of single qubit rotations and two
qubits Ising interactions, since this is the language needed for the implementation of the algo-
rithms, for example, in a liquid NMR QC. If we used a different set of local, universal elementary
gates, our main results still hold but with modified quantum networks.

As an example of such decompositions, we consider the unitary operator U(t) = e'*, where
H = aolo?o3 represents a time-independent Hamiltonian. After some simple calculations [3, 5]

we decompose U into elementary gates (one qubit rotations and two qubits interactions) in the

following way

cr 1 3 i, 1.2, ,~ 1 _ . ,x 1.3 =&
14005 [t zaaza_,te 130r i3 0:0: 130

@ w

'3 (3)

e

This decomposition is shown in Fig. 1, where the quantum network representation is displayed.
In the same way, we could also decompose an operator U’ (t) = e iy oloyt using similar steps but

replacing o <+ o7 in the right hand side of Eq. 3.

III. SIMULATION OF FERMIONIC SYSTEMS

As discussed in the Introduction, quantum simulations require simulations of systems with
diverse degrees of freedom and particle statistics. Fermionic systems are governed by Pauli’s
exclusion principle, which implies that no more than one fermion can occupy the same quantum

state at the same time. In this way, the Hilbert space of quantum states that represent a system of
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FIG. 1: Decomposition of the unitary operator U (t) = e into elementary single qubit rotations and

two qubits interactions. Time ¢ increases from left to right.

fermions in a solid is finite-dimensional (2 for spinless fermions, where N is the number of sites
or modes in the solid), and one could imagine in the existence of one-to-one mappings between
the fermionic and Pauli’s spin-1/2 algebras. Similarly, any language which involves operators
with a finite-dimensional representation (e.g., hard-core bosons, higher irreps of su(2), etc.) can
be isomorphically mapped onto the standard model language [6-8].

In the second quantization representation, the (spinless) fermionic operators c} (¢;) are defined
as the creation (annihilation) operators of a fermion in the j-th mode (7 = 1,---, N). Due to
the Pauli’s exclusion principle and the antisymmetric nature of the fermionic wave function under

the permutation of two fermions, the fermionic algebra is given by the following commutation



relations
{cie} =0, {c,¢j} = 6 “)
where {, } denotes the anticommutator (i.e., {A, B} = AB + BA).

The Jordan-Wigner transformation [6, 7] is the isomorphic mapping that allows the description

of a fermionic system by the standard model

j—1
c; — ( —cri) ol (&)
=1

j—1
> <H _ag) o, (©)

1=1
where (TL are the Pauli operators defined in section II. One can easily verify that if the operators
aL satisfy the su(2) commutation relations (Eq. 1), the operators c} and c¢; obey Egs. 4.

It is important to remark that the Jordan-Wigner transformation is an isomorphic mapping be-
tween operator algebras and is independent of the Hamiltonian of the fermionic system we want to
simulate. Different Hamiltonians establish different connections (connectivity) between fermionic
modes. Historically, Eqs. 5 and 6 correspond to lattices in one space dimension. Nevertheless,
it is also valid for lattice systems in any dimension, since the set of modes 7 is countable. In
particular, the set of all ordered p-tuples of integers can be placed in one-to-one correspondence
with the set of integers. For example, the simulation of a two dimensional fermionic lattice system
can be done by re-mapping each mode (/,m) into a new set of modes as j = m + (I — 1)N,,
where [l = 1--- N,] and [m = 1--- N,] are integer numbers that refer to the position of a site in
the lattice, and N, and N, are the number of sites (modes) in the = and y direction respectively.
The point is, however, that the Hamiltonian in the new mode-label connects sites separated by
distances of order O(N, ), but the complexity of the simulation remains polynomial. In particular,
the simulation of the two dimensional Hubbard model is shown in Ref. [5].

We now need to show how to simulate a fermionic system by a QC. Just as for a simulation on a
CC, the quantum simulation has three basic steps: the preparation of an initial state, the evolution
of this state, and the measurement of a relevant physical property of the evolved state. We will

now explain the first two steps, postponing the third until section V.



A. Preparation of the initial state

In the most general case, any quantum state |¢)) of N, fermions can be written as a linear

combination of Slater determinants |¢, )

L
= g |$a), (7
a=1
where
N,
|6a) = [ ] ¢l Ivac) @®)
j=1

with the vacuum state |vac) defined as the state with no fermions: c;jvac) = 0Vj. In the spin
language, |vac) = |}l --- ).

The commutation relations of fermionic operators shown in Eqgs. 4, where cJr T Tc if i #
J, imply that the Slater determinants |¢,) are antisymmetric under the permutation of any two
fermions.

We can easily prepare the states |¢,) by noticing that the quantum gate, represented by the
unitary operator

U, = '3 enten) ©)

when acting on the vacuum state, creates a particle in the m-th mode. In other words, U,,|vac) =
e'2 ¢! |vac). Making use of the Jordan-Wigner transformation (Egs. 5 and 6), we can write the

operators U, in the spin language

L (10)
The successive application of N, similar unitary operators will generate the state |¢,) up to an
irrelevant global phase.

A detailed preparation of the fermionic state |¢)) = EL: 9a |@a) can be found in a previous work
[3]. The basic idea is to use L extra (ancilla) qubits, thogl perform unitary evolutions controlled in
the state of the ancillas, and finally perform a measurement of the z-component of the spin of the
ancillas. In this way, the probability of successful preparation of |¢) is 1/L. (We need of the order
of L trials before a successful preparation.)

Another important case is the preparation of a Slater determinant in a different basis than the

one given before
Nc

6g) = [ [ ! [vac), (11)
1

Jj=
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where the fermionic operators d;-’s are related to the operators c} through the following canonical

transformation

FACAS (12)

with d' = (di,db,---.dy), @' = (cl,d,---,cl,), and M is an N x N Hermitian matrix.
Making use of Thouless’s theorem [10], we observe that one Slater determinant evolves into the
other, |¢g) = U|¢.), where the unitary operator U = =€ M T can be written in spin operators
using the Jordan-Wigner transformation and can be decomposed into elementary gates [5], as
described in section II. Since the number of gates scales polynomially with the system size (the
operator 2T M7 is a sum of a number of terms that scales polynomially with V), the state |¢g)

can be efficiently prepared from the state |¢, ), as explained in the next section.

B. Evolution of the initial state

The second step in the quantum simulation is the evolution of the initial state. The unitary evo-
lution operator of a time-independent Hamiltonian H is U (t) = e"**. In general, H = K +V with
K representing the kinetic energy and V' the potential energy. Since we usually have [K, V] # 0,
the decomposition of U(t), written in the spin language through the Jordan-Wigner transforma-
tion (Egs. 5 and 6), in terms of elementary gates (one qubit rotations and two qubits interactions),
becomes complicated. To avoid this problem, we instead use a Trotter decomposition, so the evo-
lution during a short period of time (At = ¢/N with At — 0) is approximated. To order O(At)

(first order Trotter breakup)

N

ut) = [Juay, (13)
g=1

U(At) — HAL _ Ji(K+V)AL | KAt VAL (14)

The potential energy V' is usually a sum of commuting diagonal terms, and the decomposition

VAL

of e into elementary gates is straightforward. However, the kinetic energy K is usually a sum

of noncommuting terms of the form c}ck + c};cj (bilinear fermionic operators), so we need again

to perform a Trotter approximation of the operator e**. As an example of such a decomposition,

i(c;ck—l—c;cj)At

we consider a typical term e (7 < k), when mapped onto the spin language gives

—s(otattoyoy) T (—ob) —soz0f 1 (—ot) —goyoy II (—0ob)
e =j+1 —e =341 e 1=i+1 . (15)



The decomposition of each term on the right hand side of Eq. 15 into elementary gates was
already described in previous work [5]. In section II and Fig. 1, we also showed an example of
such a decomposition for j = 1 and k£ = 3. It is important to mention that the required number of
elementary gates scales polynomially with the length |k — j|. Notice that this step is not necessary
for bosonic systems since no string of o/ operators is involved (see section IV).

The accuracy of this method increases as At decreases, so we might require a large number of
gates to perform the evolution with small errors. To overcome this problem, one could use a Trotter
approximation of higher order in At [11]. Physical Hamiltonians with higher order products of

creation and annihilation operators can also be efficiently simulated.

C. Generalization: simulation of anyonic systems

The concepts described in sections III A and III B can be easily generalized to other more
general particle statistics, namely hard-core anyons. By “hard-core”, we mean that only zero or
one particle can occupy a single mode (Pauli’s exclusion principle).

The commutation relations between the anyonic creation and annihilation operators a! and a;,

are given by

[a’z? ]]6 = [a’z? ]]9_0
la;,al]_y = 8;(1— (e ¥+ 1)ny), (16)
[ni,aj] = 6”(11,

(¢ < j) where n; = a] a;, [A B]g = AB — ¢®BA, with 0 < 0 < 27 defining the statistical angle.
In particular, # = m mod(27) corresponds to canonical spinless fermions, while § = 0 mod(2)
represents hard-core bosons.

In order to simulate this problem with a QC made of qubits, we need to apply the following

isomorphic and efficient mapping between algebras

e W41 e -1 .

I<j 2
ele—l—l e —1
o = [[I— AR (17)
<y
1 i
ng = 5(14—0'1),



where the Pauli operators crfL where defined in section II, and since they satisfy Eq. 1, the corre-
sponding commutation relations for the anyonic operators (Eqgs. 16) are satisfied, too.

We can now proceed in the same way as in the fermionic case, writing our anyonic evolution
operator in terms of single qubit rotations and two qubits interactions in the spin-1/2 language.
As we already mentioned, anyon statistics have fermion and hard-core boson statistics as limit-
ing cases. In the next section we relax the hard-core condition on the bosons and consider the

important case of canonical bosons.

IV. SIMULATION OF BOSONIC SYSTEMS

Quantum computation is based on the manipulation of quantum systems that possess a finite
number of degrees of freedom (e.g., qubits). From this point of view, the simulation of bosonic
systems appears to be impossible, since the non-existence of an exclusion principle implies that
the Hilbert space used to represent bosonic quantum sates is infinite-dimensional; that is, there
is no limit to the number of bosons that can occupy a given mode ;. However, sometimes we
might be interested in simulating and studying properties such that the use of the complete Hilbert
space is unnecessary, and only a finite sub-basis of states is sufficient. This is the case for physical

systems with interactions given by the Hamiltonian

N
H =" ay; blb; + fj futtj, (18)

ij=1

where the operators b! (b,) create (destroy) a boson at site 4, and 7, = b}b, is the number operator;

that is
b;~[|7’Ll,TL2,"',TLi,"',TLN> = Vnz—l_]- |’I’L1,'I”LQ,"',’I’LZ‘—|— ]-7"'777'N>7 (19)
bi|n17n27"'7ni7"'7nN> = VALY |n17n27"'7ni_17"'7nN>7 (20)
ﬁi|nlan27"'ani7"'7nN> = n; |n17n27"',ni7"'anN>7 (21)
where the bosonic state |ny, ng, -+, n;,- -+, ny) represents a quantum state with n; bosons in the
t-th site.

The space dimension of the lattice is encoded in the parameters o;; and 3;; of the Hamiltonian.
Obviously, the total number of bosons Np in the system is conserved, and we restrict ourselves to

work with a finite sub-basis of states, where the dimension depends on the value of Np.
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The corresponding bosonic commutation relations (in an infinite-dimensional Hilbert space)
are

[bi, 6] = 0, [bs, b;] = Gij. (22)
However, if the operators b;’ are restricted to the finite basis of states represented by
{|n1,n2,---,ny) with n; = 0,---, Np}, where Np is the maximum number of bosons per site,
then they have the following matrix representation (see Eq. 19)

t— ]
b=1® -1 b 1 -1 (23)

ith factor

where ® indicates the usual tensorial product between matrices, and the (Np + 1) X (Np + 1)

dimensional matrices 1 and b' are given by

(1 00 - 0\ /0 0 0 0 0\
010 -0 1 0 0 0 0
0 v/2 0 0o 0]. (24)

i1=]0 0 1 ... 0] ,bf=

\O o 0 --. 1/ \O 0 0 --- 4/Np 0/
It is important to note that in this finite basis, the commutation relations of the l_);! differ from the
standard bosonic ones (Eq. 22) [8]

Np+1

7 71— 7 P
[b"bj] =0, [bi7bj] - 5ij |:1 Np!

2

@)NP(E)NP} : (25)

and clearly (b)Ne+1 = 0.

As we mentioned in the Introduction, our goal is to simulate any physical system in a QC
made of qubits. For this purpose, we need to map the bosonic algebra into the spin-1/2 language.
However, since Eqgs. 25 imply that the linear span of the operators BI- and b, is not closed under
the bracket (commutator), a direct mapping between the bosonic algebra and the spin-1/2 algebra
(such as the case of the Jordan-Wigner transformation between the fermionic and spin-1/2 algebra)
is not possible. Therefore, we could imagine in a one-to-one mapping between the bosonic and
spin-1/2 quantum states, instead of an isomorphic mapping between algebras. We will now show
one possible such mapping of quantum states.

We start by considering only the ¢-th site in the chain. Since this site can be occupied with at

most Np bosons, it is possible to associate an /Np 4 1 qubits quantum state to each particle number
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state, in the following way

10); < | Todida - Inp)s
11); < | dotada - dnp)s
12); < | dodatTe - Inp) (26)

|NP>i < | dodida - TNp)i

where |n); denotes a quantum state with n bosons in site i. Therefore, we need N(Np + 1) qubits
for the simulation (where N is the number of sites). In Fig. 2 we show an example of this mapping
for a quantum state with 7 bosons in a chain of 5 sites, where the maximum number of bosons per
site is Np = 3.

By definition (see Eqs. 19, 23, and 24) b! |n); = v/n + 1 |n + 1);, so the operator

Np—1

Bl =Y vVn+1o2i, (27)
n=0

where the pair (n, i) indicates the qubit n that represents the i-th site, acts in the Np—+1 qubits states
of Egs. 26 as BIHO s dnaTadngr o dne)i = V1 Lo o dntasadnge oo Ivp)i- Then, its
matrix representation in this basis is the same matrix representation of bZT in the basis of bosonic

states. Similarly, the number operator can be written

Np n,i
_ o +1
fi; = Z%n = (28)
and act as 7;|lo - dno1Tdnt1 - dnp)i = 7 Lo - dnTagidnse <o - Inp)i-  Notice that
[Bj , Eflvj , o™ = 0, which means that these operators conserve the total z-component of the spin

and, thus, always keep states within the same subspace.
We can now write down the Hamiltonian in Eq. 18 in the spin-1/2 algebra as
N
H=>" a; blb; + f;j Ain, (29)
ij=1

where the operators Bj- (b,) are given by Eq. 27 and 7; by Eq. 28. In this way, we obtain physical
properties of the bosonic system (such as the mean value of an observable, the mean value of the
evolution operator, etc.) in a QC made of qubits. It is important to note that the type of Hamiltonian
given by Eq. 18 is not the only one simulatable using the described method. The only constraint

is a fixed maximum number of bosons per site (or mode).
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[6a) = N1 @ HH2 @ )3 @ )4 @ [THA)s

FIG. 2: Mapping of the bosonic state |@,), of a chain of 5 sites and 7 bosons (Np = 3), into a spin-1/2 state
(Eq. 26).

A. Preparation of the initial state

As in the fermionic case, the most general bosonic state of an N sites quantum system with Np

bosons can be written as a linear combination of product states like

|G = K(B])™ (BE)™ - - (bly)™ |vac), (30)

where K is a normalization factor, n; is the number of bosons at site ¢ (f: n; = Np), and |vac)
is the boson vacuum state (no particle state). Using the mapping deschiT)led in Eq. 26, we can
write the vacuum state in the spin language as |[vac) = [Tod1 - - Inp)1 @ -+ @ [Tod1 - - Invp)n
and (@) = [Lo - Toy - dnp)1 @ -~ @ [do -+ Ty -+~ Invp)w (see Fig. 2 for an example).
Therefore, the preparation of |¢,) in a QC made of qubits is an easy process: only N spins are
flipped from the fully polarized state, where all spins are pointing down.

The preparation of a bosonic initial state of the form |¢) = i Ja |Pa) is realized as in the

a=1

fermionic case. Again, we need to add L ancillas (extra qubits), perform controlled evolutions on

13



their states, and finally perform a measurement of an spin component [3].

B. Evolution of the initial state

The basic idea is to use the first order Trotter approximation (see the fermionic case) to separate
those terms of the Hamiltonian that belong to the kinetic energy K, from the ones that belong to
the potential energy V (H = K+ V, [K,V] # 0), i.e.,

ezHAt ~ ezKAtezVAt' (31)

i 21,23 4
eéaﬁo’yaya_,.t

4
ot

FIG. 3: Decomposition of the unitary operator U (t) = es into single qubit rotations and two

qubits interactions. Time ¢ increases from left to right.

In general, K is a sum of non commuting terms of the form b,tbl + b;bk, and we need to

perform another first order Trotter approximation to decompose it into elementary gates (in the

14



bib,+b1b,)t

spin language). Then, a typical term e’ when mapped onto the spin language (Eq. 27)

gives
, Np 1
exp[— Z \/ (n+1)(n' +1) [(c™FonT1F 4 03"“02‘“"“)(0 I’IU" L JZ"ZU;‘,H’I)
nn’ 0
_l_(o,;m,ka;z—i—l,k . O_Z,ka;z—l—l,k)(a;z’,lo_g’-i-l,l . JZ’,IJ;L’—i—l,l)]], (32)

where Np is the number of bosons. The terms in the exponent of Eq. 32 commute with each other,
so the decomposition into elementary gates becomes straightforward. As an example (see Fig.3),

we consider a system of two sites with maximal one boson per site (Np = 1). We need then

2(1 + 1) = 4 qubits for the simulation, and Eq. 27 implies that b} =o% la}rl and B; = 00_’20};2.

Then, !®kbiT¥5)t becomes

it it it
exp(— 3 —o% 011602612 x exp(=oll ol o 90 %) x exp(—=o? 101 1502012 (33)

8 Y 8 v

17 it it
x exp(goy oy oy iol?) x exp( oyl oh2l?) x exp(— Loy atlot o)

]y g v ] v
% (— it 0,1 _11_0,2 1,2) % (Zt 0,1,_1,1_0,2 1,2)
exp 80 o, 0,0 exp 805” 0, 0,70,%),

where the decomposition of each of the terms in Eq. 33 in elementary gates can be done using the
methods described in previous works [3, 5]. In particular, in Fig. 3 we show the decomposition
of the term exp ( o 101 100’201 2 ), where the qubits were relabeled as (n,7) = n + 25 — 1 (e.g.,
(0,1) — 1).

On the other hand, it is important to mention that the number of operations involved in the
decomposition is not related to the distance between the sites k£ and /, as in the fermionic case (see
section III B). Since typical bosonic Hamiltonians (like the one in Eq. 18) involve a number of

terms which scales polynomially in NV, their simulation complexity will scale polynomially in N

and Np.

V. MEASUREMENT: CORRELATION FUNCTIONS AND ENERGY SPECTRA

In previous work [3, 5] we introduced an efficient algorithm for the measurement of correlation
functions in quantum systems. The idea is to make an indirect measurement; that is, we prepare
an ancilla qubit (extra qubit) in a given initial state, then interact with the system whose properties
one wants to measure, and finally we measure some observable of the ancilla to obtain informa-

tion about the system. In particular, we might be interested in the measurement of dynamical

15



correlation functions of the form
G(t) = (¢|TT AIT Bjo) (34)

where A; and B; are unitary operators (any operator can be decomposed in a unitary operator basis
as A = Z a;A;, B = Z B;iB;), T = e~* i5 the time evolution operator of a time-independent
Hamiltonzian H,and |7,D)Jis the state of the system whose correlations one wants to determine. If we
were interested in the evaluation of spatial correlation functions, we would replace the evolution
operator 1" by the space translation operator. In Fig. 4 we show the quantum network for the
evaluation of G(t). As explained before [3, 5], the initial state (ancilla plus system) has to be
prepared in the quantum state |[+), ® |1) (where a denotes the ancilla qubit and |+) = %).
Additionally, we have to perform an evolution (unitary operation) in the following three steps: i) a
controlled evolution in the state |1) of the ancilla C-B = |0)(0|® I +|1)(1|® B, ii) a time evolution
T, and iii) a controlled evolution in the state |0) of the ancilla C-A = |0)(0| ® A; + |1){1| ® 1.

Finally we measure the observable (20%) = (03 +i0}) = G(t).

L[]
I
N
111
N
=N
11

|11
o
=
>,

[T

FIG. 4: Quantum network for the evaluation of G(t) = (1/1|TTA;[TBJ~ ).

On the other hand, sometimes we might be interested in obtaining the spectrum (eigenvalues) of
a given observable Q (i.e., an hermitian operator). A quantum algorithm (network) for this purpose

was also given in previous work [5]. Again, the basic idea is to perform an indirect measurement
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using an extra qubit (see Fig. 5). Basically, we prepare the initial state (ancilla plus system) |+), ®

|¢), then apply the evolution €'97*5 | and finally measure the observable (203.(t)) = (¢|e‘iét¢).

Since the initial state of the system can be written as a linear combination of eigenstates of Q,
L A

|#) = > Yu |tn), where ,, are complex coefficients and |1, ) are eigenstates of () with eigenvalue

n=0
An, the classical Fourier transform applied to the function of time (203 (t)) gives us A,

L
F(A) = 2m|7[?6(A = An). (35)

n=0

Without loss of generality, we can choose Q = H, with H some particular Hamiltonian.

a L L (20%)

A at
Q0%

FIG. 5: Quantum network for the evaluation of the spectrum of an observable Q

It is important to note that in order to obtain the different eigenvalues of Q, the overlap be-
tween the initial state and the eigenstates of Q must be different from zero. One can use different
mean-field solutions of ) as initial states |¢) depending on the part of the spectrum one wants to

determine with higher accuracy.

VI. ALGORITHM EFFICIENCY AND ERRORS

An algorithm is considered efficient if the number of operations involved scales polynomially
with the system size and 1 / ¢, where ¢ is the maximal tolerable error in the measurement of a

relevant property.
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While the evolution step involves a number of unitary operations that scales polynomially with
the system size (such is the case for the Trotter approximation) whenever the Hamiltonian H is
physical (i.e., is a sum of a number of terms that scales polynomially with the system size), the
preparation of the initial state could be inefficient. Such inefficiency would arise, for example,
if the state |¢) defined in Eq. 8 or Eq. 30 is a linear combination of an exponential number of
elementary states (L ~ z”, with N the number of sites in the system and z > 1). However,
if we assume that |¢)) is a polynomial (in N) combination of states, its preparation can be done
efficiently. This construction generalizes to more general coherent states [12]. On the other hand,
the measurement process described in section V is always an efficient step, since it only involves
the measurement of the spin of one qubit, despite the number of qubits or sites N of the quantum
system.

Errors € come from gate imperfections, the use of the Trotter approximation in the evolution
operator, and the statistics in measuring the spin of the ancilla qubit (sections III B, IV B, and V).
A precise description and study of the error sources can be found in previous work [3]. The result
is that the algorithms described here, for the simulation of physical systems and processes, are

efficient if the preparation of the initial state is efficient, too.

VII. CONCLUSIONS

We studied the implementation of quantum algorithms for the simulation of an arbitrary quan-
tum physical system or phenomenon on a QC made of qubits, making a distinction between sys-
tems that are governed by Pauli’s exclusion principle (fermions, hard-core bosons, anyons, spins,
etc.), and systems that are not (e.g, canonical bosons). For the first class of quantum systems,
we showed that a mapping between the corresponding algebra of operators and the spin-1/2 al-
gebra exists, since both have a finite-dimensional representation. On the other hand, the operator
representation of quantum systems that are not governed by an exclusion principle is infinite-
dimensional, and an isomorphic mapping to the spin-1/2 algebra is not possible. However, one
can work with a finite set of quantum states, setting a constraint, such as fixing the number of
bosons in the system. Then, the representation of bosonic operators becomes finite-dimensional,
and we showed that we can write down bosonic operators in the spin-1/2 language (Eq. 27),
mapping bosonic states to spin-1/2 states (Eq. 26) .

We also showed how to perform quantum simulations in a QC made of qubits (quantum net-
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works), giving algorithms for the preparation of the initial state, the evolution, and the measure-
ment of a relevant physical property, where in the most general case the unitary operations have to
be approximated (sections 111 B,IV B).

The mappings explained are efficient in the sense that we can perform them in a number of
operations that scales polynomially with the system size. This implies that the evaluation of some
correlation functions in quantums states that can be prepared efficiently is also efficient, showing
an exponential speed-up of these algorithms with respect to their classical simulation. However,
these mappings are insufficient to establish that quantum networks can simulate any physical prob-
lem efficiently. As we mentioned in the Introduction, this is the case for the determination of the
spectrum of the Hamiltonian in the two-dimensional Hubbard model [5], where the signal-to-noise
ratio decays exponentially with the system size.

Finally, in Fig. 6 a table displays the advantages of simulating some known algorithms with a

QC than with a CC, affirming that QCs behave as efficient devices for some quantum simulations.

Algorithm Speed-Up
Correlation functions Exponential

Factoring (Shor) Superpolynomial

Search (Grover) Quadratic

FIG. 6: Quantum vs. classical simulations. Speed-up refers to the gain in speed of the quantum algorithms

compared to the known classical ones.
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