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Abstract

If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently

simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue

that a QC could solve some relevant physical “questions” more efficiently. The existence of one-to-one

mappings between different algebras of observables or between different Hilbert spaces allow us to represent

and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain

how these mappings can be performed, and we show quantum networks useful for the efficient evaluation

of some physical properties, such as correlation functions and energy spectra.

PACS numbers: Keywords: quantum mechanics, quantum computing, identical particles, spin systems, generalized

Jordan-Wigner transformations
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I. INTRODUCTION

Quantum simulation of physical systems on a QC has acquired importance during the last

years since it is believed that QCs can simulate quantum physics problems more efficiently than

their classical analogues [1–4]: The number of operations needed for deterministically solving

a quantum many-body problem on a classical computer (CC) increases exponentially with the

number of degrees of freedom of the system.

In quantum mechanics, each physical system has associated with it a language of operators

and an algebra realizing this language, and can be considered as a possible model of quantum

computation [3]. As we discussed in a previous paper [5], the existence of one-to-one mappings

between different languages (e.g., the Jordan-Wigner transformation [6, 7] that maps fermionic

operators onto spin-1/2 operators) and between quantum states of different Hilbert spaces allows

the quantum simulation of one physical system by any other one. For example, a liquid nuclear

magnetic resonance QC (NMR) can simulate a system of
�
He atoms (hard-core bosons) because

an isomorphic mapping between the two algebras of observables exists.

The existence of mappings between operators allows us to construct quantum networks from

sets of elementary gates, to which we map the operators of our physical system. An important

remark is that these mappings can be performed efficiently: we need a number of steps that scales

polynomially with the system size. However, this fact alone is not sufficient to establish that

any quantum problem can be solved efficiently. One needs to show that all steps involved in

the simulation (i.e., preparation of the initial state, evolution, measurement, and measurement

control) can be performed with polynomial complexity. For example, the number of different

eigenvalues in the two-dimensional Hubbard model scales exponentially with the system size, so

QC algorithms for obtaining its energy spectrum will also require a number of operations that

scales exponentially with the system size [5].

Generically, given a physical system over which we have quantum control, its operator alge-

bra can be associated with a possible model of computation [5, 8]. In this paper, we consider

the simulation of any physical system by the standard model of quantum computation (spin-1/2

system), since this might be the language needed for the practical implementation of the quantum

algorithms (e.g., NMR). Therefore, the complexity of the quantum algorithms is analyzed from

the point of view of the number of resources (elementary gates) needed for their implementation in

the language of the standard model. If another model of computation were used, one would follow
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the same qualitative steps (presented in this paper) although the mappings and network structure

would be different.

The main purpose of this manuscript is to present a pedagogical review of previous works

([3, 5]) on the simulation of physical phenomena using a QC, including a new section explaining

the simulation of systems of particles obeying canonical bosons’ commutation relations. We or-

ganized the paper in the following way: In section II we describe the standard model of quantum

computation (spin-1/2 system). Section III shows the mappings between physical systems gov-

erned by a generalized Pauli’s exclusion principle (fermions, etc.) and the standard model, giving

examples of algorithms for the first two steps (preparation of the initial state and evolution) of

the quantum simulation. In section IV we develop similar steps for the simulation of quantum

systems whose language has an infinite-dimensional representation, thus, there is no exclusion

principle (e.g., canonical bosons). In section V we explain the measurement process used to ex-

tract information of some relevant and generic physical properties, such as correlation functions

and energy spectra. We conclude with a discussion about efficiency and quantum errors (section

VI) and a summary about the general statements (section VII).

II. STANDARD MODEL OF QUANTUM COMPUTATION

In the standard model of quantum computation, the fundamental unit is the qubit, represented

by a two level quantum system with states of the form
�������	�
������
��������

. For a spin-1/2 particle, for

example, the two “levels” are the two different orientations of the spin,
� �����������

and
� �����������

. In

this model, the algebra assigned to a system of � -qubits is built upon the Pauli spin-1/2 operators���� , ��� and ���! acting on the " -th qubit (individual qubit). The commutation relations for these

operators satisfy an

#$%'&
(�)+*-,/.�0 % algebra defined by ( 13254�276 �98 2;:<2>= )? � �@ 2 �BACED � .�FHG � A7I @ C>J � � J 2 (1)

where
?�K 2ML D �9K LONPL K and I @ C>J is the totally anti-symmetric Levi-Civita symbol. Sometimes it

is useful to write the commutation relations in terms of the raising and lowering spin-1/2 operators� � Q � � � �SR F � � . T (2)

Any computation on a QC is represented by a unitary operator U that evolves some initial state

in a way that satisfies the time-dependent Schrödinger equation for some Hamiltonian V ,XW>0 . Any
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unitary operation (evolution) U applied to a system of � qubits can be implemented on a QC

by decomposing it into single qubit rotations Y � @ ,[Z\0 �^]`_ %ba c+dfeg
by an angle Z about the 1 axis,

and two qubits Ising interactions Y ! ebh !5i �j] %lkmd en d in
. (These elementary operations constitute a

set of elementary gates). That this decomposition is possible is an important result of quantum

information. It implies that with the given elementary gates one can perform universal quantum

computation. Other, equivalent sets of elementary gates can be chosen. For example, we could also

perform universal quantum computation with single qubit rotations and C-NOT gates [9] or even

with different control Hamiltonians. The crucial point is that we need to have quantum control

over those elementary operations in the real physical system. The complexity of a computation

is given by the number of (elementary) gates used. Which universal gate set is used does not

significantly affect the complexity of a computation, provided that the gates act on at most two

qubits at a time.

In the following, we will write down our algorithms in terms of single qubit rotations and two

qubits Ising interactions, since this is the language needed for the implementation of the algo-

rithms, for example, in a liquid NMR QC. If we used a different set of local, universal elementary

gates, our main results still hold but with modified quantum networks.

As an example of such decompositions, we consider the unitary operator U ,XWo0 �p] %rqts
, whereV �vu � (� �Bw! �Bx� represents a time-independent Hamiltonian. After some simple calculations [3, 5]

we decompose U into elementary gates (one qubit rotations and two qubits interactions) in the

following way U ,XWo0 �y] %�zEd|{} d cn d�~} s �	] _ %�� �Ed+~� ] %b� �EdE{n d+~n ] %�� �EdE{} ] %rzEdE{n d cn s ] _ %�� �EdE{} ] _ %b��|dE{n d+~n ] %b� �Ed�~� T (3)

This decomposition is shown in Fig. 1, where the quantum network representation is displayed.

In the same way, we could also decompose an operator U�� ,XW>0 �	] _ %�zEd|{� d cn d+~� s using similar steps but

replacing ������ ��� in the right hand side of Eq. 3.

III. SIMULATION OF FERMIONIC SYSTEMS

As discussed in the Introduction, quantum simulations require simulations of systems with

diverse degrees of freedom and particle statistics. Fermionic systems are governed by Pauli’s

exclusion principle, which implies that no more than one fermion can occupy the same quantum

state at the same time. In this way, the Hilbert space of quantum states that represent a system of
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FIG. 1: Decomposition of the unitary operator ª¬«X­H®°¯²± %rzEd {} d cn d ~} s into elementary single qubit rotations and

two qubits interactions. Time ­ increases from left to right.

fermions in a solid is finite-dimensional ( . # for spinless fermions, where � is the number of sites

or modes in the solid), and one could imagine in the existence of one-to-one mappings between

the fermionic and Pauli’s spin-1/2 algebras. Similarly, any language which involves operators

with a finite-dimensional representation (e.g., hard-core bosons, higher irreps of )f*t,/.m0 , etc.) can

be isomorphically mapped onto the standard model language [6–8].

In the second quantization representation, the (spinless) fermionic operators ³7´� ( ³ � ) are defined

as the creation (annihilation) operators of a fermion in the " -th mode (" �j� 2+µ�µ+µE25� ). Due to

the Pauli’s exclusion principle and the antisymmetric nature of the fermionic wave function under

the permutation of two fermions, the fermionic algebra is given by the following commutation
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relations ¶ ³ % 25³ �+· �	� 2 ¶ ³7´% 25³ �E· � G % � (4)

where

¶ 2 · denotes the anticommutator (i.e.,

¶ K 25L · �¸K L 
 L K ).

The Jordan-Wigner transformation [6, 7] is the isomorphic mapping that allows the description

of a fermionic system by the standard model

³ �º¹ » � _ (¼ ½ &
( N �
½!f¾ � � _ (5)

³ ´� ¹ » � _ (¼ ½ &B( N �
½!7¾¿� � À 2 (6)

where � %@ are the Pauli operators defined in section II. One can easily verify that if the operators� %@ satisfy the )f*t,/.m0 commutation relations (Eq. 1), the operators ³7´� and ³ � obey Eqs. 4.

It is important to remark that the Jordan-Wigner transformation is an isomorphic mapping be-

tween operator algebras and is independent of the Hamiltonian of the fermionic system we want to

simulate. Different Hamiltonians establish different connections (connectivity) between fermionic

modes. Historically, Eqs. 5 and 6 correspond to lattices in one space dimension. Nevertheless,

it is also valid for lattice systems in any dimension, since the set of modes " is countable. In

particular, the set of all ordered Á -tuples of integers can be placed in one-to-one correspondence

with the set of integers. For example, the simulation of a two dimensional fermionic lattice system

can be done by re-mapping each mode ,/Â 2>Ã 0 into a new set of modes as " � Ã 
 ,/Â N � 0 � � ,
where

? Â �Ä� µ+µ+µ+�  D and
? Ã �Å� µ+µ�µ7� � D are integer numbers that refer to the position of a site in

the lattice, and � � and �  are the number of sites (modes) in the
8

and : direction respectively.

The point is, however, that the Hamiltonian in the new mode-label connects sites separated by

distances of order Æ , � � 0 , but the complexity of the simulation remains polynomial. In particular,

the simulation of the two dimensional Hubbard model is shown in Ref. [5].

We now need to show how to simulate a fermionic system by a QC. Just as for a simulation on a

CC, the quantum simulation has three basic steps: the preparation of an initial state, the evolution

of this state, and the measurement of a relevant physical property of the evolved state. We will

now explain the first two steps, postponing the third until section V.
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A. Preparation of the initial state

In the most general case, any quantum state
�ÈÇÉ�

of �ËÊ fermions can be written as a linear

combination of Slater determinants
��Ì z � � ÇÉ�É� ÍÎz`&
(ÐÏ z ��Ì z � 2 (7)

where �ÑÌ z ��� #
Ò¼� &B( ³f´� � Ó��EÔ`� (8)

with the vacuum state
� Ó���Ô��

defined as the state with no fermions: ³ � � Ó��EÔ��Õ�^�SÖ " . In the spin

language,
� Ó��EÔ`���p� ��� µ�µ+µ ��� .

The commutation relations of fermionic operators shown in Eqs. 4, where ³ ´% ³ ´� � N×³ ´� ³ ´% if F¬Ø�" , imply that the Slater determinants
�ÑÌ z � are antisymmetric under the permutation of any two

fermions.

We can easily prepare the states
��Ì z � by noticing that the quantum gate, represented by the

unitary operator U-Ù �	] % � c�Ú�ÛXÜ À Û[ÝÜ\Þ
(9)

when acting on the vacuum state, creates a particle in the Ã -th mode. In other words, U-Ù � Ó��EÔ`�É�] % � c ³ ´Ù � Ó��EÔ`� . Making use of the Jordan-Wigner transformation (Eqs. 5 and 6), we can write the

operators U-Ù in the spin language U-Ù �	] %�� c d Ü} Ü
ß {àeXá { _ d7en T (10)

The successive application of �ËÊ similar unitary operators will generate the state
��Ì z � up to an

irrelevant global phase.

A detailed preparation of the fermionic state
� ÇÉ�É� Íâz`&
( Ï z �ÑÌ z � can be found in a previous work

[3]. The basic idea is to use ã extra (ancilla) qubits, then perform unitary evolutions controlled in

the state of the ancillas, and finally perform a measurement of the = -component of the spin of the

ancillas. In this way, the probability of successful preparation of
�ÈÇÉ�

is
��ä ã . (We need of the order

of ã trials before a successful preparation.)

Another important case is the preparation of a Slater determinant in a different basis than the

one given before �ÑÌ�å��æ� # Ò¼� &
(�ç ´� � Ó��EÔ`� 2 (11)
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where the fermionic operators ç ´� ’s are related to the operators ³ ´� through the following canonical

transformation N¹ ç ´ �	] %'è N¹ ³ ´ (12)

with
N¹ ç ´ � , ç ´ ( 2 ç ´w 2+µ+µ�µ|2 ç ´# 0 , N¹ ³ ´ � , ³f´ ( 25³7´w 2+µ+µ+µE2M³7´# 0 , and é is an � êë� Hermitian matrix.

Making use of Thouless’s theorem [10], we observe that one Slater determinant evolves into the

other,
�ÑÌ�å<�ì� U ��Ì z � , where the unitary operator U �v] _ % N¹ ³ Ý è N¹ ³ can be written in spin operators

using the Jordan-Wigner transformation and can be decomposed into elementary gates [5], as

described in section II. Since the number of gates scales polynomially with the system size (the

operator N¹ ³ ´ é N¹ ³ is a sum of a number of terms that scales polynomially with � ), the state
��Ì�å��

can be efficiently prepared from the state
�ÑÌ z � , as explained in the next section.

B. Evolution of the initial state

The second step in the quantum simulation is the evolution of the initial state. The unitary evo-

lution operator of a time-independent Hamiltonian V is U ,XWo0 �	] %rq-s
. In general, V �	íî
ðï

withí
representing the kinetic energy and

ï
the potential energy. Since we usually have

?�í 2 ï D Ø�v�
,

the decomposition of U ,XWo0 , written in the spin language through the Jordan-Wigner transforma-

tion (Eqs. 5 and 6), in terms of elementary gates (one qubit rotations and two qubits interactions),

becomes complicated. To avoid this problem, we instead use a Trotter decomposition, so the evo-

lution during a short period of time ( ñ W � W ä5ò with ñ W ¹ �
) is approximated. To order Æ , ñ Wo0

(first order Trotter breakup)

U ,XWo0 � ó¼ô &B( U , ñ W>0 2 (13)U , ñ Wo0 �j] %rq3õBs �y] % Ú÷ö À�ø Þ õBs3ù ] % ö õBs ] % ø õBs T (14)

The potential energy
ï

is usually a sum of commuting diagonal terms, and the decomposition

of
] % ø õBs

into elementary gates is straightforward. However, the kinetic energy
í

is usually a sum

of noncommuting terms of the form ³ ´� ³ A 
 ³ ´A ³ � (bilinear fermionic operators), so we need again

to perform a Trotter approximation of the operator
] % ö õBs

. As an example of such a decomposition,

we consider a typical term
] % Ú�Û Ýe Û i À Û Ýi Û e Þ õBs ("ûú9ü ), when mapped onto the spin language gives] _�ýcEÚ d7e} d i} À d7e� d i� Þ i ß {àþ áEeXÿ { Ú _ d þn Þ �y] _ ýc d7e} d i} i ß {àþ áEeXÿ { Ú _ d þn Þ ] _�ýc dfe� d i� i ß {àþ áEeXÿ { Ú _ d þn Þ T (15)
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The decomposition of each term on the right hand side of Eq. 15 into elementary gates was

already described in previous work [5]. In section II and Fig. 1, we also showed an example of

such a decomposition for " ���
and ü � �

. It is important to mention that the required number of

elementary gates scales polynomially with the length
� ü�N�" � . Notice that this step is not necessary

for bosonic systems since no string of � ½! operators is involved (see section IV).

The accuracy of this method increases as ñ W decreases, so we might require a large number of

gates to perform the evolution with small errors. To overcome this problem, one could use a Trotter

approximation of higher order in ñ W [11]. Physical Hamiltonians with higher order products of

creation and annihilation operators can also be efficiently simulated.

C. Generalization: simulation of anyonic systems

The concepts described in sections III A and III B can be easily generalized to other more

general particle statistics, namely hard-core anyons. By “hard-core”, we mean that only zero or

one particle can occupy a single mode (Pauli’s exclusion principle).

The commutation relations between the anyonic creation and annihilation operators
� ´% and

� % ,
are given by ?�� % 2 � � D�� � ?�� ´% 2 � ´� D�� �	� 2?�� % 2 � ´� D _ � � G % � , � N , ] _ % � 
9� 0�� � 0 2 (16)? � % 2 � ´� D � G % � � ´� 2
( F � " ) where � � � � ´� � � , ?��K 2 �L D�� � �K	�L N ] % � �L �K

, with
� ��
 ú .
� defining the statistical angle.

In particular,

 � � mod( .
� ) corresponds to canonical spinless fermions, while


 � �
mod( .
� )

represents hard-core bosons.

In order to simulate this problem with a QC made of qubits, we need to apply the following

isomorphic and efficient mapping between algebras� ´� � ¼ ½ � � ? ] _ % � 
9�. 
 ] _ % � N �. � ½! D � � À 2� � � ¼ ½ � � ? ] % � 
	�. 
 ] % � N �. � ½! D � � _ 2 (17)

� � � �. , �É
 � �! 0 2
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where the Pauli operators � %@ where defined in section II, and since they satisfy Eq. 1, the corre-

sponding commutation relations for the anyonic operators (Eqs. 16) are satisfied, too.

We can now proceed in the same way as in the fermionic case, writing our anyonic evolution

operator in terms of single qubit rotations and two qubits interactions in the spin-1/2 language.

As we already mentioned, anyon statistics have fermion and hard-core boson statistics as limit-

ing cases. In the next section we relax the hard-core condition on the bosons and consider the

important case of canonical bosons.

IV. SIMULATION OF BOSONIC SYSTEMS

Quantum computation is based on the manipulation of quantum systems that possess a finite

number of degrees of freedom (e.g., qubits). From this point of view, the simulation of bosonic

systems appears to be impossible, since the non-existence of an exclusion principle implies that

the Hilbert space used to represent bosonic quantum sates is infinite-dimensional; that is, there

is no limit to the number of bosons that can occupy a given mode " . However, sometimes we

might be interested in simulating and studying properties such that the use of the complete Hilbert

space is unnecessary, and only a finite sub-basis of states is sufficient. This is the case for physical

systems with interactions given by the Hamiltonian

V � #Î% h � &B( u % � � ´% � � 
�� % � �� % �� � 2 (18)

where the operators
� ´% (

� % ) create (destroy) a boson at site F , and
�� % �y� ´% � % is the number operator;

that is � ´% � � ( 2 � w 2+µ+µ�µ|2 � % 2+µ+µ�µ|2 � # � � � � % 
9�×� � ( 2 � w 2�µ+µ+µ`2 � % 
¸� 2+µ+µ+µE2 � # � 2 (19)� % � � ( 2 � w 2+µ+µ�µ|2 � % 2+µ+µ�µ|2 � # � � � � % � � ( 2 � w 2+µ+µ+µE2 � % N � 2+µ+µ�µ|2 � # � 2 (20)�� % � � ( 2 � w 2+µ+µ�µ|2 � % 2+µ+µ�µ|2 � # � � � % � � ( 2 � w 2+µ+µ+µ`2 � % 2+µ+µ+µE2 � # � 2 (21)

where the bosonic state
� � ( 2 � w 2+µ+µ+µE2 � % 2+µ+µ+µ`2 � # � represents a quantum state with � % bosons in theF -th site.

The space dimension of the lattice is encoded in the parameters
u % � and

� % � of the Hamiltonian.

Obviously, the total number of bosons ��� in the system is conserved, and we restrict ourselves to

work with a finite sub-basis of states, where the dimension depends on the value of ��� .
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The corresponding bosonic commutation relations (in an infinite-dimensional Hilbert space)

are ?�� % 2 � � D �	� 2 ?l� % 2 � ´� D � G % � T (22)

However, if the operators
� ´% are restricted to the finite basis of states represented by¶ � � ( 2 � w 2+µ+µ+µ`2 � # � with � % � � 2+µ+µ+µE25��� · , where ��� is the maximum number of bosons per site,

then they have the following matrix representation (see Eq. 19)� � ´% � � ��� µ�µ+µ �	� ��� �� ´�������% �"!
factor

�Õ� �#� µ�µ+µ �	� �
(23)

where
�

indicates the usual tensorial product between matrices, and the , ��� 
 � 0 ê , ��� 
v� 0
dimensional matrices

�$�
and

�� ´ are given by

�$�°�
%&&&&&&&'
� � � µ�µ+µ �� � � µ�µ+µ �� � � µ�µ+µ �
...

...
... µ�µ+µ ...� � � µ�µ+µ �

(*)))))))+ ,
�� ´ �

%&&&&&&&'
� � � µ+µ�µ � �� � � µ+µ�µ � �� � . � µ+µ�µ � �
...

...
... µ+µ�µ ...

...� � � µ+µ�µ � ��� �
(*)))))))+ T (24)

It is important to note that in this finite basis, the commutation relations of the
� � ´% differ from the

standard bosonic ones (Eq. 22) [8]? � � % 2 � � � D �y� 2 ? � � % 2 � � ´� D � G % ��, � N ��� 
	����.- , � � ´% 0 #0/ , � � % 0 #1/32 2 (25)

and clearly , � � ´% 0 #1/ À ( �	�
.

As we mentioned in the Introduction, our goal is to simulate any physical system in a QC

made of qubits. For this purpose, we need to map the bosonic algebra into the spin-1/2 language.

However, since Eqs. 25 imply that the linear span of the operators
� � ´% and

� � % is not closed under

the bracket (commutator), a direct mapping between the bosonic algebra and the spin-1/2 algebra

(such as the case of the Jordan-Wigner transformation between the fermionic and spin-1/2 algebra)

is not possible. Therefore, we could imagine in a one-to-one mapping between the bosonic and

spin-1/2 quantum states, instead of an isomorphic mapping between algebras. We will now show

one possible such mapping of quantum states.

We start by considering only the F -th site in the chain. Since this site can be occupied with at

most ��� bosons, it is possible to associate an ��� 
O� qubits quantum state to each particle number
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state, in the following way �Ñ��� % � ���54;� ( � w µ+µ+µ � # / � %�r�`� % � ���54;� ( � w µ+µ+µ � #1/ � %� . � % � ���54;� ( � w µ+µ+µ � # / � % (26)

...
...� ��� � % � ���54;� ( � w µ+µ+µ � # / � %

where
� � � % denotes a quantum state with � bosons in site F . Therefore, we need � , ��� 
¿� 0 qubits

for the simulation (where � is the number of sites). In Fig. 2 we show an example of this mapping

for a quantum state with 7 bosons in a chain of 5 sites, where the maximum number of bosons per

site is ��� � �
.

By definition (see Eqs. 19, 23, and 24)
� � ´% � � � % �	� � 
9�×� � 
	�|� % , so the operator� � ´% � # / _ (Î6 & 4 � � 
	� � 6 h %_ � 6 À ( h %À 2 (27)

where the pair ,7� 2 FH0 indicates the qubit � that represents the F -th site, acts in the ��� 
Õ� qubits states

of Eqs. 26 as
� � ´% � �84 µ+µ+µ � 6 _ ( � 6 � 6 À ( µ+µ+µ � # / � % � � � 
	� �È�54 µ+µ+µ � 6 � 6 À ( � 6 À w µ+µ�µ � # / � % . Then, its

matrix representation in this basis is the same matrix representation of
� ´% in the basis of bosonic

states. Similarly, the number operator can be written�� % � #1/Î6 & 4 � � 6 h %! 
	�. 2 (28)

and act as
�� % � �54 µ�µ+µ � 6 _ ( � 6 � 6 À ( µ+µ+µ � #0/ � % � � � �54 µ�µ+µ � 6 � 6 À ( � 6 À w µ+µ+µ � #0/ � % . Notice that? � � ´% 2 â # /6 & 4 � 6 h %! D �v�

, which means that these operators conserve the total = -component of the spin

and, thus, always keep states within the same subspace.

We can now write down the Hamiltonian in Eq. 18 in the spin-1/2 algebra asV � #Î% h � &B( u % � � � ´% � � � 
�� % � �� % �� � 2 (29)

where the operators
� � ´% (

� � % ) are given by Eq. 27 and
�� % by Eq. 28. In this way, we obtain physical

properties of the bosonic system (such as the mean value of an observable, the mean value of the

evolution operator, etc.) in a QC made of qubits. It is important to note that the type of Hamiltonian

given by Eq. 18 is not the only one simulatable using the described method. The only constraint

is a fixed maximum number of bosons per site (or mode).
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FIG. 2: Mapping of the bosonic state a$b zdc , of a chain of 5 sites and 7 bosons ( e � ¯gf ), into a spin-1/2 state

(Eq. 26).

A. Preparation of the initial state

As in the fermionic case, the most general bosonic state of an � sites quantum system with ���
bosons can be written as a linear combination of product states like��Ì z ���ih , � ´ ( 0 6 { , � ´w 0 6 c µ+µ�µ , � ´# 0 6�j � Ó��EÔ`� 2 (30)

where
h

is a normalization factor, � % is the number of bosons at site F (

#â%'&B( � % � ��� ), and
� Ó��EÔ`�

is the boson vacuum state (no particle state). Using the mapping described in Eq. 26, we can

write the vacuum state in the spin language as
� Ó��EÔ`�×�^� �84;� ( µ+µ+µ � # / � ( � µ+µ+µ � � �845� ( µ+µ+µ � # / � #

and
��Ì z � � �È�54 µ+µ+µ � 6 { µ+µ+µ � # / � ( � µ+µ+µ � �È�54 µ+µ+µ � 6�j µ+µ+µ � # / � # (see Fig. 2 for an example).

Therefore, the preparation of
��Ì z � in a QC made of qubits is an easy process: only � spins are

flipped from the fully polarized state, where all spins are pointing down.

The preparation of a bosonic initial state of the form
� ÇS�û� Íâz`&B( Ï z �ÑÌ z � is realized as in the

fermionic case. Again, we need to add ã ancillas (extra qubits), perform controlled evolutions on

13



their states, and finally perform a measurement of an spin component [3].

B. Evolution of the initial state

The basic idea is to use the first order Trotter approximation (see the fermionic case) to separate

those terms of the Hamiltonian that belong to the kinetic energy
í

, from the ones that belong to

the potential energy
ï

( V �	í 
 ï
,
?�í 2 ï D Ø�	�

), i.e.,] %rq3õBs ù ] % ö õ
s ] % ø õBs T (31)

klmn
o
p
q
r

sQtu�vxwy v{z| v~}| v~�y��

������� ������
� � � ��� ��

s��L��� � vxw� v~�� sx� � � v{z� v~}� � � � �`����
� �O� � � �Q�� s tu vxw� v{z� � � ����� � ����

� � � � �L��
s`�L� � � v{z� v~}�

s7� � � vxw� v~��

� ����� ��� ��
� � � ������

�
FIG. 3: Decomposition of the unitary operator ª¬«X­H® ¯ ± ý� dE{} d c� d+~� d �} s into single qubit rotations and two

qubits interactions. Time ­ increases from left to right.

In general,
í

is a sum of non commuting terms of the form
� ´A � ½ 
�� ´½ � A , and we need to

perform another first order Trotter approximation to decompose it into elementary gates (in the

14



spin language). Then, a typical term
] % Ú�� Ýi � þ À � Ýþ � i Þ s

when mapped onto the spin language (Eq. 27)

gives���3� ? F[W� #0/ _ (Î6 h 6¡  & 40¢ ,7� 
9� 07,7� � 
9� 0 ? , � 6 h A� � 6 À ( h A� 
 � 6 h A � 6 À ( h A 07, � 6   h ½� � 6   À ( h ½� 
 � 6   h ½ � 6   À ( h ½ 0
 , � 6 h A�Ä� 6 À ( h A N � 6 h A � 6 À ( h A� 07, � 6  rh ½� � 6   À ( h ½ N � 6  rh ½ � 6   À ( h ½� 0 D£D 2 (32)

where ��� is the number of bosons. The terms in the exponent of Eq. 32 commute with each other,

so the decomposition into elementary gates becomes straightforward. As an example (see Fig.3),

we consider a system of two sites with maximal one boson per site ( ��� � �
). We need then.�, � 
y� 0 �¤£

qubits for the simulation, and Eq. 27 implies that
� � ´ ( � � 4 h (_ � ( h (À and

� � ´w � � 4 h w_ � ( h wÀ .

Then,
] % Ú�� Ýi � þ À � Ýþ � i Þ s

becomes���\�
, F[W� � 4 h (� � ( h (� � 4 h w�¸� ( h w� 0 ê

���\�
, F W� � 4 h (� � ( h (� � 4 h w � ( h w 0 ê

���3�
, F W� � 4 h ( � ( h ( � 4 h w� � ( h w� 0 (33)ê ���\�

, F W� � 4 h ( � ( h ( � 4 h w � ( h w 0 ê
���3�

, F[W� � 4 h ( � ( h (� � 4 h w � ( h w� 0 ê
�S�\�

, N F W� � 4 h ( � ( h (� � 4 h w� � ( h w 0ê ���\�
, N F[W� � 4 h (� � ( h ( � 4 h w � ( h w� 0 ê

���\�
, F W� � 4 h (� � ( h ( � 4 h w� � ( h w 0 2

where the decomposition of each of the terms in Eq. 33 in elementary gates can be done using the

methods described in previous works [3, 5]. In particular, in Fig. 3 we show the decomposition

of the term

���\�¦¥ %§ � 4 h (� � ( h ( � 4 h w � ( h w� W�¨ , where the qubits were relabeled as ,7� 2 " 0ª©«� 
 . "ËN �
(e.g.,, � 2 � 0 ¹ �

).

On the other hand, it is important to mention that the number of operations involved in the

decomposition is not related to the distance between the sites ü and Â , as in the fermionic case (see

section III B). Since typical bosonic Hamiltonians (like the one in Eq. 18) involve a number of

terms which scales polynomially in � , their simulation complexity will scale polynomially in �
and ��� .

V. MEASUREMENT: CORRELATION FUNCTIONS AND ENERGY SPECTRA

In previous work [3, 5] we introduced an efficient algorithm for the measurement of correlation

functions in quantum systems. The idea is to make an indirect measurement; that is, we prepare

an ancilla qubit (extra qubit) in a given initial state, then interact with the system whose properties

one wants to measure, and finally we measure some observable of the ancilla to obtain informa-

tion about the system. In particular, we might be interested in the measurement of dynamical
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correlation functions of the form ¬
,XW>0 �i­/Ç�� ® ´ K ´% ® L � ÇS� (34)

where
K % and L � are unitary operators (any operator can be decomposed in a unitary operator basis

as
K �pâ % u % K % , L �Åâ � � � L � ), ®Ä��] _ %rqts

is the time evolution operator of a time-independent

Hamiltonian V , and
� ÇS�

is the state of the system whose correlations one wants to determine. If we

were interested in the evaluation of spatial correlation functions, we would replace the evolution

operator
®

by the space translation operator. In Fig. 4 we show the quantum network for the

evaluation of

¬
,XWo0 . As explained before [3, 5], the initial state (ancilla plus system) has to be

prepared in the quantum state
�l
 �`¯°��� ÇS�

(where
�

denotes the ancilla qubit and
�l
Ë� � ± 4�² À ± ( ²³ w ).

Additionally, we have to perform an evolution (unitary operation) in the following three steps: i) a

controlled evolution in the state
�r�`�

of the ancilla C-B
�����Ð�S­ �<�"�µ´B
 �r�`�S­;���"� L � , ii) a time evolution®

, and iii) a controlled evolution in the state
���Ð�

of the ancilla C-A
�^�����S­H� �[�¸K % 
 �����S­>�Ð�[�«´

.

Finally we measure the observable
­ . � ¯À ���i­ � ¯� 
 F � ¯ �æ� ¬

,XW>0 .
¶ ¶·¹¸ º°»¼½

¶·¹¸ º »¼

¾

¾

FIG. 4: Quantum network for the evaluation of ¿ «X­H®°Á̄À�ÂÃa Ä ´�Å ´% ÄÇÆ � Â c .
On the other hand, sometimes we might be interested in obtaining the spectrum (eigenvalues) of

a given observable
�È

(i.e., an hermitian operator). A quantum algorithm (network) for this purpose

was also given in previous work [5]. Again, the basic idea is to perform an indirect measurement
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using an extra qubit (see Fig. 5). Basically, we prepare the initial state (ancilla plus system)
��
 ��¯d���Ì\�

, then apply the evolution
] %
ÉÊ dSË n �c

, and finally measure the observable
­ . � ¯À ,XWo0 � �Ì­ Ì3��]`_ %
ÉÊ s Ì\�

.

Since the initial state of the system can be written as a linear combination of eigenstates of
�È
,��Ì\�æ� Íâ6 & 45Í 6 �ÈÇ 6 � , where Í 6 are complex coefficients and

� Ç 6 � are eigenstates of
�È

with eigenvalue6 6 , the classical Fourier transform applied to the function of time
­ . � ¯À ,XWo0 � gives us 6 6�Î , 6 0 � ÍÎ 6 & 4 .[� � Í 6 � w G�, 6PNë6 6 0 T (35)

Without loss of generality, we can choose
�È � V , with V some particular Hamiltonian.

ÏÐÐÐÐÐÐÑ ÐÐÐÐÐÐÒ ÓLÔ5ÕÖ0×OØÙÛÚÜÝ Þ#ß
àâáSã#äå ßæ Ý çÇß

FIG. 5: Quantum network for the evaluation of the spectrum of an observable èé .

It is important to note that in order to obtain the different eigenvalues of
�È
, the overlap be-

tween the initial state and the eigenstates of
�È

must be different from zero. One can use different

mean-field solutions of
�È

as initial states
��Ì\�

depending on the part of the spectrum one wants to

determine with higher accuracy.

VI. ALGORITHM EFFICIENCY AND ERRORS

An algorithm is considered efficient if the number of operations involved scales polynomially

with the system size and
�`ä I , where I is the maximal tolerable error in the measurement of a

relevant property.
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While the evolution step involves a number of unitary operations that scales polynomially with

the system size (such is the case for the Trotter approximation) whenever the Hamiltonian V is

physical (i.e., is a sum of a number of terms that scales polynomially with the system size), the

preparation of the initial state could be inefficient. Such inefficiency would arise, for example,

if the state
�ÈÇÉ�

defined in Eq. 8 or Eq. 30 is a linear combination of an exponential number of

elementary states ( ã ù 8 #
, with � the number of sites in the system and

8ëêj�
). However,

if we assume that
� ÇÉ�

is a polynomial (in � ) combination of states, its preparation can be done

efficiently. This construction generalizes to more general coherent states [12]. On the other hand,

the measurement process described in section V is always an efficient step, since it only involves

the measurement of the spin of one qubit, despite the number of qubits or sites � of the quantum

system.

Errors I come from gate imperfections, the use of the Trotter approximation in the evolution

operator, and the statistics in measuring the spin of the ancilla qubit (sections III B, IV B, and V).

A precise description and study of the error sources can be found in previous work [3]. The result

is that the algorithms described here, for the simulation of physical systems and processes, are

efficient if the preparation of the initial state is efficient, too.

VII. CONCLUSIONS

We studied the implementation of quantum algorithms for the simulation of an arbitrary quan-

tum physical system or phenomenon on a QC made of qubits, making a distinction between sys-

tems that are governed by Pauli’s exclusion principle (fermions, hard-core bosons, anyons, spins,

etc.), and systems that are not (e.g, canonical bosons). For the first class of quantum systems,

we showed that a mapping between the corresponding algebra of operators and the spin-1/2 al-

gebra exists, since both have a finite-dimensional representation. On the other hand, the operator

representation of quantum systems that are not governed by an exclusion principle is infinite-

dimensional, and an isomorphic mapping to the spin-1/2 algebra is not possible. However, one

can work with a finite set of quantum states, setting a constraint, such as fixing the number of

bosons in the system. Then, the representation of bosonic operators becomes finite-dimensional,

and we showed that we can write down bosonic operators in the spin-1/2 language (Eq. 27),

mapping bosonic states to spin-1/2 states (Eq. 26) .

We also showed how to perform quantum simulations in a QC made of qubits (quantum net-
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works), giving algorithms for the preparation of the initial state, the evolution, and the measure-

ment of a relevant physical property, where in the most general case the unitary operations have to

be approximated (sections III B,IV B).

The mappings explained are efficient in the sense that we can perform them in a number of

operations that scales polynomially with the system size. This implies that the evaluation of some

correlation functions in quantums states that can be prepared efficiently is also efficient, showing

an exponential speed-up of these algorithms with respect to their classical simulation. However,

these mappings are insufficient to establish that quantum networks can simulate any physical prob-

lem efficiently. As we mentioned in the Introduction, this is the case for the determination of the

spectrum of the Hamiltonian in the two-dimensional Hubbard model [5], where the signal-to-noise

ratio decays exponentially with the system size.

Finally, in Fig. 6 a table displays the advantages of simulating some known algorithms with a

QC than with a CC, affirming that QCs behave as efficient devices for some quantum simulations.

ìîíâï1ð1ñ�òâó�ôöõ ÷ùøûú\ú#üùý�þîøÿ����������
	���
 ��������������
������
� 	���������
���� �"!$#$����%

!&�'	(����#)�+*,���'-�����%

.0/�1 ����������

	(�

!$� 1 ��� 1 ��� 2��$��3�

	(�
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FIG. 6: Quantum vs. classical simulations. Speed-up refers to the gain in speed of the quantum algorithms

compared to the known classical ones.
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