

LA-UR-02-7521

Approved for public release;
distribution is unlimited.

Title: THE EFFECTS OF LENGTH SCALE ON THE
DEFORMATION BEHAVIOR OF METALLIC
MULTILAYERS-PART II: MODELING

Author(s):
Amit Misra (MST-8)
John P. Hirth (MST-8),
Peter M. Anderson (Ohio State Univ.)

Submitted to: MATERIALS RESEARCH SOCIETY FALL MEETING
BOSTON, MA
DEC. 2-5, 2003

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

The Effect of Length Scale on the Deformation Behavior of Metallic Multilayers--Part II: Modeling

Peter M. Anderson*, A. Misra, and J.P. Hirth,

Los Alamos National Laboratory,
Los Alamos, NM 87545

* Ohio State University

Abstract Body:

The experimental observations described in a companion presentation of the same title by Misra et al. highlight that unique, non-bulk rolling textures are achieved in nanoscale multilayered thin films. Specifically, Cu/Nb multilayers deposited with an initial Kudjumov-Sachs orientation relation between Cu and Nb grains and with an initial individual layer thickness of 75nm preserve that relation during rolling. In contrast, samples with micron-scale individual layer thickness do not. To help understand this layer-dependent response, a crystal plasticity model is presented in which the Cu and Nb phases respond by slip on $\{111\}/<110>$ systems in the fcc Cu case, and $\{110\}/<111>$ systems in the bcc Nb phase. Grains within each layered phase are required to plastically deform by a reduction in thickness and corresponding elongation in the rolling direction, with zero plastic strain along the transverse axis. The model also adopts the observation for nano-scale multilayers that the Kudjumov-Sachs orientation relation is preserved; in particular, the $<111>$ Cu and $<110>$ Nb directions remain parallel to the interface normal during rolling. The crystal plasticity model then furnishes the minimum plastic work to deform a grain, as a function of grain orientation. For Cu grains, the plastic work is invariant of grain orientation, provided the critical resolved shear stress is uniform on all fcc slip systems. However, the corresponding plastic work in Nb grains is very dependent on grain orientation and has a strong minimum. This large anisotropy serves as a driving force for Nb grains to rotate around their $<110>$ interface normal, toward the minimum. The resulting prediction for rolling texture in Nb layers agrees well with experimental observations in nanoscale Cu/Nb multilayers.