

LA-UR-02-7277

Approved for public release;
distribution is unlimited.

Title: BULK SUPERCONDUCTIVITY IN PuCoGa5 AT 18.K

Author(s): Joe D. Thompson, MST-10

Submitted to: Invited talk for APS MARCH MEETING AUSTIN, TX MARCH 12, 2003.

Los Alamos NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Bulk Superconductivity in PuCoGa_5 at 18.5 K^+

J. D. Thompson*

Los Alamos National Laboratory

Elemental plutonium is a fascinating metal yet poorly understood. A significant aspect of its complexity is the ambivalent nature of Pu's 5f electrons, which frequently appear to be neither completely localized nor fully itinerant. This issue is emphasized in PuCoGa_5 , the first Pu-based superconductor and with a T_c exceeding 18 K. Though conventional phonon-mediated pairing may be responsible for its superconductivity, this view must be reconciled with three observations: (1) above T_c , the static susceptibility of PuCoGa_5 is Curie-Weiss-like with an effective moment of $0.68 \mu_B$, close to that expected for Pu^{3+} ; (2) its Sommerfeld specific heat coefficient of 77 mJ/moleK^2 indicates that electronic correlations cannot be ignored; and, (3) isostructural UCoGa_5 is a Pauli paramagnet with much smaller Sommerfeld coefficient and is not superconducting above 0.3 K. Rather than a conventional superconductor, PuCoGa_5 appears to be more nearly analogous to the isostructural heavy-fermion superconductor CeCoIn_5 in which antiferromagnetic spin fluctuations mediate Cooper pairing. Also as in CeCoIn_5 , the $T=0$ orbital upper critical field of 74 T in PuCoGa_5 exceeds the Pauli limit by nearly a factor of two. In a scenario of magnetically mediated superconductivity, the almost order of magnitude higher T_c in PuCoGa_5 would be attributed to stronger 5f-ligand hybridization. Perhaps PuCoGa_5 bridges two classes of unconventional superconductors—the heavy-fermion systems and high- T_c cuprates.

⁺ Work performed under the auspices of the US DOE

* with J. L. Sarrao, L. Morales, B. L. Scott, G. R. Stewart, F. Wastin, J. Rebizat, P. Boulet, E. Colineau, and G. H. Lander