
L A - U R - O ~ * - ~ ~ 13
Approved for public release?;
distribution is unlimited.

Title:

Author@) .-

Submifted to:

Enabling Compatibility Between TCP Reno and TCP Vegas

W. Feng and S. Vanichpun

IEEE SAINT 2003

/

Alamos
N A T I O N A L L A B O R A T O R Y

Los Aiamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the U.S.
Depanrnent of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publlsh or reproduce the pubilshed form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to
publish: as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technidai correctness.

Form 836 (8/00)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Enabling Compatibility Between TCP Reno and TCP Vegas*

W. Feng
Computer & Computational Sciences Division

Los Alamos National Laboratory
feng@lanl. gov

Abstract

Despite research showing the superiority of TCP &gas
over TCP Reno, Reno is still the most widely deployed vari-
ant of TCP This predicament is due primarily to the alleged
incompatibility of Vegas with Reno. While Yegas in isolation
performs better with respect to overall network utilization,
stability, fairness, throughput lznd packet loss, and bursti-
ness; its perfarmance is generally mediocre in any environ-
ment where Reno connections exist. Hence, there exists no
incentive for any operating system to adopt TCP Vegas.

In this paper. we show that the accepted (default) con$gu-
ration of ?@as is indeed incompatible with TCP Reno. How-
ever: with a careful analysis qfhow Reno and &gas use buffer
space in routers, Reno and %gas can be compatible with
one another if Vegas is conjigured properly Furthermore,
we show that overall network performance actually improves
with the addition of properly conjigured VegasJlows compet-
ing head-to-head with RenoJlows.

Keywords: TCP Reno, TCP Vegas, congestion control, con-
gestion avoidance, compatibility, fairness, convergence.

1 Introduction

To address a series of congestion collapses, Jacobson pro-
posed a congestion-control mechanism in TCP that later bc-
came known as TCP Tahoe [lo], Since then, many modifica-
tions have been made to TCP, resulting in two more notable
variants - TCP Reno [l 11 and TCP Vegas [3].

TCP Reno, like TCP Tahoe, allows congestion to occur
(Le., induces packet loss) in order to estimate the available
bandwidth in the network. Once packet loss is detected, Reno
recovers by cutting its window size in half. This bchavior
causes a periodic oscillation in the window size; an oscilla-
tion that many next-generation Internet applications do not
tolerate well. Further, recent work shows that this oscillatory
behavior induces chaotic behavior into the network [4,15],
thus adversely affecting overall network performance.

S. Vanichpun
Dept. of Electrical & Computer Engineering

University of Maryland, College Park
sarut@glue .umd. edu

In contrast, TCP Vegas generally performs better with re-
spect to overall network utilization [l, 31, stability [9, 131,
fairness [9,13], throughput and packet loss [1,3], and bursti-
ness [4] when the entire network consists of Vegas-only con-
nections. However, research to date has shown that when
Reno and Vegas perform head-to-head, Reno generally steals
bandwidth from Vegas [1,133. Consequently, while Vegas has
been around for over five years, its adoption has been non-
existent due to perceived incompatibilities between Reno and
Vegas.

With a careful analysis of how Reno and Vegas use buffer
space in routers, we will show that Reno and Vegas can be
compatible with one another if Vegas is configured properly.
Further, overall network performance actually improves with
the addition of properly configured Vegas flows competing
head-to-head with Reno flows, thus encouraging the incre-
mental adoption of Vegas.

2 Congestion-Control Mechanisms

To ensure efficient use of network bandwidth, TCP con-
trols its sending rate based on feedback from the network. In
order to control the sending rate, TCP estimates the avail-
able bandwidth in the network via a bandwidth-estimation
scheme [131. In Tahoe and Reno, the bandwidth-estimation
scheme uses packet losses (as an indication of network con-
gestion) to estimate available bandwidth while Vegas uses the
difference in the expected and actual sending rates.

2.1 TCPReno

While there are no packet losses, Reno continues to in-
crease its window size, and hence sending rate, by one packet
each round-trip time (RTT), thus allowing congestion to even-
tually occur. Reno then detects congestion via packet loss and
recovers from it by halving the size of the sender window (Le.,
halving the sending rate).

2.2 TCPVegas

*This work was supported by the 11,s. Dept. of Energy’s LDRD-ER Pro-
gram and the U.S. Dept. of Energy’s Office of Science SciDAC Program
through Los Alainos National Laboratory contract W-7405-ENG-36.

Vegas enhances Reno by adopting a bandwidth-estimation
scheme that tries to avoid rather than react to congestion.

Specifically, Vegas uses the difference in the expected and
actual flow rates to estimate the available bandwidth in the
network. When the network is uncongested, the actual flow
rate is close to the expected flow rate; otherwise, the actual
rate is smaller than the expected rate, indicating that buffer
space in the network is filling up and that the network is ap-
proaching a congested state. The difference in flow rates can
be translated into the difference between the window size and
the number of acknowledged packets during the RTT, respec-
tively, Le., Di f f = (Expected - Actual) x BaseRTT
where Expected is the expected rate, Actual is the actual
rate, and BaseRTT is the minimum-observed RTT.

To adjust the size of the congestion window (cwnd) ap-
propriately, Vegas uses two threshold values, a: and p (whose
default values are 1 and 3, respectively), to control the adjust-
ment of cwnd at the source host as follows:

cwnd+l i fD i f f < a
cwnd - 1
cwnd

if Dif f > p
otherwise (a 5 Di f f 5 /3)

Conceptually, Vegas tries to keep at least a: packets but no
more than /3 packets queued in the network. Thus, with only
one Vegas connection, the window size of Vegas converges to
a point that lies between window + Q and window + p where
w i n d m is the maximum window size that does not cause any

Selecting a and p holds an implicit tradeoff between net-
work utilization, goodput, and fairness. By using the default
settings for these parameters, Le., Q = 1,p = 3, prior re-
search inadvertently favored Reno over Vegas [8,13].

. queueing.

3 Compatibility of TCP Reno and TCP Vegas

Prior research demonstrates that Vegas (in isolation) gen-
erally performs better than other implementations of TCP [1,
3,4,9, 131. Ahn et al. [I] and Mo et al. [13] also show that
when a Vegas connection competes with a Reno connection,
Vegas does not receive a fair share of bandwidth due to its
conservative congestion-avoidance mechanism.

Here, we show that the “conservative” congestion-
avoidance mechanism is not to blame for Vegas’s inability
to grab a fair share of bandwidth. Rather, the alleged incom-
patibility between Reno and Vegas is due to using the de-
fault (mis)configuration of Vegas parameters, i.e., a = l and
p = 3.

Consider one TCP Vegas connection and one TCP Reno
connection over a bottleneck link. At steady state, the Vegas
connection keeps (on average) approximately Q , 5 p packets
in the queue while the Reno connection tries to gain as much
bandwidth (and queue space) as it can until a packet is lost.
Hence, the number of TCP Reno packets in the queue is 4 , E
[O, B - q,] where B is the buffer capacity at the bottleneck
link. Assuming that the average value of 4, is tj, =
(e.g., uniform distribution), the ratio of Vegas throughput (A .)

2

to Reno throughput (A,) is given by

Thus, when B = 3&,, the ratio of the throughputs is one.
As B increases further, Reno is favored. Hasegawa et al. [8]
provide a more complete analysis of the throughputs when
there are N , Vegas connections and N , Reno connections
competing for the queue space at the same bottleneck link.

3.1 Analysis of Tbo Connections

Consider the case when one Vegas connection and one
Reno connection share a bottleneck link using a droptail
queue. Let the bottleneck link have a transmission rate of
p packetsls and a round-trip propagation delay of r seconds
with queue size B packets. Let qv and g, denote the number
of Vegas packets and Reno packets in the queue, respectively.
Then, in order to allow Vegas to compete with Reno, Vegas
must set its a: and ,B parameters so that Equation (1) is such
that Xu/& M 1.

Let W , d, and D denote the window size (Le., cwnd),
BaseRTT delay, and actual RTT delay of Vegas, respectively.
At steady state, Vegas tries to keep the difference (Dif f) be-
tween its actual throughput (Actual) and expected through-
put (Expected) between a and ,B where Actual = W I D and
Expected = W/d. Then, as noted in Section 2, we calculate
Di f f as follows:

(D - 4 (2) Dif f = (Expected - Actual) . d = W ___
D ’

and interpret Di f f as the number of packets in the queue,
Le., Di f f NN q,.

Let W,,,,,= and W,,,, denote the window sizes of Vegas
and Reno when the queue is full, respectively. Since Vegas
keeps 4v M Q, at all time and Di f f M ij,, we have

or equivalently,

where d = r + l / p and D = r + B / p are the values of
the BaseRTT delay and actual RTT delay of Vegas when the
queue is full, respectively. Therefore, the window size of
Reno when the queue is full is given by

W,,,, = B + p r - W,,,, if d N r. (4)
After the queue is full, the probability that a Reno packet

will be dropped is

(5)
- B - qw -- 4rm,,

Qrma, + Qvmaa B Pr =

and the probability that a Vegas packet will be dropped is

QV,, ‘ I , - iiV
B ’ P v - ------

qr , , , -1.- qv,,.

We now consider two approximations for setting a and p.
Approach 1: We assume that the packets dropped are only
from the Reno connection and consider only the fast retrans-
mit of Reno while ignoring its timeout niechanism. There-
fore, if a Reno packet is dropped, then the Reno window
size WT,,,.. drops to cay. Approach 2: We also consider
the case of a Vegas packet being dropped. Hence, if a Reno
packet is dropped, its window 8;ize evolves the same way as in
Approach 1, else if a Vegas packet is dropped, then the Reno
window size increases by 1.

3.1.1 Approach 1

Figure 1 shows a simulation of‘ one Reno connection and one
Vegas connection at steady state. From this figure, the aver-
age window size of the Reno connection (wr) is

By definition, the average queue size of the Reno connection
is the fraction of w, that is buffered in the queue, Le.,

(8)

Substituting (7) into (8) gives

3B qr = VVr,,,, ’-

4(B $. p r) ’ (9)

where (10) follows from (4) and (3). Now, by setting
and solving for Bv, we get

= 1

Thus, we set M and ,B to the following values:

3 3
7 7

The motivation for setting M to be one less than ,B is two-
fold. First, setting a = ,8 introduces stability problems [2],
i.e., the congestion window oscillates around the equilibrium
value. Second, setting a and ,B too far apart creates a larger
stability region than needed, resulting in connections that can
converge to opposite ends of the stability region, thus affect-
ing fairness [2,9].

a = 1-B - 11 and ,f3 = 1-B].

wr - 35

_.....

Figure 1. Evolution of the Congestion Window

3.1.2 Approach 2

If a Reno or Vegas packet is dropped, the window size of
Reno l@, becomes

Pr + (Wr,,, + 1) ~ u
WTmam w, = -
W,mas

Pr + J+’r,,,Pui

2

- 2 (11) - -
where we assume that W,,,, >> 1 and that p , and p , are
given by (5) and (6). From (1 l), we then approximate the
average window size of Reno (W,) by

As in Section 3.1.1 but with (8) and (12),

Hence, substituting (13) into (1) gives

(14)
- 4% B - - A v - 4(7vB(B +w) -

A, WrmaxB(3B + qq,) 3B2 - 2&B - Bz ’

where (14) follows from (4) and (3). To ensure compatibility
between Reno and Vegas, we again set Xv/X, = 1 and solve
for&, which yields &, ci 0.4641B. Therefore,

M = 10.4641B- 11 and p = 10.4641BJ.

3.2 Analysis of Multiple Connections

In this section, we generalize our two-connection analy-
sis to deal with Nu Vegas connections and N , Reno con-
nections sharing a bottleneck link of p packetls. Let every
connection have a round-trip propagation delay of r seconds
while sharing a bottleneck buffer size of B packets. To en-
sure compatibility between each connection, each connection
must equally share the bottleneck buffer, or equivalently, the

average queue size of each connection must be identical. We
also assume that the connections are synchronous, i.e., at any
given instant in time, each Vegas connection i has queue size
qui M 4;v 5 P V i = 1 , 2 , . . . , N , and each Reno connection j
has the same average queue size qr V j = 1,2, . . . , Nr. Thus,
Vegas should set its a and p parameters so that Q, /ijr M 1.

When the queue is full, the window size of Vegas W,,,, ,
derived from (2), is

which is the same as (3). And similar to (4), we have

NpWrmGx = B + p~ - N,W,,,s if d N T , (16)

where W,,,, is the window size of Reno when the queue is
full. The dropped probabilities for Reno and Vegas are re-
spectively

3.2.1 Approach 1

Using the same approach as in Section 3.1.1, the average win-
dow size (Wr) and the average queue size (qT) of each Reno
connection is given by

respectively. Substituting (16) into (IS), we get

Hence, the ratio of throughputs is given by

- 4NrG - _
3 (B - Nu&) *

(19)

And again, to ensure compatibility between Reno and Vegas,
X,/Xp = 1. Solving for tjU gives

3B
4Nr + 3N, ‘ qtJ =

Thus, we set a! and P as

3B
4NT + 3N,

-lJ and P = 1 3B
a = [

4Nr + 3Nw

3.2.2 Approach 2

As in Section 3.1.1, the window size of each Reno connection
after a dropped packet is given by (1 1), and each average win-
dow size is given by (12). Combining (8), (12), (1 5) , and (1 6)

Substituting the above equation back into (1) gives

- 4NrBG - -
Xr (B - Nuqv,)(3B + q u)

Setting 5 = 1 helps ensure that the Reno and Vegas connec-
tion are compatible. Now, solving for q,, we have

and set the Vegas parameters as follows:

J (4 N r + 3N, - 1)’ + 12NT - (4Nr + 3N, - 1)

2N,
IB-lJ a = l[

and

IBJ
(4N7 + 3Nu - 1)’ + 12NT - (4Nr + 3Nu - 1)

2N,

4 Experiments

To verify our observations made through a’ heuristic anal-
ysis of the behavior of Reno and Vegas, we run two sets of
simulations using the discrete-event simulation ns, version
2.lbSa [14].

4.1 Network Topologies & Parameters

We consider two networks based on the generic topology
shown in Figure 2 and parametric details in Table 1. The first
network comes from [13] to use as a point of reference. The
second network models the grid [7] between Los Alamos and
Sandia National Laboratories.

(KED)

SN
U U

Figure 2. Generic Topology

For all our simulations, each connection starts an FTP ses-
sion at time 0 and ends at 200 seconds with the packet size
fixed at the standard 1500-byte Ethernet size. As in [13], we

Network 1 1 Reference

BL Delay

Table 1. Parameters of Simulated Networks

10
15
25
50
100

measure the number of ACKs that each connection receives
where ACKR and ACKv represent the number of ACKs
from Reno and Vegas, respectively. In the general case of N,
Reno connections and N, Vegas connections, ACK R (resp.
ACKV) show the average number of ACKs over all N, Reno
(resp. N , Vegas) connections.

12,241 13;444 ’ 4 0.910
12,471 13,330 6 0.936
12,868 12,937 10 0.995

’ 12,688 13,091 21 0.969
13.143 12,585 42 1.044

4.2 Reference Network

We use the same network that [131 did in order to (i) con-
firm their results and (ii) confirm our analytic observations
made in Section 3. In confirming our analytic results, we
show that Reno and Vegas are indeed compatible and that
overall network performance improves by distributing band-
width more evenly across all connections while still maintain-
ing high overall throughput.

The remainder of this section examines the performance
of our analytic heuristics in the case of two connections com-
peting head-to-head and in the case of multiple connections
competing. Within each case, we test our analytic heuristics
of Approach 1 and 2,

4.2.1 One Reno vs. One Vegas (Head-to-Head)

The experimental set-up here is similar to [131. In general,
our results confirm the conclusions drawn by [13]. That is, as
the buffer size increases, Reno uses more of the buffer to steal
bandwidth from Vegas as Vegar; is throttled by the “miscon-
figured” a and /3 parameters. In fact, Table 2 shows that in
no case does Vegas get better throughput than Reno and that
as the buffer size increases up to 100, Reno achieves 2 1 times
higher throughput than Vegas.

23,678 11.297

Table 2. Reno vs. Default (Mis)configured Ve-
gas (a = l, p = 3)

Tables 3 and 4 illustrate that with the proper configuration
of a and p, Vegas competes well with Reno. For the smaller

buffer sizes, Vegas performs almost twice as well; this be-
havior occurs due to the aggressive nature of Reno’s conges-
tion control, Le., always increasing its window even though
the buffer space is small. As the buffer sizes get larger and
Vegas’s a and p parameters adapt accordingly, we see that
Reno and Vegas each get their fair share of bandwidth, Le.,
the “fairness ratio” ACKRIACKV M 1. Thus, these simula-
tions confirm that our analytic heuristics from Sections 3.1.1
and 3.1.2 enable Reno and Vegas to be compatible with each
other. In addition, the heuristics enhance overall network per-
formance by distributing bandwidth more evenly across Reno
and Vegas while keeping overall network throughput high.

Buffer I ACKR I ACKv I p I
7 1 9.006 I 16,678 1 3 I 0.540

Table 3. Reno vs. Vegas with a = - 11,
p = L+BJ (Approach 1)

Table 4. Reno vs. Vegas with Q = 10.4641B - 11,
p = 10.4641BJ (Approach 2)

4.2.2 Multiple Reno vs. Multiple Vegas (Fixed Buffer)

The set of tests performed here are identical to those in Sec-
tion 4.2.1 with two exceptions: (i) There are 10 different TCP
connections vying for network bandwidth. (ii) The buffer size
is fixed at 250 packets.

Using the formulas for a and p from Sections 3.2.1
and 3.2.2, we again demonstrate that Vegas can be properly
configured to be compatible with Reno. Tables 5 and 6 show
that the fairness ratio (i.e., ACKR/ACKV) is close to one
in all cases. This is in stark contrast to Table 2 where the fair-
ness ratio is 20.818, meaning that Reno gets that many times
more bandwidth than Vegas.

4.2.3 Multiple Reno vs. Multiple Vegas

In this set of tests, we fix the different types and number of
connections while varying the size of the buffer. And as ev-
idenced by Tables 7 and 8, we again demonstrate that with
a properly configured Vegas, Vegas is compatible with Reno.

dropped, and a subsequent timeout occurs, thus providing
Reno the opportunity to aggressively grab network bandwidth
than Vegas relinquishes. The same reasoning can be used to
explain Table 10 when the buffer size is 200.

0.962

Buffer
100
200

Table 5. N, Reno vs. N,, Vegas with a and ,D via
Approach 1 and B = 250

ACKR ACKv p - R

1,746 3,399 8 0.514
2.571 2.556 17 1.006

I ’ I 1

8 1 2 I 2,542 I 2,622 I 19 I 0.969

300
400
500

Table 6. N, Reno vs. N,, Vegas with a and /3 via
Approach 2 and B = 250

21690 21416 25 1.113
2,648 2,437 34 1.087
2,744 2,321 42 1.182

Except for the first row of each table where Vegas beats Reno,
Reno and Vegas each get their fair share of bandwidth as in-
dicated by the fairness ratio of approximately one in each row
of Tables 7 and 8.

NT
2
4

Nu ACKR ACKv p e
8 223,790 266,824 96 0.839
6 253,251 261.166 89 0.970

Table 7. Five Reno vs. Five Vegas with a and p
via Approach 1

Table 8. Five Reno vs. Five Vegas with a and /3
via Approach 2

4.3 Grid Network

The experimental results for head-to-head competition on
the grid network are shown in Tables 9 and 10. We observe
that all the fairness ratios lie in the interval [0.703,1.465].
These results are in stark contrast to Table 2 where Reno is
run against the default Vegas configuration, resulting in fair-
ness ratios that lie in the interval [1.8 13,20.8 181.

For some cases, e.g., buffer size = 300 in Table 9, Reno
achieves better throughput than Vegas. Why does this hap-
pen? Before steady state is reached, a Vegas packet is

Table 9. Reno vs. Vegas with a = L$B - lJ,
,D = LiBJ (Approach 1)

Table 10. Renovs. Vegas with a = [0.4641B-lJ,
,8 = L0.4641BJ (Approach 2)

Tables 11 through 14 show the experimental results for
multiple TCP connections and different buffer sizes. The re-
sults in these tables closely verify the analytic heuristics that
we developed in Section 3. In fact, with the exception of one
data point, all the fairness ratios lie within 5% of the ideal
fairness ratio of one, i.e., [0.955,1.068].

Table 11. N, Reno vs. N , Vegas with a and p
via Approach 1 and B = 1,000

6 j 4 j 255,889 j 261,131 j 84 i 0.980
8 I 2 I 260.206 I 243.617 I 79 I 1.068

Table 12. N , Reno vs. N , Vegas with a and /3
via Approach 2 and B = 1,000

r p m]
259,961 256.245

Table 13. Five Reno vs. Five Vegas with a and
/3 via Approach 1

Table 14. Five Reno and Five Vegas with a and
/3 by Approach 2

5 Fairness of TCP Reno vs. TCP Vegas

As shown in [5, 6, 121, Reno favors connections with
shorter delays. In contrast, Mo et al. [13] demonstrate that
Vegas does not suffer from this delay bias via a closed, fluid
model and simulation; however, they do not consider the fair-
ness between Reno and Vegas because of the demonstrated
incompatibility of Reno arid Vegas (in its default configura-
tion, i.e,. a = 1 and p = 3). By using the closed, fluid-model
approximation in [131, we graphically illustrate the fairness
of Reno and Vegas at steady state in the bottleneck link.

In the steady state, let W,(t) and Wv(t) be the window
sizes of Reno and Vegas at time 1, respectively. By assuming
that the throughput and the queue size of each connection is
relatively constant, we have

W,(t) = q2(t) -t X i (i) * di , i = T , U , (21)

where A i (t) , i = r, w , q i (t) , i = I’, w and d,, i = T , 2) are the
throughput, queue size, and BaseRTT, respectively, for Reno
and Vegas connections. Moreover, we also have

where p (t) denotes the queueing delay of the bottleneck link
at time t. Let p and B denote the capacity and the buffer size
of the bottleneck link. With large enough B, we assume that
the link is fully utilized, so we have

For simplicity, we let d, = d, = d. BY (23),

(24)
w, + WV - pd p (t) = ---------,

p

Hence, from (2 l), (22), and (24) and given the window size of
Reno is Wr and the queue size of Vegas is 4,; we can compute
the window size ofVegas (W,) at steady state:

Similarly, given W, and q, , we also have

In order to show the stability region of Reno and Ve-
gas, we first note that Vegas keeps its q, between a and
p; hence, its window size will be stable if it lies between
W,(t,a) and Wv(t,/3). Furthermore, the window size of
Reno can be varied as a function of q T (t) where the two ex-
treme cases are qr (t) = 0 and q, (t) = B - q, t . Therefore,

I.ld+B, W,(t) E
[p d - W v (t) , p d + B - Wv(t)] foranygivenW,(t). However,
when Reno incurs a packet loss, its window size is halved.
If multiple losses do not occur, Reno resumes its linear in-
crease up to the maximum value; therefore, we assume that
the size of the Reno window at the stability region lies be-
tween max(p d + B i w u (t) , pd - W,(t)) and pd + B - W,(t).
For convenience, we denote R m a x = pd + B - W , (t) and
Rmin = pd - Wv (t)

As stated above, we plot the graph of the stability region
for one Reno connection versus one Vegas connection over
the “Reference Network” with B = 10. Figure 3 shows
the stability region of two Vegas connections where the line
alphai and betai, i = 1,2 denote { (WI , Wz) IWi - X,d = a }
and { (“1, W 2) IWi - Aid = P } , respectively. Furthermore,
the fairness line is the line such that the window sizes of both
connections are the same, i.e., {(WI, W 2) 1 A 1 = X2) . In this
case, the fairness line passes right through the stability region
(also referred to as the convergence region); hence, by using
only Vegas in the network, all connections get fair through-
put. Figure 4 shows one Reno connection versus one Vegas
connection with default parameters of a = 1 and /3 = 3.
In this case, the convergence region of Reno and Vegas lies
between the lines Rmax , Rmax /2 , alpha and beta. How-
ever, the fairness line hardly passes through the convergence
region; hence, it introduces unfairness, and Reno’s through-
put is higher than Vegas’s. However, when both a and /3 are
set appropriately, Figure 5 shows that the fairness line clearly
goes through the middle of the convergence region.

by (25) and the fact that q,(t) = Wr(t) a)

6 Conclusion

Prior research demonstrated the incompatibility of TCP
Reno and TCP Vegas. In this paper, we showed that the
incompatibility of Reno and Vegas is not inherent to their

0 2 4 6 6 10

w1

Figure 3. Two TCP Vegas Windows with a = I
and p = 3

0 2 4 6 6 i o
wv

Figure 4. TCP Reno (WT) and TCP Vegas (W,,)
Windows with B = 10, a = 1, and P = 3

congestion-control algorithms but an artifact o f misconfigur-
ing Vegas's congestion-avoidance parameters.

In particular, we showed how inappropriate the default val-
ues o f a and P in Vegas are (when in competition with Reno),
explained the relationship of these parameters to variations in
network performance, and demonstrated how to set the pa-
rameters appropriately so that Reno and Vegas are compati-
ble.

References

[I] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of
TCP Vegas:Emulation and Experiment. In Proc. oJACMSIG-
COMM 1995, August 1995.

[2] C. Boutremans and J. L. Boudec. A Note on the Fairness
of TCP Vegas. In Proc. of International Zurich Seminar on
Broadband Communications, February 2000.

[3] L. Brakmo and L. Peterson. TCP Vegas: End to End Conges-
tion Avoidance on a Global Internet. IEEE Journal on Selected
Areas in Communication, October 1995.

[4] W. Feng and P. Tinnakornsrisuphap. The Failure of TCP in
High-Performance Computational Grids. In Proc. oJSC 2000:

W"

Figure 5. TCP Reno (WT) and TCP Vegas (W,,)
with B = 10, a = 3, p = 4, and 3B/7 = 4.285

High-Performance Networking and Computing ConJ, Novem-
ber 2000.

[5] S . Floyd and V. Jacobson. Connection with Multiple Con-
gested Gateways in Packet-Switched Networks, Part 1: One-
Way Traffic. ACM CCR, August 199 1.

[6] S. Floyd and V. Jacobson. Random Early Detection Gateways
for Congestion Avoidance. IEEEACM Transactions on Nel-
working, August 1993.

[7] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Publish-
ers, 1999.

[8] G. Hasegawa, K. Kurata, and M. Murata. Analysis and Im-
provement of Fairness between TCP Reno and Vegas for De-
ployment of TCP Vegas to the Internet, In Proc. of IEEE
ICNP2000, November 2000.

[9] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and Sta-
bility of Congestion Control Mechanisms of TCP. In Proc. of
IEEE INFOCOM1999, March 1999.

[IO] V. Jacobson. Congestion Avoidance and Control. ACM CCR,
August 1988.

[1 11 V. Jacobson. Modified TCP Congestion Avoidance Algorithm.
Technical report, Technical report, April 1990.

[12] A. Mankin. Random Drop Congestion Control. In Proc. of
ACM SIGCOMM 1990, September 1990.

[131 J. Mo, R. J. La, V. Anantharam, and J. Walrand. Analysis
and Comparison of TCP Reno and Vegas. In Proc. of IEEE
INFOCOM 1999, March 1999.

[141 ns. Network Simulator, version 2.1 b8a. http://www.isi.edu/
nsnadns.

[151 A. Veres and M. Boda. The Chaotic Nature of TCP Congestion
Control. In Proc. oJIEEE INFOCOM2000, March 2000.

