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Abstract

Despite research showing the superiority of TCP Vegas
over TCP Reno, Reno is still the most widely deployed vari-
ant of TCP. This predicament is due primarily to the alleged
incompatibility of Vegas with Reno. While Vegas in isolation
performs better with respect to overall network utilization,
stability, fairness, throughput and packet loss, and bursti-
ness; its performance is generally mediocre in any environ-
ment where Reno connections exist. Hence, there exists no
incentive for any operating system to adopt TCP Vegas.

In this paper, we show that the accepted (default) configu-
ration of Vegas is indeed incompatible with TCP Reno. How-
ever, with a careful analysis of how Reno and Vegas use buffer
space in routers, Reno and Vegas can be compatible with
one another if Vegas is configured properly. Furthermore,
we show that overall network performance actually improves
with the addition of properly configured Vegas flows compet-
ing head-to-head with Reno flows.

Keywords: TCP Reno, TCP Vegas, congestion control, con-
gestion avoidance, compatibility, fairness, convergence,

1 Introduction

To address a series of congestion collapses, Jacobson pro-
posed a congestion-control mechanism in TCP that later be-
came known as TCP Tahoe [10], Since then, many modifica-
tions have been made to TCP, resulting in two more notable
variants — TCP Reno [11] and TCP Vegas [3].

TCP Reno, like TCP Tahoe, allows congestion to occur
(i.e., induces packet loss) in order to estimate the available
bandwidth in the network. Once packet loss is detected, Reno
recovers by cutting its window size in half. This behavior
causes a periodic oscillation in the window size; an oscilla-
tion that many next-generation Internet applications do not
tolerate well. Further, recent work shows that this oscillatory
behavior induces chaotic behavior into the network [4, 15],
thus adversely affecting overall network performance.
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In contrast, TCP Vegas generally performs better with re-
spect to overall network utilization [1, 3], stability [9, 13],
fairness [9, 13], throughput and packet loss [1,3], and bursti-
ness [4] when the entire network consists of Vegas-only con-
nections. However, research to date has shown that when
Reno and Vegas perform head-to-head, Reno generally steals
bandwidth from Vegas [1,13]. Consequently, while Vegas has
been around for over five years, its adoption has been non-
existent due to perceived incompatibilities between Reno and
Vegas.

With a careful analysis of how Reno and Vegas use buffer
space in routers, we will show that Reno and Vegas can be
compatible with one another if Vegas is configured properly.
Further, overall network performance actually improves with
the addition of properly configured Vegas flows competing
head-to-head with Reno flows, thus encouraging the incre-
mental adoption of Vegas.

2 Congestion-Control Mechanisms

To ensure efficient use of network bandwidth, TCP con-
trols its sending rate based on feedback from the network. In
order to control the sending rate, TCP estimates the avail-
able bandwidth in the network via a bandwidth-estimation
scheme [13]. In Tahoe and Reno, the bandwidth-estimation
scheme uses packet losses (as an indication of network con-
gestion) to estimate available bandwidth while Vegas uses the
difference in the expected and actual sending rates,

2.1 TCP Reno

While there are no packet losses, Reno continues to in-
crease its window size, and hence sending rate, by one packet
each round-trip time (RTT), thus allowing congestion to even-
tually occur, Reno then detects congestion via packet loss and
recovers from it by halving the size of the sender window (i.e.,
halving the sending rate).

2.2 TCP Vegas

Vegas enhances Reno by adopting a bandwidth-estimation
scheme that tries to avoid rather than react to congestion.



Specifically, Vegas uses the difference in the expected and
actual flow rates to estimate the available bandwidth in the
network. When the network is uncongested, the actual flow
rate is close to the expected flow rate; otherwise, the actual
rate is smaller than the expected rate, indicating that buffer
space in the network is filling up and that the network is ap-
proaching a congested state. The difference in flow rates can
be translated into the difference between the window size and
the number of acknowledged packets during the RTT, respec-
tively, ie., Diff = (Expected — Actual) x BaseRTT
where Ezpected is the expected rate, Actual is the actual
rate, and Base RT'T is the minimum-observed RTT.

To adjust the size of the congestion window (cwnd) ap-
propriately, Vegas uses two threshold values, « and 8 (whose
- default values are 1 and 3, respectively), to control the adjust-
ment of cwnd at the source host as follows:

cwnd+1 ifDiff <«
cwnd —1 ifDiff >p
cwnd otherwise (a < Dif f < ff)

cwnd +

Conceptually, Vegas tries to keep at least o packets but no
more than 3 packets queued in the network. Thus, with only
one Vegas connection, the window size of Vegas converges to
a point that lies between window + « and window + 3 where
window is the maximum window size that does not cause any
queueing.

Selecting o and S holds an implicit tradeoff between net-
work utilization, goodput, and fairness. By using the default
settings for these parameters, ie., a = 1,4 = 3, prior re-
search inadvertently favored Reno over Vegas [8, 13].

3 Compatibility of TCP Reno and TCP Vegas

Prior research demonstrates that Vegas (in isolation) gen-
erally performs better than other implementations of TCP {1,
3,4,9,13]. Ahn et al, [1] and Mo et al. [13] also show that
when a Vegas connection competes with a Reno connection,
Vegas does not receive a fair share of bandwidth due to its
conservative congestion-avoidance mechanism.

Here, we show that the “conservative” congestion-
avoidance mechanism is not to blame for Vegas’s inability
to grab a fair share of bandwidth, Rather, the alleged incom-
patibility between Reno and Vegas is due to using the de-
fault (mis)configuration of Vegas parameters, i.e., @ = 1 and
8 =3

Consider one TCP Vegas connection and one TCP Reno
connection over a bottleneck link. At steady state, the Vegas
connection keeps (on average) approximately 7, < J packets
in the queue while the Reno connection tries to gain as much
bandwidth (and queue space) as it can until a packet is lost.
Hence, the number of TCP Reno packets in the queue is g, €
[0, B — @] where B is the buffer capacity at the bottleneck
link. Assuming that the average value of ¢, is G = B—Eﬁ
(e.g., uniform distribution), the ratio of Vegas throughput (A ;)

to Reno throughput (A,) is given by

N _ G _ 2,

/\r q_r B - Q’U
Thus, when B = 3§, the ratio of the throughputs is one.
As B increases further, Reno is favored. Hasegawa et al. [§]
provide a more complete analysis of the throughputs when
there are N, Vegas connections and N, Reno connections
competing for the queue space at the same bottleneck link.

(M

3.1 Analysis of Two Connections

Consider the case when one Vegas connection and one
Reno connection share a bottleneck link using a droptail
queue. Let the bottleneck link have a transmission rate of
4 packets/s and a round-trip propagation delay of 7 seconds
with queue size B packets. Let ¢, and g, denote the number
of Vegas packets and Reno packets in the queue, respectively.
Then, in order to allow Vegas to compete with Reno, Vegas
must set its ¢ and S parameters so that Equation (1) is such
that Ay /A = 1.

Let W, d, and D denote the window size (i.e., cwnd),
BaseRTT delay, and actual RTT delay of Vegas, respectively.
At steady state, Vegas tries to keep the difference (Dif f) be-
tween its actual throughput (Actual) and expected through-
put (Ezpected) between « and 8 where Actual = W/D and
Ezpected = W/d. Then, as noted in Section 2, we calculate
Dif f as follows:

(D -4
D b
and interpret Dif f as the number of packets in the queue,
ie, Diff =~ q,.
Let W, and W, denote the window sizes of Vegas
and Reno when the queue is full, respectively. Since Vegas
keeps g, = gy, at all time and Dif f ~ g,, we have

D—-d

Diff = (Ezpected — Actual) - d =W 2

‘vaam_-D—:q_'U’
or equivalently,
. D 7+ B/p
va.“, - q'UD_d"—q'U(B__l)/u
T+ B/u .
qv—————~—B/u , ifd=r, 3)

where d = 7 + 1/p and D = 7 + B/p are the values of
the BaseRTT delay and actual RTT delay of Vegas when the
queue is full, respectively. Therefore, the window size of
Reno when the queue is full is given by

w,

Tmax

=B+4ur—-W

Vman

ifd ~ 7. ()

After the queue is full, the probability that a Reno packet
will be dropped is

Dy = Trmas - B - q—v

= = 5
QTma:n + Qvmas B ( )




and the probability that a Vegas packet will be dropped is

qu1nam — q_’U . (6)

Po = E’I‘mam + qvmam B

We now consider two approximations for setting o and £,
Approach 1: We assume that the packets dropped are only
from the Reno connection and consider only the fast retrans-
mit of Reno while ignoring its timeout mechanism. There-
fore, if a Reno packet is dropped, then the Reno window
size Wy, drops to Y—V—gl“—’— Approach 2: We also consider
the case of a Vegas packet being dropped. Hence, if a Reno
packet is dropped, its window size evolves the same way as in
Approach 1, else if a Vegas packet is dropped, then the Reno
window size increases by 1.

3.1.1 Approachl

Figure 1 shows a simulation of one Reno connection and one
Vegas connection at steady state. From this figure, the aver-
age window size of the Reno connection (W) is

W,
_ W’I‘ + S lmaa 3
W= 222 =W, .. 7
r 2 4 Tmam ( )
By definition, the average queue size of the Reno connection
is the fraction of W, that is buffered in the queue, i.e.,

JR— B
o =Wegor ®)
Substituting (7) into (8) gives
3B
G, == VI e 9
qr VT‘mam 4(B + HT) ( )
Substituting (9) into (1), the ratio of the throughputs is
ﬂ o @1/(3 + pu7)
A W,,...3B
44,
= e, 10
3B - 3) 1o

where (10) follows from (4) and (3). Now, by setting ’;—: =1
and solving for g, we get

.3

Qv = ?B

Thus, we set « and £ to the following values:
3 3
a-L?B-—l_I and ,H-[;(;Bj.

The motivation for setting & to be one less than § is two-
fold. First, setting o = £ introduces stability problems [2],
i.e., the congestion window oscillates around the equilibrium
value, Second, setting o and J too far apart creates a larger
stability region than needed, resulting in connections that can
converge to opposite ends of the stability region, thus affect-
ing fairness [2,9].

- +
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Figure 1. Evolution of the Congestion Window

3.1.2 Approach2

If a Reno or Vegas packet is dropped, the window size of
Reno W, becomes

W,
WT‘ = %pr + (W"'mnw + 1)p’U

W .
"%ﬁpr + Wi o Do (11)

12

where we assume that W, > 1 and that p, and p, are
given by (5) and (6). From (11), we then approximate the
average window size of Reno (W) by

W= Ve 2V gy 3520 g
As in Section 3.1.1 but with (8) and (12),
=W = W ot Tl )
Hence, substituting (13) into (1) gives
Ay _ 44,B(B +MT)— _ 4(7qu _ (14)
A Wp..BBB+q) 3B*-2§,B-@’

where (14) follows from (4) and (3). To ensure compatibility
between Reno and Vegas, we again set A, /A, = 1 and solve
for,d, which yields g, ~ 0.4641B. Therefore,

a=|04641B—1| and J = [0.4641B].
3.2 Analysis of Multiple Connections

In this section, we generalize our two-connection analy-
sis to deal with N, Vegas connections and [N, Reno con-
nections sharing a bottleneck link of p packet/s. Let every
connection have a round-trip propagation delay of 7 seconds
while sharing a bottleneck buffer size of B packets. To en-
sure compatibility between each connection, each connection
must equally share the bottleneck buffer, or equivalently, the



average queue size of each connection must be identical. We
also assume that the connections are synchronous, i.e., at any
given instant in time, each Vegas connection ¢ has queue size
0o, ® §y < BVi=1,2,..., N, and each Reno connection j
has the same average queuesize G, V j = 1,2,..., N,. Thus,
Vegas should set its & and § parameters so that 4, /g, = 1.

. When the queue is full, the window size of Vegas W,,._.,
derived from (2), is

. D
vaam = Qum
_T+B/p .
Gy—n——, ifd~r, (15
Bl )

which is the same as (3). And similar to (4), we have

N.W,. =B+ ur — N,W, ifder,  (16)

where W, is the window size of Reno when the queue is
full. The dropped probabilities for Reno and Vegas are re-
spectively

NoGo

and p, = B (17

p _B—quv
" B

3.2.1 Approachl

Using the same approach as in Section 3.1.1, the average win-
dow size (W,.) and the average queue size (§,) of each Reno
connection is given by

Wi,.o + 2opes 3

Tmaz

W= ="
and B -
T — W—-———- = Wr _—, 18
I B+ ur me* 4(B + pr) (18)
respectively. Substituting (16) into (18), we get
[ 3(B - Nv@u)
qr = 4N, . (19)
Hence, the ratio of throughputs is given by
Au 4N, G,
rq (20)

N 3(B - NoGy)

And again, to ensure compatibility between Reno and Vegas,
Ay/ A = 1. Solving for g, gives

_ 3B
©'= 4N, + 3N,
Thus, we set « and 3 as
3B 3B
o=l sy, ~ Y wd A=l

3.2.2 Approach?2

As in Section 3.1.1, the window size of each Reno connection
after a dropped packet is given by (11), and each average win-
dow size is given by (12). Combining (8), (12), (15), and (16)

results in _ _
- (B — Nuy§u)(3B + 4)
! 4N, B '
Substituting the above equation back into (1) gives
Av 4N, Bd,

* (B = NoG)(3B+ )

Setting :\\—: = 1 helps ensure that the Reno and Vegas connec-

tion are compatible. Now, solving for ¢, we have

g = [\/(4Nr +3N, - 1)2 + 12N, — (4N, + 3N, - 1)

2N, 1B,

and set the Vegas parameters as follows:

VAN, 3N, —1)2 + 12N, — (4N, + 3N, — 1)
a=|[ N,

1B-1)

and

I V@N, ¥ 3N, = 1)2 + 12N, — (4N, + 3N, — 1)

= 2N, 1B].

4 Experiments

To verify our observations made through a heuristic anal-
ysis of the behavior of Reno and Vegas, we run two sets of
simulations using the discrete-event simulation ns, version
2.1b8a [14].

4.1 Network Topologies & Parameters

We consider two networks based on the generic topology
shown in Figure 2 and parametric details in Table 1. The first
network comes from [13] to use as a point of reference. The
second network models the grid [7] between Los Alamos and
Sandia National Laboratories.

Figure 2. Generic Topology

For all our simulations, each connection starts an FTP ses-
sion at time 0 and ends at 200 seconds with the packet size
fixed at the standard 1500-byte Ethernet size. As in [13], we



| Network || Reference Grid |
Node Pairs (N) 2 50
Links | Bandwidth 10 Mb/s | 100 Mb/s
L Delay 4 ms I 'ms
Link | Bandwidth || 1.55Mb/s | 155 Mb/s
BL Delay 4 ms 1.5 ms

Tablé 1. Parameters of Simulated Networks

measure the number of ACKs that each connection receives
where ACKp and ACKy represent the number of ACKs
from Reno and Vegas, respectively, In the general case of N,
Reno connections and IV, Vegas connections, ACK g (resp.
ACKv) show the average number of ACKs overall N, Reno
(resp. N, Vegas) connections.

4.2 Reference Network

We use the same network that [13] did in order to (i) con-
firm their results and (ii) confirm our analytic observations
made in Section 3. In confirming our analytic results, we
show that Reno and Vegas are indeed compatible and that
overall network performance improves by distributing band-
width more evenly across-a/l connections while still maintain-
ing high overall throughput.

The remainder of this section examines the performance
of our analytic heuristics in the case of two connections com-
peting head-to-head and in the case of multiple connections
competing. Within each case, we test our analytic heuristics
of Approach 1 and 2.

4.2.1 One Reno vs. One Vegas (Head-to-Head)

The experimental set-up here is similar to [13]. In general,
our results confirm the conclusions drawn by [13]. That is, as
the buffer size increases, Reno uses more of the buffer to steal
bandwidth from Vegas as Vegas is throttled by the “miscon-
figured” o and B parameters. In fact, Table 2 shows that in
no case does Vegas get better throughput than Reno and that
as the buffer size increases up to 100, Reno achieves 21 times
higher throughput than Vegas.

Buffer | ACKgp | ACKyv —ﬁ—(é%
7 16,555 9,131 1.813
10 20,763 4,972 4.176
15 18,581 7,209 2.577
25 20,980 4,823 4.350
50 23,678 2,096 11.297
100 24,544 1,179 20.818

Table 2. Reno vs. Defauit (Mis)configured Ve-
gas(a=1,5=23)

Tables 3 and 4 illustrate that with the proper configuration
of o and 3, Vegas competes well with Reno. For the smaller

buffer. sizes, Vegas performs almost twice as well; this be-
havior occurs due to the aggressive nature of Reno’s conges-
tion control, i.e., always increasing its window even though
the buffer space is small. As the buffer sizes get larger and
Vegas’s a and 3 parameters adapt accordingly, we see that
Reno and Vegas each get their fair share of bandwidth, i.e.,
the “fairness ratio” ACK r/AC Ky = 1. Thus, these simula-
tions confirm that our analytic heuristics from Sections 3.1.1
and 3.1.2 enable Reno and Vegas to be compatible with each
other. In addition, the heuristics enhance overall network per-
formance by distributing bandwidth more evenly across Reno
and Vegas while keeping overall network throughput high.

Buffer | ACKg | ACKv | f ﬁ%%
7 9,006 16,678 3 0.540
10 12,241 13,444 4 0.910
15 12,471 13,330 6 0.936
25 12,868 12,937 10 | 0.995
50 " 12,688 13,091 { 21 0.969

100 13,143 12,585 | 42 1.044

Table 3. Reno vs. Vegas with o = |3B - 1],
B = |2B] (Approach 1)

Buffer [ ACKRr | ACKv | 8 | 5xt
7 9,006 | 16678 | 3 | 0.540
10| 12,241 | 13,444 | 4 | 0910
1S | 12,471 | 13,330 | 6 | 0.936
25 | 12,868 | 12,937 [ 10 | 0.995
50 | 11,747 | 14,032 [ 23 | 03837
100 {12,233 | 13,495 |46 | 0.906

Table 4. Reno vs. Vegas with a = |0.4641B -1},
B = 0.4641B| (Approach 2)

4.2.2 Multiple Reno vs. Multiple Vegas (Fixed Buffer)

The set of tests performed here are identical to those in Sec-
tion 4,2.1 with two exceptions: (i) There are 10 different TCP
connections vying for network bandwidth. (ii) The buffer size
is fixed at 250 packets.

Using the formulas for @ and § from Sections 3.2.1
and 3.2.2, we again demonstrate that Vegas can be properly
configured to be compatible with Reno. Tables 5 and 6 show
that the fairness ratio (i.e., ACK p/ACKYy) is close to one
in all cases. This is in stark contrast to Table 2 where the fair-
ness ratio is 20.818, meaning that Reno gets that many times
more bandwidth than Vegas.

4.2.3 Multiple Reno vs. Multiple Vegas

In this set of tests, we fix the different types and number of
connections while varying the size of the buffer. And as ev-
idenced by Tables 7 and 8, we again demonstrate that with
a properly configured Vegas, Vegas is compatible with Reno.



N, | Nv | ACKr [ ACKv [ B | ZoR2
2 | 8 | 3,053 | 2407 | 23| 1309
4 6 2,500 2,600 22 | 0.962
6 4 2,645 2,427 20 | 1.090
8 2 2,542 2,622 19 [ 0.969

Table 5. N, Reno vs. N, Vegas with o« and 5 via
Approach 1 and B = 250

,H ACK

ACKgr | ACKy AR
2,952 2,457 24 1.201
2,500 2,600 22 | 0.962
2,584 2,517 21 1.027
2,542 2,622 19 [ 0.969

ooc\.hwg
I\Jhc\oo;z

Table 6. N, Reno vs. N, Vegas with « and 3 via
Approach 2 and B = 250

Except for the first row of each table where Vegas beats Reno,
Reno and Vegas each get their fair share of bandwidth as in-
dicated by the fairness ratio of approximately one in each row
of Tables 7 and 8.

Buffer | ACKr | ACKy | B | 4zg2

100 1,746 3,399 8 0.514
200 2,571 2,556 17 |1 1.006
300 2,690 2416 [ 25| L1113
400 2,648 2,437 | 34| 1.087
500 2,744 2,321 [ 42} 1.182

Table 7. Five Reno vs. Five Vegas with o and
via Approach 1

Buffer | ACKr | ACKv | B8 %

100 1,746 3,399 8 0.514
200 2,571 2,556 17 | 1.006
300 2,621 2,486 | 26 | 1.054
400 2,648 2,437 | 34 | 1.087
500 2,719 2346 | 431 1.159

Table 8. Five Reno vs. Five Vegas with a and 3
via Approach 2

4.3 Grid Network

The experimental results for head-to-head competition on
the grid network are shown in Tables 9 and 10. We observe
that all the fairness ratios lie in the interval [0.703,1.465].
These results are in stark contrast to Table 2 where Reno is
run against the default Vegas configuration, resulting in fair-
ness ratios that lie in the interval [1.813,20.818].

For some cases, e.g., buffer size = 300 in Table 9, Reno
achieves better throughput than Vegas. Why does this hap-
pen? Before steady state is reached, a Vegas packet is

dropped, and a subsequent timeout occurs, thus providing
Reno the opportunity to aggressively grab network bandwidth
than Vegas relinquishes. The same reasoning can be used to
explain Table 10 when the buffer size is 200.

Buffer | ACKr | ACKv | B | F5i2
25 | 1,088,323 | 1,279,521 | 10 | 0851
50 [ 1,132,451 | 1,377,165 | 21 | 0.822
100 | 1,237,816 | 1,337,189 | 42 | 0926

200 1,190,797
300 1,566,684
400 1,543,070

1,310,759 | 85 0.908
1,004,753 | 128 | 1.459
1,322,325 | 171 1.167

Table 9. Reno vs. Vegas with o = |2B - 1],
B = |3B] (Approach 1)
Buffer [ ACKpg ACKy B —ﬁ%&
25 1,077,134 | 1,448,115 | 11 0.744
50 | 1,051,922 | 1,495,565 | 23 | 0.703

100 1,080,863
200 1,506,751
300 1,455,002
400 1,333,429

1,489,905 | 46 0.725
1,028,086 | 92 1.465
1,115,923 | 139 | 1.303
1,083,871 | 185 | 1.230

Table 10. Reno vs. Vegas with o = [0.46418—-1],
B = [0.4641B] (Approach 2)

Tables 11 through 14 show the experimental results for
multiple TCP connections and different buffer sizes. The re-
sults in these tables closely verify the analytic heuristics that
we developed in Section 3. In fact, with the exception of one
data point, all the fairness ratios lie within 5% of the ideal
fairness ratio of one, i.e., [0.955,1.068].

N. | N, | ACKr | ACKv | B | Z5x>
2 | 8 | 248,824 [ 260,565 | 93 | 0.955
4 |6 [ 258381 [ 257,747 | 88 | 1.002
6 | 4 | 256,206 | 260,656 | 83 | 0.983
8 | 2 ] 259,968 | 244,561 | 78 | 1.063

Table 11. N, Reno vs. N, Vegas with o and 3
via Approach 1 and B = 1,000

N, | N, | ACKr | ACKv | B | 7552
2 | 8 [ 223,790 | 266,824 [ 96 | 0.839
4 [ 6 | 253251 | 261,166 | 89 | 0.970
6 | 4 | 255,880 | 261,131 | 84 | 0.980
8 | 2 [ 260,206 | 243,617 | 79 | 1.068

Table 12. N, Reno vs. N, Vegas with a and 3
via Approach 2 and B = 1,000



Buffer | ACKr | ACKy | g %—g—:ﬁ—"}
500 259,967 | 256,245 | 42 1.015
750 257,939 | 258,098 | o4 0.999

1,000 | 257,946
1,250 | 255,283
1,500 | 255,258

258,247 | 85 0.999
259,859 | 107 | 0.982
259,820 | 128 | 0.982

Table 13. Five Reno vs. Five Vegas with o and
3 via Approach 1

Buffer | ACKr | ACKv | B | feg®
500 | 257,894 | 258318 | 43 | 0.998
750 | 255366 | 260,672 | 65 | 0.979

1,000 | 253,942
1,250 | 253,966
1,500 | 252,422

262,251 | 87 0.968
261,168 | 108 | 0.972
262,657 | 130 | 0.961

Table 14. Five Reno and Five Vegas with o« and
B by Approach 2

S Fairness of TCP Reno vs. TCP Vegas

As shown in [3, 6, 12], Reno favors connections with
shorter delays. In contrast, Mo et al. [13] demonstrate that
Vegas does not suffer from this delay bias via a closed, fluid
model and simulation; however, they do not consider the fair-
ness between Reno and Vegas because of the demonstrated
incompatibility of Reno and Vegas (in its default configura-
tion, i.e,. « = 1 and # = 3). By using the closed, fluid-model
approximation in [13], we graphically illustrate the fairness
of Reno and Vegas at steady state in the bottleneck link.

In the steady state, let W, (t) and W, (t) be the window
sizes of Reno and Vegas at time £, respectively. By assuming
that the throughput and the queue size of each connection is
relatively constant, we have

Wi(t) = qi(t) -+ )\,(i) vdi, =10, 2D
where A\;(t),4 = r,v, ¢;(t),i = r,v and d;,7 = r,v are the
throughput, queue size, and BaseRTT, respectively, for Reno
and Vegas connections. Moreover, we also have

N Wit
Ai(t) = FOETA

=7, (22)
where p(t) denotes the queueing delay of the bottleneck link
at time ¢. Let 1 and B denote the capacity and the buffer size
of the bottleneck link. With large enough B, we assume that
the link is fully utilized, so we have

Wi (t) W, (t)
= 23
P+ d; oty @)
For simplicity, we let d, = d, = d. By (23),
p(t) = MM (24)

b

Hence, from (21), (22), and (24) and given the window size of
Reno is W, and the queue size of Vegas is ¢, ; we can compute
the window size of Vegas (W) at steady state:

_ pd+qu(t) = W,

- 2

\/(Nd + Gy (t) - Wr)2 + 4q, (t)Wr
2

Similarly, given W, and g,, we also have

Wy (t, g0 (1))

+

— .U‘d + qr‘(t) - Wy
- 2

\/(P’d + gqr (t) - Wv)2 + 4q, (1) W,
2

In order to show the stability region of Reno and Ve-
gas, we first note that Vegas keeps its g, between o and
B; hence, its window size will be stable if it lies between
Wy (t,a) and W, (t,3). Furthermore, the window size of
Reno can be varied as a function of ¢, (¢) where the two ex-
treme cases are ¢, (t) = 0and ¢, (t) = B — ¢y S_}t) Therefore,
by (25) and the fact that ¢,.(t) = W,(t) - TATD W,(t) €
([ud—W,y(2), ud+ B —W, (t)] for any given W, (t). However,
when Reno incurs a packet loss, its window size is halved.
If multiple losses do not occur, Reno resumes its linear in-
crease up to the maximum value; therefore, we assume that
the size of the Reno window at the stability region lies be-
tween max(wﬂ, ud — W, (t)) and ud + B — W, (2).
For convenience, we denote Rmaz = pud + B — W, (¢) and
Rmin = pd — W, (%)

As stated above, we plot the graph of the stability region
for one Reno connection versus one Vegas connection over
the “Reference Network” with B = 10. Figure 3 shows
the stability region of two Vegas connections where the line
alpha; and beta;, i = 1,2 denote {(Wq, Wo)|W; — Aid = a}
and {{Wy, W) |W; — \id = B}, respectively. Furthermore,
the fairness line is the line such that the window sizes of both
connections are the same, i.e., { (W1, W2)|A1 = Az}. In this
case, the fairness line passes right through the stability region
(also referred to as the convergence region); hence, by using
only Vegas in the network, all connections get fair through-
put. Figure 4 shows one Reno connection versus one Vegas
connection with default parameters of @ = 1 and § = 3.
In this case, the convergence region of Reno and Vegas lies
between the lines Rmaz, Rmaz /2, alpha and beta. How-
ever, the fairness line hardly passes through the convergence
region; hence, it introduces unfairness, and Reno’s through-
put is higher than Vegas’s. However, when both a and 3 are
set appropriately, Figure 5 shows that the fairness line clearly
goes through the middle of the convergence region.

Wi (¢, qr(t))

4

6 Conclusion

Prior research demonstrated the incompatibility of TCP
Reno and TCP Vegas. In this paper, we showed that the
incompatibility of Reno and Vegas is rot inherent to their
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Figure 3. Two TCP Vegas Windows with o = 1
and 3 =3
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Figure 4. TCP Reno (W,) and TCP Vegas (IV,)
Windows with B=10,a=1,and =3

congestion-control algorithms but an artifact of misconfigur-
ing Vegas’s congestion-avoidance parameters.

In particular, we showed how inappropriate the default val-
ues of @ and 8 in Vegas are (when in competition with Reno),
explained the relationship of these parameters to variations in
network performance, and demonstrated how to set the pa-
rameters appropriately so that Reno and Vegas are compati-
ble.
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