
L A - U R - O ~ * - ~ ~  13 
Approved for public release?; 
distribution is unlimited. 

Title: 

Author@) .- 

Submifted to: 

Enabling Compatibility Between TCP Reno and TCP Vegas 

W. Feng and S.  Vanichpun 

IEEE SAINT 2003 

/ 

Alamos 
N A T I O N A L  L A B O R A T O R Y  

Los Aiamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the U.S. 
Depanrnent of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government 
retains a nonexclusive, royalty-free license to publlsh or reproduce the pubilshed form of this contribution, or to allow others to do so, for U.S. 
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the 
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to 
publish: as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technidai correctness. 

Form 836 (8/00) 

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact:



Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM  87544

Phone:  (505)667-4448

E-mail:  lwwp@lanl.gov



Enabling Compatibility Between TCP Reno and TCP Vegas* 

W. Feng 
Computer & Computational Sciences Division 

Los Alamos National Laboratory 
feng@lanl. gov 

Abstract 

Despite research showing the superiority of TCP &gas 
over TCP Reno, Reno is still the most widely deployed vari- 
ant of TCP This predicament is due primarily to the alleged 
incompatibility of Vegas with Reno. While Yegas in isolation 
performs better with respect to overall network utilization, 
stability, fairness, throughput lznd packet loss, and bursti- 
ness; its perfarmance is generally mediocre in any environ- 
ment where Reno connections exist. Hence, there exists no 
incentive for any operating system to adopt TCP Vegas. 

In this paper. we show that the accepted (default) con$gu- 
ration of ?@as is indeed incompatible with TCP Reno. How- 
ever: with a careful analysis qfhow Reno and &gas use buffer 
space in routers, Reno and %gas can be compatible with 
one another if Vegas is conjigured properly Furthermore, 
we show that overall network performance actually improves 
with the addition of properly conjigured VegasJlows compet- 
ing head-to-head with RenoJlows. 

Keywords: TCP Reno, TCP Vegas, congestion control, con- 
gestion avoidance, compatibility, fairness, convergence. 

1 Introduction 

To address a series of congestion collapses, Jacobson pro- 
posed a congestion-control mechanism in TCP that later bc- 
came known as TCP Tahoe [lo], Since then, many modifica- 
tions have been made to TCP, resulting in two more notable 
variants - TCP Reno [l 11 and TCP Vegas [3]. 

TCP Reno, like TCP Tahoe, allows congestion to occur 
(Le., induces packet loss) in order to estimate the available 
bandwidth in the network. Once packet loss is detected, Reno 
recovers by cutting its window size in half. This bchavior 
causes a periodic oscillation in the window size; an oscilla- 
tion that many next-generation Internet applications do not 
tolerate well. Further, recent work shows that this oscillatory 
behavior induces chaotic behavior into the network [4,15], 
thus adversely affecting overall network performance. 
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In contrast, TCP Vegas generally performs better with re- 
spect to overall network utilization [l, 31, stability [9, 131, 
fairness [9,13], throughput and packet loss [ 1,3], and bursti- 
ness [4] when the entire network consists of Vegas-only con- 
nections. However, research to date has shown that when 
Reno and Vegas perform head-to-head, Reno generally steals 
bandwidth from Vegas [ 1,133. Consequently, while Vegas has 
been around for over five years, its adoption has been non- 
existent due to perceived incompatibilities between Reno and 
Vegas. 

With a careful analysis of how Reno and Vegas use buffer 
space in routers, we will show that Reno and Vegas can be 
compatible with one another if Vegas is configured properly. 
Further, overall network performance actually improves with 
the addition of properly configured Vegas flows competing 
head-to-head with Reno flows, thus encouraging the incre- 
mental adoption of Vegas. 

2 Congestion-Control Mechanisms 

To ensure efficient use of network bandwidth, TCP con- 
trols its sending rate based on feedback from the network. In 
order to control the sending rate, TCP estimates the avail- 
able bandwidth in the network via a bandwidth-estimation 
scheme [ 131. In Tahoe and Reno, the bandwidth-estimation 
scheme uses packet losses (as an indication of network con- 
gestion) to estimate available bandwidth while Vegas uses the 
difference in the expected and actual sending rates. 

2.1 TCPReno 

While there are no packet losses, Reno continues to in- 
crease its window size, and hence sending rate, by one packet 
each round-trip time (RTT), thus allowing congestion to even- 
tually occur. Reno then detects congestion via packet loss and 
recovers from it by halving the size of the sender window (Le., 
halving the sending rate). 

2.2 TCPVegas 

*This work was supported by the 11,s. Dept. of Energy’s LDRD-ER Pro- 
gram and the U.S. Dept. of Energy’s Office of Science SciDAC Program 
through Los Alainos National Laboratory contract W-7405-ENG-36. 

Vegas enhances Reno by adopting a bandwidth-estimation 
scheme that tries to avoid rather than react to congestion. 



Specifically, Vegas uses the difference in the expected and 
actual flow rates to estimate the available bandwidth in the 
network. When the network is uncongested, the actual flow 
rate is close to the expected flow rate; otherwise, the actual 
rate is smaller than the expected rate, indicating that buffer 
space in the network is filling up and that the network is ap- 
proaching a congested state. The difference in flow rates can 
be translated into the difference between the window size and 
the number of acknowledged packets during the RTT, respec- 
tively, Le., Di f f = (Expected - Actual) x BaseRTT 
where Expected is the expected rate, Actual is the actual 
rate, and BaseRTT is the minimum-observed RTT. 

To adjust the size of the congestion window (cwnd) ap- 
propriately, Vegas uses two threshold values, a: and p (whose 
default values are 1 and 3, respectively), to control the adjust- 
ment of cwnd at the source host as follows: 

cwnd+l  i fD i f f  < a  
cwnd - 1 
cwnd 

if Dif f > p 
otherwise (a 5 Di f f 5 /3) 

Conceptually, Vegas tries to keep at least a: packets but no 
more than /3 packets queued in the network. Thus, with only 
one Vegas connection, the window size of Vegas converges to 
a point that lies between window + Q and window + p where 
w i n d m  is the maximum window size that does not cause any 

Selecting a and p holds an implicit tradeoff between net- 
work utilization, goodput, and fairness. By using the default 
settings for these parameters, Le., Q = 1,p = 3, prior re- 
search inadvertently favored Reno over Vegas [8,13]. 

. queueing. 

3 Compatibility of TCP Reno and TCP Vegas 

Prior research demonstrates that Vegas (in isolation) gen- 
erally performs better than other implementations of TCP [ 1, 
3,4,9, 131. Ahn et al. [ I ]  and Mo et al. [13] also show that 
when a Vegas connection competes with a Reno connection, 
Vegas does not receive a fair share of bandwidth due to its 
conservative congestion-avoidance mechanism. 

Here, we show that the “conservative” congestion- 
avoidance mechanism is not to blame for Vegas’s inability 
to grab a fair share of bandwidth. Rather, the alleged incom- 
patibility between Reno and Vegas is due to using the de- 
fault (mis)configuration of Vegas parameters, i.e., a = l and 
p = 3. 

Consider one TCP Vegas connection and one TCP Reno 
connection over a bottleneck link. At steady state, the Vegas 
connection keeps (on average) approximately Q , 5 p packets 
in the queue while the Reno connection tries to gain as much 
bandwidth (and queue space) as it can until a packet is lost. 
Hence, the number of TCP Reno packets in the queue is 4 , E 
[O, B - q,] where B is the buffer capacity at the bottleneck 
link. Assuming that the average value of 4, is tj, = 
(e.g., uniform distribution), the ratio of Vegas throughput (A .) 

2 

to Reno throughput (A,) is given by 

Thus, when B = 3&,, the ratio of the throughputs is one. 
As B increases further, Reno is favored. Hasegawa et al. [8] 
provide a more complete analysis of the throughputs when 
there are N ,  Vegas connections and N ,  Reno connections 
competing for the queue space at the same bottleneck link. 

3.1 Analysis of Tbo Connections 

Consider the case when one Vegas connection and one 
Reno connection share a bottleneck link using a droptail 
queue. Let the bottleneck link have a transmission rate of 
p packetsls and a round-trip propagation delay of r seconds 
with queue size B packets. Let qv and g, denote the number 
of Vegas packets and Reno packets in the queue, respectively. 
Then, in order to allow Vegas to compete with Reno, Vegas 
must set its a: and ,B parameters so that Equation (1) is such 
that Xu/& M 1. 

Let W ,  d,  and D denote the window size (Le., cwnd), 
BaseRTT delay, and actual RTT delay of Vegas, respectively. 
At steady state, Vegas tries to keep the difference (Dif f )  be- 
tween its actual throughput (Actual) and expected through- 
put (Expected) between a and ,B where Actual = W I D  and 
Expected = W/d. Then, as noted in Section 2, we calculate 
Di f f as follows: 

( D  - 4 (2)  Dif f = (Expected - Actual) . d = W ___ 
D ’  

and interpret Di f f as the number of packets in the queue, 
Le., Di f f NN q,. 

Let W,,,,,= and W,,,, denote the window sizes of Vegas 
and Reno when the queue is full, respectively. Since Vegas 
keeps 4v M Q, at all time and Di f f M ij,, we have 

or equivalently, 

where d = r + l / p  and D = r + B / p  are the values of 
the BaseRTT delay and actual RTT delay of Vegas when the 
queue is full, respectively. Therefore, the window size of 
Reno when the queue is full is given by 

W,,,, = B + p r  - W,,,, if d N r. (4) 
After the queue is full, the probability that a Reno packet 

will be dropped is 

( 5 )  
- B - qw -- 4rm,, 

Qrma, + Qvmaa B Pr = 



and the probability that a Vegas packet will be dropped is 

QV,, ‘ I ,  - iiV 
B ’  P v -  ------ 

qr , , ,  -1.- qv,,. 

We now consider two approximations for setting a and p. 
Approach 1: We assume that the packets dropped are only 
from the Reno connection and consider only the fast retrans- 
mit of Reno while ignoring its timeout niechanism. There- 
fore, if a Reno packet is dropped, then the Reno window 
size WT,,,.. drops to cay. Approach 2: We also consider 
the case of a Vegas packet being dropped. Hence, if a Reno 
packet is dropped, its window 8;ize evolves the same way as in 
Approach 1, else if a Vegas packet is dropped, then the Reno 
window size increases by 1. 

3.1.1 Approach 1 

Figure 1 shows a simulation of‘ one Reno connection and one 
Vegas connection at steady state. From this figure, the aver- 
age window size of the Reno connection ( wr)  is 

By definition, the average queue size of the Reno connection 
is the fraction of w, that is buffered in the queue, Le., 

(8) 

Substituting (7) into (8) gives 

3B qr = VVr,,,, ’- 

4(B $. p r )  ’ (9) 

where (10) follows from (4) and (3). Now, by setting 
and solving for Bv, we get 

= 1 

Thus, we set M and ,B to the following values: 

3 3 
7 7 

The motivation for setting M to be one less than ,B is two- 
fold. First, setting a = ,8 introduces stability problems [2], 
i.e., the congestion window oscillates around the equilibrium 
value. Second, setting a and ,B too far apart creates a larger 
stability region than needed, resulting in connections that can 
converge to opposite ends of the stability region, thus affect- 
ing fairness [2,9]. 

a = 1-B - 11 and ,f3 = 1-B]. 

wr - 35 

_..... 

Figure 1. Evolution of the Congestion Window 

3.1.2 Approach 2 

If a Reno or Vegas packet is dropped, the window size of 
Reno l@, becomes 

Pr + (Wr,,, + 1 ) ~ u  
WTmam w, = - 
W,mas 

Pr + J+’r,,,Pui 

2 

- 2  (11) - -  
where we assume that W,,,, >> 1 and that p ,  and p ,  are 
given by ( 5 )  and (6). From (1 l), we then approximate the 
average window size of Reno ( W,) by 

As in Section 3.1.1 but with (8) and (12), 

Hence, substituting (13) into (1) gives 

(14) 
- 4% B - -  A v  - 4(7vB(B +w) - 

A, WrmaxB(3B + qq,) 3B2 - 2&B - Bz ’ 

where (14) follows from (4) and (3). To ensure compatibility 
between Reno and Vegas, we again set Xv/X, = 1 and solve 
for&, which yields &, ci 0.4641B. Therefore, 

M = 10.4641B- 11 and p = 10.4641BJ. 

3.2 Analysis of Multiple Connections 

In this section, we generalize our two-connection analy- 
sis to deal with Nu Vegas connections and N ,  Reno con- 
nections sharing a bottleneck link of p packetls. Let every 
connection have a round-trip propagation delay of r seconds 
while sharing a bottleneck buffer size of B packets. To en- 
sure compatibility between each connection, each connection 
must equally share the bottleneck buffer, or equivalently, the 



average queue size of each connection must be identical. We 
also assume that the connections are synchronous, i.e., at any 
given instant in time, each Vegas connection i has queue size 
qui M 4;v 5 P V i = 1 , 2 ,  . . . , N ,  and each Reno connection j 
has the same average queue size qr V j = 1,2,  . . . , Nr. Thus, 
Vegas should set its a and p parameters so that Q, /ijr M 1. 

When the queue is full, the window size of Vegas W,,,, , 
derived from (2), is 

which is the same as (3). And similar to (4), we have 

NpWrmGx = B + p~ - N,W,,,s if d N T ,  (16) 

where W,,,, is the window size of Reno when the queue is 
full. The dropped probabilities for Reno and Vegas are re- 
spectively 

3.2.1 Approach 1 

Using the same approach as in Section 3.1.1, the average win- 
dow size (Wr) and the average queue size (qT) of each Reno 
connection is given by 

respectively. Substituting (16) into (IS),  we get 

Hence, the ratio of throughputs is given by 

- 4NrG - _  
3 ( B  - Nu&) * 

(19) 

And again, to ensure compatibility between Reno and Vegas, 
X,/Xp = 1. Solving for tjU gives 

3B 
4Nr + 3N, ‘ qtJ = 

Thus, we set a! and P as 

3B 
4NT + 3N, 

-lJ and P =  1 3B 
a = [  

4Nr + 3Nw 

3.2.2 Approach 2 

As in Section 3.1.1, the window size of each Reno connection 
after a dropped packet is given by (1 1), and each average win- 
dow size is given by (12). Combining (8), (12), (1 5) ,  and (1 6) 

Substituting the above equation back into (1) gives 

- 4NrBG - - 
Xr ( B  - Nuqv,)(3B + q u )  

Setting 5 = 1 helps ensure that the Reno and Vegas connec- 
tion are compatible. Now, solving for q,, we have 

and set the Vegas parameters as follows: 

J ( 4 N r  + 3N, - 1)’ + 12NT - (4Nr + 3N, - 1)  

2N, 
IB-lJ a =  l[ 

and 

IBJ 
(4N7 + 3Nu - 1)’ + 12NT - (4Nr + 3Nu - 1) 

2N, 

4 Experiments 

To verify our observations made through a’ heuristic anal- 
ysis of the behavior of Reno and Vegas, we run two sets of 
simulations using the discrete-event simulation ns, version 
2.lbSa [14]. 

4.1 Network Topologies & Parameters 

We consider two networks based on the generic topology 
shown in Figure 2 and parametric details in Table 1. The first 
network comes from [13] to use as a point of reference. The 
second network models the grid [7] between Los Alamos and 
Sandia National Laboratories. 

(KED) 

SN 
U U 

Figure 2. Generic Topology 

For all our simulations, each connection starts an FTP ses- 
sion at time 0 and ends at 200 seconds with the packet size 
fixed at the standard 1500-byte Ethernet size. As in [13], we 



Network 1 1  Reference 

BL Delay 

Table 1. Parameters of Simulated Networks 

10 
15 
25 
50 
100 

measure the number of ACKs that each connection receives 
where ACKR and ACKv represent the number of ACKs 
from Reno and Vegas, respectively. In the general case of N, 
Reno connections and N, Vegas connections, ACK R (resp. 
ACKV) show the average number of ACKs over all N, Reno 
(resp. N ,  Vegas) connections. 

12,241 13;444 ’ 4 0.910 
12,471 13,330 6 0.936 
12,868 12,937 10 0.995 

’ 12,688 13,091 21 0.969 
13.143 12,585 42 1.044 

4.2 Reference Network 

We use the same network that [ 131 did in order to (i) con- 
firm their results and (ii) confirm our analytic observations 
made in Section 3. In confirming our analytic results, we 
show that Reno and Vegas are indeed compatible and that 
overall network performance improves by distributing band- 
width more evenly across all connections while still maintain- 
ing high overall throughput. 

The remainder of this section examines the performance 
of our analytic heuristics in the case of two connections com- 
peting head-to-head and in the case of multiple connections 
competing. Within each case, we test our analytic heuristics 
of Approach 1 and 2, 

4.2.1 One Reno vs. One Vegas (Head-to-Head) 

The experimental set-up here is similar to [ 131. In general, 
our results confirm the conclusions drawn by [13]. That is, as 
the buffer size increases, Reno uses more of the buffer to steal 
bandwidth from Vegas as Vegar; is throttled by the “miscon- 
figured” a and /3 parameters. In fact, Table 2 shows that in 
no case does Vegas get better throughput than Reno and that 
as the buffer size increases up to 100, Reno achieves 2 1 times 
higher throughput than Vegas. 

23,678 11.297 

Table 2. Reno vs. Default (Mis)configured Ve- 
gas (a = l, p = 3) 

Tables 3 and 4 illustrate that with the proper configuration 
of a and p, Vegas competes well with Reno. For the smaller 

buffer sizes, Vegas performs almost twice as well; this be- 
havior occurs due to the aggressive nature of Reno’s conges- 
tion control, Le., always increasing its window even though 
the buffer space is small. As the buffer sizes get larger and 
Vegas’s a and p parameters adapt accordingly, we see that 
Reno and Vegas each get their fair share of bandwidth, Le., 
the “fairness ratio” ACKRIACKV M 1. Thus, these simula- 
tions confirm that our analytic heuristics from Sections 3.1.1 
and 3.1.2 enable Reno and Vegas to be compatible with each 
other. In addition, the heuristics enhance overall network per- 
formance by distributing bandwidth more evenly across Reno 
and Vegas while keeping overall network throughput high. 

Buffer I ACKR I ACKv I p I 
7 1  9.006 I 16,678 1 3 I 0.540 

Table 3. Reno vs. Vegas with a = - 11, 
p = L+BJ (Approach 1) 

Table 4. Reno vs. Vegas with Q = 10.4641B - 11, 
p = 10.4641BJ (Approach 2) 

4.2.2 Multiple Reno vs. Multiple Vegas (Fixed Buffer) 

The set of tests performed here are identical to those in Sec- 
tion 4.2.1 with two exceptions: (i) There are 10 different TCP 
connections vying for network bandwidth. (ii) The buffer size 
is fixed at 250 packets. 

Using the formulas for a and p from Sections 3.2.1 
and 3.2.2, we again demonstrate that Vegas can be properly 
configured to be compatible with Reno. Tables 5 and 6 show 
that the fairness ratio (i.e., ACKR/ACKV)  is close to one 
in all cases. This is in stark contrast to Table 2 where the fair- 
ness ratio is 20.818, meaning that Reno gets that many times 
more bandwidth than Vegas. 

4.2.3 Multiple Reno vs. Multiple Vegas 

In this set of tests, we fix the different types and number of 
connections while varying the size of the buffer. And as ev- 
idenced by Tables 7 and 8, we again demonstrate that with 
a properly configured Vegas, Vegas is compatible with Reno. 



dropped, and a subsequent timeout occurs, thus providing 
Reno the opportunity to aggressively grab network bandwidth 
than Vegas relinquishes. The same reasoning can be used to 
explain Table 10 when the buffer size is 200. 

0.962 

Buffer 
100 
200 

Table 5. N,  Reno vs. N,, Vegas with a and ,D via 
Approach 1 and B = 250 

ACKR ACKv p - R 

1,746 3,399 8 0.514 
2.571 2.556 17 1.006 

I ’  I 1 

8 1 2 I 2,542 I 2,622 I 19 I 0.969 

300 
400 
500 

Table 6. N, Reno vs. N,, Vegas with a and /3 via 
Approach 2 and B = 250 

21690 21416 25 1.113 
2,648 2,437 34 1.087 
2,744 2,321 42 1.182 

Except for the first row of each table where Vegas beats Reno, 
Reno and Vegas each get their fair share of bandwidth as in- 
dicated by the fairness ratio of approximately one in each row 
of Tables 7 and 8. 

NT 
2 
4 

Nu ACKR ACKv p e 
8 223,790 266,824 96 0.839 
6 253,251 261.166 89 0.970 

Table 7. Five Reno vs. Five Vegas with a and p 
via Approach 1 

Table 8. Five Reno vs. Five Vegas with a and /3 
via Approach 2 

4.3 Grid Network 

The experimental results for head-to-head competition on 
the grid network are shown in Tables 9 and 10. We observe 
that all the fairness ratios lie in the interval [0.703,1.465]. 
These results are in stark contrast to Table 2 where Reno is 
run against the default Vegas configuration, resulting in fair- 
ness ratios that lie in the interval [ 1.8 13,20.8 181. 

For some cases, e.g., buffer size = 300 in Table 9, Reno 
achieves better throughput than Vegas. Why does this hap- 
pen? Before steady state is reached, a Vegas packet is 

Table 9. Reno vs. Vegas with a = L$B - lJ, 
,D = LiBJ (Approach 1) 

Table 10. Renovs. Vegas with a = [0.4641B-lJ, 
,8 = L0.4641BJ (Approach 2) 

Tables 11 through 14 show the experimental results for 
multiple TCP connections and different buffer sizes. The re- 
sults in these tables closely verify the analytic heuristics that 
we developed in Section 3. In fact, with the exception of one 
data point, all the fairness ratios lie within 5% of the ideal 
fairness ratio of one, i.e., [0.955,1.068]. 

Table 11. N,  Reno vs. N ,  Vegas with a and p 
via Approach 1 and B = 1,000 

6 j 4 j 255,889 j 261,131 j 84 i 0.980 
8 I 2 I 260.206 I 243.617 I 79 I 1.068 

Table 12. N ,  Reno vs. N ,  Vegas with a and /3 
via Approach 2 and B = 1,000 



r p m ]  
259,961 256.245 

Table 13. Five Reno vs. Five Vegas with a and 
/3 via Approach 1 

Table 14. Five Reno and Five Vegas with a and 
/3 by Approach 2 

5 Fairness of TCP Reno vs. TCP Vegas 

As shown in [5, 6, 121, Reno favors connections with 
shorter delays. In contrast, Mo et al. [13] demonstrate that 
Vegas does not suffer from this delay bias via a closed, fluid 
model and simulation; however, they do not consider the fair- 
ness between Reno and Vegas because of the demonstrated 
incompatibility of Reno arid Vegas (in its default configura- 
tion, i.e,. a = 1 and p = 3). By using the closed, fluid-model 
approximation in [ 131, we graphically illustrate the fairness 
of Reno and Vegas at steady state in the bottleneck link. 

In the steady state, let W,(t) and Wv(t) be the window 
sizes of Reno and Vegas at time 1, respectively. By assuming 
that the throughput and the queue size of each connection is 
relatively constant, we have 

W,(t) = q2( t )  -t X i ( i )  * di ,  i = T , U ,  (21) 

where A i ( t ) ,  i = r,  w ,  q i ( t ) ,  i = I’, w and d,, i = T ,  2) are the 
throughput, queue size, and BaseRTT, respectively, for Reno 
and Vegas connections. Moreover, we also have 

where p ( t )  denotes the queueing delay of the bottleneck link 
at time t. Let p and B denote the capacity and the buffer size 
of the bottleneck link. With large enough B,  we assume that 
the link is fully utilized, so we have 

For simplicity, we let d, = d, = d. BY (23), 

(24) 
w, + WV - pd p ( t )  = ---------, 

p 

Hence, from (2 l), (22), and (24) and given the window size of 
Reno is Wr and the queue size of Vegas is 4,; we can compute 
the window size ofVegas (W,) at steady state: 

Similarly, given W, and q, , we also have 

In order to show the stability region of Reno and Ve- 
gas, we first note that Vegas keeps its q,  between a and 
p; hence, its window size will be stable if it lies between 
W,(t,a) and Wv(t,/3). Furthermore, the window size of 
Reno can be varied as a function of q T ( t )  where the two ex- 
treme cases are qr ( t )  = 0 and q, ( t )  = B - q, t . Therefore, 

I.ld+B, W,(t) E 
[ p d - W v ( t ) , p d + B -  Wv(t)] foranygivenW,(t). However, 
when Reno incurs a packet loss, its window size is halved. 
If multiple losses do not occur, Reno resumes its linear in- 
crease up to the maximum value; therefore, we assume that 
the size of the Reno window at the stability region lies be- 
tween max( p d + B i w u ( t )  , pd - W,(t)) and pd + B - W,(t). 
For convenience, we denote R m a x  = pd + B - W ,  ( t )  and 
Rmin = pd - Wv ( t )  

As stated above, we plot the graph of the stability region 
for one Reno connection versus one Vegas connection over 
the “Reference Network” with B = 10. Figure 3 shows 
the stability region of two Vegas connections where the line 
alphai and betai, i = 1,2  denote { (WI , Wz) IWi - X,d = a }  
and { (“1, W 2 )  IWi - Aid = P } ,  respectively. Furthermore, 
the fairness line is the line such that the window sizes of both 
connections are the same, i.e., {(WI, W 2 ) 1 A 1  = X2) .  In this 
case, the fairness line passes right through the stability region 
(also referred to as the convergence region); hence, by using 
only Vegas in the network, all connections get fair through- 
put. Figure 4 shows one Reno connection versus one Vegas 
connection with default parameters of a = 1 and /3 = 3. 
In this case, the convergence region of Reno and Vegas lies 
between the lines Rmax ,  Rmax /2 ,  alpha and beta. How- 
ever, the fairness line hardly passes through the convergence 
region; hence, it introduces unfairness, and Reno’s through- 
put is higher than Vegas’s. However, when both a and /3 are 
set appropriately, Figure 5 shows that the fairness line clearly 
goes through the middle of the convergence region. 

by (25) and the fact that q,(t) = Wr(t )  a)  

6 Conclusion 

Prior research demonstrated the incompatibility of TCP 
Reno and TCP Vegas. In this paper, we showed that the 
incompatibility of Reno and Vegas is not inherent to their 
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Figure 3. Two TCP Vegas Windows with a = I 
and p = 3 
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Figure 4. TCP Reno (WT) and TCP Vegas (W,,) 
Windows with B = 10, a = 1, and P = 3 

congestion-control algorithms but an artifact o f  misconfigur- 
ing Vegas's congestion-avoidance parameters. 

In particular, we showed how inappropriate the default val- 
ues o f a  and P in Vegas are (when in competition with Reno), 
explained the relationship of these parameters to variations in 
network performance, and demonstrated how to set the pa- 
rameters appropriately so that Reno and Vegas are compati- 
ble. 
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