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ABSTRACT 

We investigate the degradation in performance of diffusion synthetic acceleration (DSA) methods in 
problems with discontinuities in material properties. A loss in the effectiveness of DSA schemes has 
been Observed before with other discretizations in two dimensions under certain conditions. We present 
more evidence in support of the conjecture that DSA effectiveness can degrade in multidimensional 
problems with discontinuities in total cross section, regardless of the particular physical configuration 
or spatial discretization. Through Fourier analysis and numerical experiments, we identify a set of 
representative problems for which established DSA schemes are ineffective, focusing on highly 
diffusive problems for which DSA is most needed. We consider a lumped, linear discontinuous spatial 
discretization of the S N  transport equation on three-dimensional, unstructured tetrahedral meshes and 
look ata fully consistent and a “partially consistent” DSA method for this discretization. We find that 
the effectiveness of both methods can be significantly degraded in the presence of material 
discontinuities. A Fourier analysis in the limit of decreasing cell optical thickness is shown that 
supports the view that the degraded effectiveness of a fully consistent DSA scheme simply reflects the 
failure of the spatially continuous DSA method in problems where material discontinuities are present. 
Key Words: diffusion synthetic acceleration, discrete ordinates, deterministic transport methods, 
unstructured meshes 

1 INTRODUCTION 

The spatial discretization of the DSA diffusion equations has to be “consistent:’ with the S N  transport 
discretization to achieve the level of source iteration acceleration (effectiveness) that is predicted 
analytically for homogeneous problems [l-51. Effectiveness alone (as measured by the spectral radius) is 
not enough to guage the potential performance of a DSA method. The overall efficiency of the method 
must also be considered. An efficient DSA scheme is one in which the spectral radius small enough and 
the cost of computing the DSA correction is small enough such that the transport solution is computed to a 
given tolerance with less overall computational effort than would otherwise be possible. In some cases, 
then, a DSA method that is not fully consistent might be more efficient despite being less effective. 

Recently it has been shown that there are several different situations in which the effectiveness of a 
particular combination of S N  discretization and DSA scheme is reduced, whether consistent or not. One 
situation is when a method that is robust and effective on one kind of mesh is ineffective or unstable on 
another. A particular example is the M4S (modified four-step) DSA scheme, a method that is not, fully 
consistent with the discontinuous FEM methods of the S N  discretizations for which it is intended [6] .  
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Originally shown to be effective in one dimensional slab geometry and on two-dimensional rectangular 
Cartesian geometries. The M4S method was later found to be unstable on three-dimensional unstructured 
tetrahedral grids with linear elements [5]. Similarly, after the simplified WLA (S-WLA) method was 
shown to be unconditionally effective in one dimensional slab geometry [7], it was later shown that its 
effectiveness is reduced in multidimensional problems with optically thick cells and scattering ratios very 
close to 1.0 [5]. 

There is another situation in which DSA methods, even fully consistent ones, can lose their effectiveness: 
in multidimensional problems with discontinuities in material properties. Problems contain two or more 
materials with total cross sections, at least of one of which is diffusive. The problem may consist of 
relatively large regions of different materials sharing a common interface or it may be one in which the 
materials differ from cell-to-cell. Without loss of generality we will limit ourselves to problems with just 
two materials. 

Such a situation was first identified by Azmy in two dimensional geometries [8,9]. The problems 
contained alternating layers of two materials with different total cross sections, 01 = o and 0 2  = l/o, 
referred to as the Periodic Horizontal Interface (PHI) configuration. The analytical analysis in the limit of 
o + 0 showed that no diffusion discretizations, either cell- or edge-centered, could be unconditionally 
effective for the two dimensional discretizations on rectangular cells considered (nodal and 
weighted-diamond difference S N  methods in [8], and the weighted-diamond difference discretization of 
the even-parity S N  equations in [9]). Azmy also points out this loss of effectiveness is not seen for 
consistent methods in one dimension (when material discontinuities are present) the situation in which the 
notion of consistency was first demonstrated as a sufficient condition for the effectiveness of DSA [ l ,  21. 

We would like to determine whether these observations depend on a particular spatial discretization or 
geometric configuration (like the PHI) and whether this is a general result for multidimensions that does 
not depend on the fact that the problem is spatially discretized. 

Our approach is twofold. First, we examine the partially consistent S-WLA method and the fully consistent 
(FCDSA) method using a Fourier analysis of a linear discontinuous finite element (DFEM) spatial 
discretization three-dimensional tetrahedral meshes (see [5 ] ) .  The spatial discretization and DSA methods 
are described in Section 2. Our investigation is similar to the original work in [8] and [9] except we use a 
three dimensional unstructured mesh, with a completely different geometric configuration and spatial 
discretization. Results of actual numerical computations for problems that correspond to the Fourier 
analysis are then shown that confirm the predicted behavior. Another set of numerical computations show 
that it is independent of the way in which the heterogeneities are introduced. The effectiveness of even the 
fully consistent DSA method degrades in the presence of material discontinuities, independent of the 
optical thickness. The partially consistent method is already loses its effectiveness to some extent when 
scattering ratios are large and cells are optically thick [5]; the presence of material discontinuities makes it 
worse. The degradation of both methods is most pronounced when (at least part of) the problem is 
diffusive. The Fourier analysis is presented in Section 3 and computational results are shown in Section 4. 
This addresses the first part of our question. 

Second, based on the evidence from these results and the results in [8] and [9], we believe it is appropriate 
to conjecture that these observations stem from an inherent defect of DSA. That is, the loss in effectiveness 
of DSA in the presence of material discontinuities does not depend on the fact that we are working with a 
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spatially discretized form of the S N  equations and diffusion equation. Given that our our DFEM spatial 
discretization is convergent in the sense that it faithfully models the analytical S N  problem as the optical 
thickness of the spatially discretized heterogeneous problem approaches zero, a Fourier analysis of the 
fully consistent DSA scheme in this limit indicates the degradation in the effectiveness of DSA is an 
analytical result - a failure of the DSA method itself - in such problems. A study with increasingly 
discontinuous material properties in this limit supports our conjecture. The results are shown in Section 5. 

2 DISCONTINUOUS FINITE ELEMENT DISCRETIZATION ON TETRAHEDRAL MESHES 

2.1 Spatially Discretized S N  Equations 

We will begin by presenting the linear discontinuous finite element method (DFEM) for the transport 
equation on tetrahedra. That is followed by a brief overview of the fully consistent and partially consistent 
DSA methods . Further details on the fully consistent scheme can be found in [5] and details of the 
partially consistent method can be found in [lo]. 

The notation used here has the usual meaning [ 111 and we assume cgs units. Given an angular quadrature 
set with N specified nodes and weights { h m ,  wm}, a distributed source of particles Q ( r ,  6 )  and 
anisotropic scattering of order L, the monoenergetic, steady-state S N  transport equation in the 
three-dimensional domain T E V with boundary rs E dV, is 

L 1 

Am .V$m(r) + gt(r)$m(r) = Cgs,l h(firn)4F(r) + Q(r, hm), m = 1,. > N .  (la) 
1=0 n=-1 

Here, &(h) are the normalized spherical harmonics functions and the scalar flux moments are 

N 

+I"(.> = wmKn(fim>$m(r>. 
m= 1 

For the remainder of the paper we will assume only isotropic scattering, for which we set L = 0 and 
oS,o = us. The inhomogeneous source is also assumed to be isotropic, or Q ( r ,  h) = Qo(T).  

The linear DFEM discretization is specified by the following variational formulation. It is written in source 
iteration form with iteration index e. Given an angular flux expansion in terms of the four independent 
linear basis functions on a tetrahedral cell T k ,  

j=l 

find the linear approximation for each angle hm that satisfies 

..I 

(2b) 
for all linear trial functions uj , j = 1, . . . ,4 on cell T k .  The Galerkin approximation takes the trial 
functions to be the basis functions Lj ,  and the above expressions can be evaluated for each of these four 
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functions. This gives four equations for the four unknowns +m,j,k on the cell. Before carrying out the 
integrations in (2b), however, we first introduce the discontinuous approximation. Considering a cell k with 
face p whose outward normal is Ap, the boundary terms +I are defined as 

where 1 is the cell that shares face p with cell k. The subscript i(p) denotes three vertices i on a face p of a 
given cell. Simply put, if Ap is on the boundary of the problem domain V, then the boundary condition is 
used to define the incoming angular flux for the three points on a face; otherwise the internal or external 
values angular fluxes are used depending on the orientation of the cell face with respect to the quadrature 
direction. The discrete boundary conditions are vacuum, r(fim) = 0, or r(Am) = qe:l for reflective 
boundary conditions, where m’ is determined by the relationship 

m ,Z(P),S 

( A  1 A m l = A m - 2 ~  R m * A  , 
A 

for Rm and A = Ap. In our application, reflection is implemented only for boundary faces aligned parallel 
to the x, y or z coordinate axes so that the standard quadrature sets we use contain the reflected angles Am1 

that satisfy this relationship. 

The integrals in (2) are evaluated, either analytically or by quadrature approximation, for every cell in the 
mesh. The angular flux, ‘$m,i,ky can then be computed for all vertices j = 1,4 of every cell k, one cell at a 
time over the entire mesh in a predetermined order for every quadrature angle Am. Note that we use a fully 
lumped version of (2). Describing it goes beyond the scope of this work, but suffice it to say that this 
lumping preserves the diffusion limit in thick, diffusive regimes (see [12]). 

2.2 Source Iteration and DSA 

The discretized S N  equations can be written in operator notation as 

The.meanings of these operators can be easily deduced by comparison with (la) and 2). With an an 
N-point quadrature and Nc spatial cells in the problem + be the vector of angular fluxes for every angle 
and every vertex (four of them) in each cell, so that $ is of length n = 4Nc . N. The vector q is an 
inhomogeneous source vector also of length n. The vector q5 contains the scalar fluxes at the four vertices 
of each cell so that is is of length 4Nc. 

Rearranging (3) and introducing an iteration index e, we get traditional source (or Richardson) iteration: 

As written, the iteration works with the scalar flux as the primary quantity while the angular flux acts as an 
auxiliary quantity. This saves memory for problems with low degrees of scattering anisotropy andor 
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multigroup energy dependence with many groups. However, working with the scalar flux means that 
reflective boundary conditions have to be treated specially in order to retain the angular information on 
reflective boundary faces. We will ignore this issue for our purposes here, with no loss of generality. The 
basic equations still hold, just the definition of the operators in (4) change slightly. 

Equations (4) can be collapsed into a single iteration for the scalar flux, or 

q5ee+' = TSq5e + b (5)  

where T = DL-lM and b = Tq. It is easy to see that the convergence of source iteration, also known as 
Richardson iteration, is governed by the spectral radius of the operator T S .  The spectral radius is bounded 
above by the maximum scattering ratio c = fS&/fStk on the mesh (we assume c 5 1) [2]. This implies that 
for highly scattering, diffusive problems with c x 1 this iteration is expected to converge slowly, making a 
solution costly or even impractical. Diffusion synthetic acceleration modifies the source iteration algorithm 
by computing a correction to the scalar flux, where the diffusion equation is used as an approximation to 
the transport operator [2,13-151. For homogeneous problems it can be shown that DSA reduces the 
spectral radius to approximately 0 . 2 2 5 ~  (without angular discretization) [2,5]. 

We will briefly review the DSA method now to put it in context. If 4 is the exact solution to ( 5 )  then the 
error fe+l = (4  - 4e+1) satisfies 

where re = (be+' - $e)  is the residual. Equation (6) suggests that we can use an approximation to the 
operator ( I  - TS)-'TS to estimate the error and correct the current iterate. This will lead to a more 
efficient iteration if the approximate operator is relatively easy to setup and invert and if the approximate 
operator adequately reduces the spectral radius. 

( I  - TS)fe+' = TSre,  (6) 

In the case of DSA, the approximate operator involves the diffusion operator, C.  This is an appropriate 
choice because the diffusion equation is the asymptotic limit of the transport operator in highly diffusive 
regimes [16,17], just the situation for which we need acceleration. The diffusion operator is effective 
because it represents well the errors that are poorly attenuated by source iteration. Whether the diffusion 
operator can be inverted easily and lead to a more efficient algorithm depends on the spatial discretization 
of both the transport equation and the diffusion equation. Introducing an intermediate correction step in the 
source iteration algorithm, the DSA algorithm is 

(7a) 

(7b) 

(7c) 

4e+1/2 = T4e + b 

4e) 
f e + i / n  = c-is + e + w  - 

4e+i = e+i/2 + fe+i /ae 
( 

4 

The operator C-' represents the "action" of the diffusion operator on the quantity S (q5e+1/2 - 4e).  
Analytically the operator C is the diffusion equation and C-' is simply its inverse. For our DFEM spatial 
discretization, however, C-l represents more than just the inverse of spatially discretized diffusion 
equation. Certain projection and interpolation operations may be needed as well. The properties of the 
collection of computations represented by the C-' operator determines how effective, efficient and robust 
the overall DSA algorithm will be. 

We will consider two different definitions for the operator C-'. One is the fully consistent method based 
on a linear discontinuous discretization of the PI equations that has been described in [5 ] .  Solution of the 
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corresponding large, sparse, linear system gives the necessary discontinuous scalar flux corrections. 
Unfortunately, this linear system (which can be written either in symmetric, indefinite form or 
nonsymmetric, positive definite form) was very difficult to solve, despite having developed an effective 
preconditioner. As a result, the overall cost of the transport solution accelerated with this DSA scheme did 
not always improve. 

The other DSA method we consider is a partially consistent scheme, the S-WLA method. The basic theme 
of the method is quite simple. A finite element projection of the residual in the discontinuous scalar fluxes 
is computed. The projected residual is then used as the source term for a linear continuous finite element 
discretization of the diffusion equation. This discretization for the scalar fluxes is centered on the mesh 
vertices, which in part contributes to its efficiency on tetrahedral meshes for which there are typically 4-5 
more cells than vertices. Furthermore, the linear system is symmetric and positive definite so conjugate 
gradients can be be used to efficiently solve the linear system. From this solution on the vertices, a 
correction to the discontinuous scalar fluxes is computed using the approach described in [ 101 for general 
meshes and arbitrary geometry. 

Both methods will be examined in the following sections through Fourier analysis and numerical examples., 
A fully consistent scheme should be the best possible method while a partially consistent or inconsistent 
method is expected to be somewhat less effective. We find, however, that neither of them is unconditionally 
effective in problems with discontinuities in material properties. 

3 FOURIER ANALYSIS 

In this section we present a Fourier analysis of source iteration convergence for both the FCDSA and 
S-WLA methods with the linear DFEM discretization on tetrahedral meshes. 

The Fourier analysis begins by dividing a three-dimensional box, or basic element, into six tetrahedra of 
equal volume. The orientation of the tetrahedra cell edges with this subdivision allows us to “tile” a volume 
with these basic elements. The box is of dimension (Ax x Ay x Az) as shown in Fig. 1. We can analyze 
the effects of material discontinuities for heterogeneous problems by assigning total cross sections at,l and 
at,2 to the two halves of the basic element as indicated, each half consisting of three tetrahedra. The Fourier 
analysis procedure is implemented via the symbolic algebra program MAPLE. The details are described in 
[5] and modified to account for two materials. This basic element is assumed to repeat periodically in three 
dimensions through a Fourier ansatz of both the discontinuous and the continuous, vertex-centered 
unknowns. The transport and DSA equations are written by MAPLE in terms of the Fourier ansatz. The 
resulting 24 x 24 matrix is evaluated as a function of the element dimensions Ax, Ay, and Az, the material 
properties c, at,l and at,+ and the Fourier wave vector [A,, A,, A,] E [0,27r] x [0,27r] x [0,2n] given a 
particular quadrature set. The space of wave numbers is searched with a simplex optimization algorithm to 
compute the maximum eigenvalue, the spectral radius, for a set of dimensions and material properties. 

The spectral radius predicted by Fourier analysis was calculated over a range of cross sections, scattering 
ratios, and cell shapes, attempting to account for the range of problems we expect to encounter in our 
applications. An S4 triangular Chebyshev-Legendre quadrature is used for which the analytical DSA 
spectral radius in homogeneous problems is 0.2543~. The dimensions of the box are fixed, 
Ax, Ax, Ay = 1.0. The results for the S-WLA method are shown in Fig. 2 and results for the FCDSA 
method are shown in Fig. 3 for the scattering ratios c = 0.9999,0.999,0.99, and 0.9, Each plot has eleven 
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Figure 1. The basic element divided into 6 tetrahedra of equal volume. The two regions, each of which 
consists of three tetrahedra, contain materials with total cross sections  at,^ and at,2. 

curves on it that show the spectral radius as  at,^ varies over about six orders of magnitude for a range of 
eleven fixed values of at,l, which vary of the same range as at3 The curves for q , l  < 1 have their 
minimum close to the analytical value. There is a strong dependence on the scattering ratio in the problem 
as c + 1 that is more pronounced for the partially consistent DSA scheme in the optically thick limit. 
When the one or both of the cross sections is very large, FCDSA is much more effective than the S-WLA 
method and it does even better when both cross sections are large. However, when the scattering gets closer 
to one, there is always some loss in effectivess. The most important observation to note is that neither 
method can not be reliably depended upon to reduce the spectral radius as c + 1. It is now clear that 
consistency alone does not ensure that a DSA method will be unconditionally effective in all problems. 

Note that Fourier analysis was repeated with a basic element divided into 24 tetrahedra instead of six. The 
results agreed to at least three digits implying that analysis with six tetrahedra provides adequate spatial 
resolution. 

4 NUMERICALRESULTS 

In this section we present the, results of numerical computations with the unstructured tetrahedral mesh 
transport code AttilaV2. They are intended to verify the results of the Fourier analysis. 

The first set of results is for a mesh consisting of a (6 x 6 x 6) “grid” of cubes, each (1.0 cm on a side. 
Every cube is divided into six tetrahedra, three of which have total cross section ot,l and three of which 
have total cross section at,2, just like the basic element used in the Fourier analysis. The scattering ratio is 
fixed at c = 0.999 and vacuum boundary conditions are specified for all six faces of the problem. 

The results of the Fourier analysis will be compared to the spectral radius measurements made with 
AttilaV2. Starting with a random scalar flux distributed over &e mesh, the spectral radius is estimated by 
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2(a) c = 0.9 

2(c) c = 0.999 

20)  c = 0.99 

w 
"I 

2(d) c = 0.9999 

Figure 2. Fourier analysis for the S-WLA DSA method in heterogeneous problems containing two materials 
with total cross sections at,l and ut,2. 
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3(a) c = 0.9 

3(c) c = 0.999 

3(b) c = 0.99 

":.IO z-l z4 24 2-2 zO 2 24 26 28 210 

QU 

3(d) c = 0.9999 

Figure 3. Fourier analysis for the Fully Consistent DSA method in heterogeneous problems containing two 
materials with total cross sections QJ and ct,2. 
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taking the ratio of the residual at two successive iterations, that is, 

IWe+l - 4el12 

ll@ - @-l112' P a  

and renormalizing the scalar flux to 112 after each iteration e. The value reported after 100 iterations is 
shown in the figures, which we observed was more than enough to reach a value that was not changing in 
the fourth digit. The stopping tolerance used in the inner DSA iterations was fixed at lov6. Fig. 4 shows 
the spectral radius measurements for the S-WLA method for fixed at,l = 2-2, Z4, 21° as  at,^ is varied 
compared to the Fourier analysis of the previous section. Fig. 5 shows the same set of measurements made 
using the FCDSA method. The measured values agree very well with the Fourier analysis. However, when 
the cross sections are small the problem domain is optically thin and leakage from the problem reduces the 
spectral radius relative to the Fourier analysis, which implicitly assumes an infinite medium. These results 
confirm that the loss in the effectiveness of DSA that was predicted by the Fourier analysis occurs in actual 
computations. 

W AttilaV2 uL1=22 

w AttilaV2 uL1=2' 

09 AttilaV2 uL1=2lo 

1 
0.0 ' I I I I I I I 

24 z4 2-= 2O 2' z4 26 21° 

=U 

Mgure 4. The spectral radius for the S-WLA method with c = 0.999 measured with the AttilaV2 code and 
compared to selected Fourier analysis results from the previous section. 

The next set of results is ifor a more realistic problem. The idea is to show that there is nothing special 
about the cell-to-cell material discontinuities modelled by the Fourier analysis. The mesh consists of two 
regions, a box with total cross section at,l, centered inside of a hemisphere with total cross section ~ , 2 .  

The half-sphere has a 10 cm radius and the box is lo& cm on a side and 5 cm tall. The mesh is illustrated 
in Fig. 6. The bottom of the entire hemisphere has a reflective boundary condition, the remainder of the 
exterior faces being vacuum. An isotropic unit source is distributed throughout the box. The scattering 
ratio is c = 0.9999. 

Using AttilaV2 on a serial SGI Origin 2000 processor, we measured the number of iterations and number 
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Figure 5. The spectral radius for FCDSA mwith c = 0.999 measured with the AttilaV2 code and compared 
to selected Fourier analysis results from the previous section. 

A 

Figure 6. Mesh for a realistic heterogeneous problem consisting of two different materials as indicated by 
the shading in the figure. The bottom face is reflective and the box contains an isotropic distributed source 
of unit strength. 
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of floating point operations (FLOP) for convergence to a relative residual of 
stopping criteria of lo-' was used for the inner DSA iterations. The measurements are shown in 
Tables I and II. The results are revealing. Firstly, note the upper right and lower left parts of both tables. 
These correspond to problems with regions containing both optically thin and thick regions, confirming 
that DSA loses its effectiveness in the presence of material discontinuities in realistic calculations. The 
iteration counts indicate the same kind of dependence, indicating a rise in the spectral radius for problems 
with material discontinuities. Secondly, the iteration counts show that when both regions are optically 
thick, the S-WLA method is not very effective while the FCDSA method is extremely effective. These 
observations are in agreement with the Fourier analysis predictions. Finally, despite the fact that FCDSA 
reduces the spectral radius and hence the number of iterations, the FLOP counts clearly indicate the high 
costs associated with solving the fully consistent diffusion equations, especially when the cells are very 
optically thin. On the other hand, even though the S-WLA method is less effective than FCDSA, illustrated 
by the iteration counts, the work per iteration can be much less, except when both materials are optically 
thick (the lower right part of the tables). The results of this section have shown that DSA will lose its 
effectiveness in the presence of material discontinuties, independent of the material configuration. 
Therefore, DSA can not be relied on to produce efficient solutions in general implementations. 

for this problem. A fixed 

5 FOURIER ANALYSIS IN THE ANALYTICAL LIMIT 

With the results presented in Section 4 and the results in [8] and [9], the loss of DSA effectiveness for 
diffusive problems in the presence of material discontinuities has been established in both two and three 
dimensions with very different types of spatial discretizations. It is now clear that this effect appears is 
independent of the spatial discretization as well as the particular geometric configuration (the way the 
different materials are physically arranged). 

The logical conclusion is that this is an analytical property of the DSA method in this situation and does 
not depend on the fact that we are working with spatially discretized equations. One way to confirm this is 
to investigate the DSA equations in the limit of the cell optical thickness approaching zero. Given a 
consistent spatial discretization - in the sense that a numerical approximation to the equation faithfully 
represents the continuous, analytical equation in the limit of a small discretization parameter - then 
examining the Fourier analysis in this limit will confirm this conclusion. 

In this case, we set the width of the basic element (Fig. 1) to be A, = Ay = A, = 
q, l  = 
Both regions have the same scattering ratio c. The results are shown in Fig .7. Again, the results were 
repeated on a 24-tetrahedra basic element with differences only appearing in the fourth digit. We can see 
that by increasing the discontinuity in material in the direction of optical thin-ness, the loss in effectiveness 
increases with the size of the discontinuity. 

Then, we fix 
while varying ot,2 = 2-not,l over n = 0, . . . ,16, a range of about 5 orders of magnitude. 

An interesting question is what happens when the thin material not only has a small total cross section but 
is also not a diffusive material. This could be answered by setting the scattering ratio to a small value in the 
region where 0t,2 is varied. These results are shown in Fig. 8 for a fixed scattering ratio of c = 0.01 in that 
region. When the problem is homogeneous, the spectral radius starts out smaller than when c is constant, 
but quickly rises back to the same levels as before. We also observed that making one of the materials 
non-diffusive in the numerical experiments did not change the results significantly. 
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at,l 

2-1° 

I II 

2-10 2-8 2-6 2-4 2-2 2O 

49.9 61.2 139 149 170 222 

Ct,2 

2-8 

2-6 

(a) Number of iterations 

I II 

57.2 12.6 10.2 11.9 15.7 24.0 

127 12.0 4.69 5.56 7.16 10.4 

I II 

2O 

22 

175 24.5 10.9 5.11 2.11 1.15 

146 24.5 11.5 5.07 2.25 1.15 

24 

26 

I 2-4 11 84.4 I 16.2 I 6.63 I 3.41 I 3.29 I 4.57 

118 21.7 10.2 4.77 2.33 1.28 

109 20.0 9.46 4.79 2.58 1.41 

I 2-2 11 118 I 23.0 1 9.27 I 4.27 I 2.05 I 1.84 

28 

21° 

145 18.7 9.38 4.73 2.54 1.49 

187 19.3 9.25 4.60 2.22 1.32 

(b) FLOP counts (billions) 

’lhble I. Computational results with FCDSA for a realistic hetereogeneous problem containing two materials 
whose total cross sections are ot,1 and at ,2  (cm-I). An entry “nc” indicates that the problem did not converge 
in 4 CPU hours. 
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2-10 

2-8 

2-6 

2-4 

2-2 

2O 

I II 

4 4  6 8 13 34 109 242 345 344 205 

5 5  6 8 13 33 103 222 316 317 190 

6 6  6 8 13 30 86 174 254 259 164 

9 9 9 9 12 24 60 117 173 184 127 

14 14 14 13 11 18 40 77 114 125 97 

32 31 30 25 18 21 40 72 103 115 96 

a , 2  

24  

26 

28 

21° 

182 177 160 126 84 73 98 123 163 184 177 

244 235 211 164 109 90 123 150 182 206 208 

272 261 229 176 118 91 119 147 188 208 204 

186 178 160 131 88 72 94 132 185 198 160 

11 I I I I I I 1 I I 1 

I 22 11 89 I 87 I 80 I 64 I 44 I41  I 60 I 87 I 128 I 143 I 124 

at,l 

L II 1 I I I ! I ! I I I 1 

ot ,2  

2-10 2-8 2-6 2-4 2-2  I 20 I 22  I 2 4  I 26 I 28 I 210 

Table II. Computational results with the S-WLA scheme for a realistic hetereogeneous problem containing 
two materials whose total cross sections are ot,1 and ot ,2  (cm-’). An entry “nc” indicates that the problem 
did not converge in 4 CPU hours. 
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These two figures confirm the fact this is an analytical property of the DSA method. 

1 .o 

0.9 

0.8 

0.7 

.? 0.6 
2 
2 0.5 

J 0.4 

0.3 

0.2 

0.0 O.l 0 L----A 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  

4 n (oL2 = 2-n IO 

Figure 7. Fourier analysis in the optically thin limit for a fully consistent DSA method. The scattering ratio, 
c, is the same in both materials. 

6 CONCLUSIONS 

We conclude that in a multidimensional problem with a scattering ratio approaching unity the effectiveness 
of all DSA methods can degrade in the presence of material discontinuities because it is an property of the 
analytical DSA method. This does not depend on what the particular geometric configuration might be or 
whether a DSA method is is consistently discretized or not. Inconsistency probably just makes the situation 
worse; How much will depend on the particular method. 

So we are left in the undesirable situation where acceleration of transport source iterations with DSA 
cannot be relied upon to produce efficient solutions in all circumstances. This is particularly true in the 
diffusive problems where DSA is most needed. However, in another paper that we plan to present at this 
conference, we will show that replacing source iteration with a more powerful iterative method enables us 
to use the efficient, partially consistent S-WLA DSA scheme to compute transport efficiently in 
heterogeneous and diffusive problems. 
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Figure 8. Fourier analysis in the optically thin limit for a fully consistent DSA method. Note that the 
scattering ratio in the thin region is fixed at c2 = 0.01. 
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