
Approved for public release; 
distribution is unlimited. 

Title: 

Authorfs) 

Submitted tc 

-ime in Quantum Geometrodynamics 

Nathan D George 
Adrian P Gentle 
Arkady Kheyfets 
Warner A Miller 

Proceedings of the XXlV International Colloquium 
on Group Theoretical Methods in Physics 

N A T I O N A L  L A B O R A T O R Y  
Los Alamos National Laboratory, an affirmative action/equai opportunity employer, is operated by the University of Caiiforniafor the US. 
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government 
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US. 
Government purposes, Los Alarnos National Laboratory requests that the publisher identify this article as work performed under the 
auspices of the US. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to 
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (8/00) 

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact:



Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM  87544

Phone:  (505)667-4448

E-mail:  lwwp@lanl.gov



Time in Quantum Geometrodynamics 

Nathan D. George$, Adrian P. Gentle, Arkady Kheyfetss, and 
Warner A. Miller 
Theoretical Division (T-6, MS B288) 
Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

Abstract. 
Standard techcniques of canonical gravity quantization on the superspace of 3-metrics are 

known to causc insurmountable difficulties in the description of time evolution. We forward a 
new quantization procedure on the superspace of true dynamic variables - geometrodynamic 
quantization. The procedure takes into account the states that are off shell with respect to the 
constrainls and thus circumvents the notorious problems of time. In this approach, quantum 
geometrodynamics, general covariance, and the interpretation of time emerge together as parts 
of the solution of the total problem of geometrodynamic evolution. 

The standard canonical quantum gravity approach [ 1,2] is based on the classical dynamic 
picture of the evolving 3-geometry of a slicing of a spacetime manifold described by the 
lapse function N and the shift functions N’. The canonical variables are the 3-metric g ik  

components on a spatial slice C of the foliation induced by the spacetime 4-metric, and their 
canonical conjugate momenta 7rXh.  The customary variational procedure applied to the Hilbert 
action expressed in teims of these canonical variables yields Hamilton dynamics that, after 
applying the canonical quantization procedure on the superspace of 3-metrics (in both Dirac’s 
and ADM square root Hamiltonian approaches), produces quantum theory that appears to be 
incapable of providing a consistant description of time evolution of quantum gravitational 
systems. The source of the difficulties can be traced to mixing dynamical considerations 
with the requirements of general covariance and to restricting quantum states to the shell 
determined by constraints. 

The situation changes dramatically if York’s analysis of gravitational degrees of freedom 
[4] is taken into account and actively utilized. According to York’s analysis of gravitational 
degrees of freedom, the set of six parameters describing the slice 3-metric should be split in 
two subsets, (81, 8 2 )  (two functions) and {a l ,  az, a3, Q}.  The first of these is treated as the 
set of true gravitational degrees of freedom (the initial values for them can be given freely), 
while the second i s  considered to be the set of embedding variables. The a parameters are 
often referred to as coordinatization parameters, while s2 is called, depending on the context, 
the slicing parameter, the scale factor, or the many-fingered time parameter. Information 
relevant to dynamics is carried by p parameters, while Q and fl essentially describe time. 
The true dynamic variables form what we call a dynamic superspace while the embedding 
variables are treated as functional parameters. 

The idea is to develop geometrodynamics from the very beginning on the dynamic 
superspace instead of the superspace of 3-metrics or 3-geometries. The variational principle 
on the dynamic superspace or its phase space (formed by true dynamic variables {PI,,&} 
and their conjugate momenta {7rpl ,  7rpz})  yields the dynamic equations describing evolution 
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of true dynamic variables. All of these equations depend on lapse and shift and contain 
embedding variables as functional parameters. These are treated as an external field and 
are determined by additional equations that do not follow from the variational principle on 
dynamic superspace. The quantization procedure is performed on the dynamic superspace 
(only p-s are quantized, i .  e. generate commutation relations, while embedding variables form 
a classical field). The Schrodinger equation is obtained by a quantization procedure from the 
Hamilton--Jacobi equation on the dynamic superspace and describes the time evolution of 
the state functional on the true dynamic superspace coupled with the external classical field 
determined by embedding variables. Such a coupling can be achieved via a procedure similar 
to that of Hartree-Fock. 

In a more detailed and precise description that follows, we omit indices on variables p 
and CY for the sake of notational simplicity. They can be recovered easily whenever it becomes 
necessary. 

We start from the standard Lagrangian ,C (written in terms of the 3-metric, shift and 
lapse) and the associated action (with appropriate boundary terms, as needed, to remove the 
second time derivatives terms) and we introduce the momenta conjugate to the true dynamic 
variables 

We then use these np9s to form the geometrodynamic Hamiltonian N d y n ,  

N d y n  = rpb - (2) 

x d y n  = 7 - t d y n ( P ,  r p ;  .). (3) 

The argumenls of the Hamiltonian N d y n  are described by the expression 

The variables following the semicolon are treated as describing an external field, while the 
ones preceeding the semicolon are the coordinates and momenta of the gravitational true 
degrees of freedom, i.e. of the true geometrodynamics. The variation of p and 7rp produce 
Hamilton equations 011 the dynamic superspace, while variation of the ends leads to the 
Hamilton-Jacobi equation 

Here S is a functional of ,8 and, in addition, a function oft ,  

and & is defined by 
s = s [p; t) . 

OS 
at 

(5) 

The Hamilton-Jacobi equation (4) is incapable of providing any predictions as its 
solutions depend on the functional parameters fl and a which are not yet known. One can 
complete the picture by adding to it the standard constraint equations of general relativity 
that are obtained by variations of shift and lapse. They should be satisfied when the solution 
for p, 7rp of equations of true geometrodynamics (with appropriate initial data) is substituted 
in them (we use symbols [,BIB, [7rpI3 for such a solution) These constraint equations should 
be treated as additional symmetries, or the equations for an external field. They do follow 
from the shift and lapse invariance of action but their derivation in this new setting depends 
on the structure o€ the whole action integral. As a result, they cannot replace the full set 
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of equations for geometrodynamic evolution (which is usually done on the superspace of 3- 
metria). However, the resulting complete system of equations is equivalent to that of the 
standard geometrodynamics on the superspace of 3-geometries [6]. 

For the purpose of quantization, we make a transition to the corresponding Schrodinger 
equation based entirely on dynamics and ignoring the system symmetries 

where i i p  =I f-$, The Schrodinger equation (7) implies that commutation relations are 
imposed only on true dynamic variables and treats embedding variables as external classical 
fields. The state functional 9 in this equation is a functional of ,O and a function oft. 

(8) 

This Schrodinger equation (with specific initial data) can be solved (cf., for instance the 
example of the Bianclii 1A cosmological model [5, 61). The resulting solution 9s of this 
Schrodinger equation is not capable of providing any definite predictions as it depends on 
four functional parameters R, a which remain at this stage undetermined. All expectations, 
such as the expectation values of /3 

@ = @ LP, t )  

or of i i p  

(10) 

also depend on these functional parameters. To specify these functions we resort to the 
constraint equations. The treatment of the constraints has nothing to do with the quantization 
of geometrodynamics. It merely introduces the coupling between the already quantized 
geometrodynamics a d  the classical field determined by the embedding variables. In other 
words, the constraints take care of the symmetries which are classical in nature, to the extent 
that they are capable of doing so. 

As in case of classical geometrodynamics, we impose the constraints on the solution of 
the dynamic equations (Schrodinger equation) with appropriate initial data and in this way, 
determine the unique values of 0 and a. It is possible that there are several ways to couple 
the constraints to the quantization of the true dynamic variables, P. Here we impose the four 
constraints only on the expectation values of the conformal dynamics 

3-Ii (< p > a ,  < 7rp (1, a )  = 0 

a(< [? >,,< " p  >s,f l ,a)  = 0 

Lapse and shift are assumed to be given either explicitly or by additional conditions. 
The way evolution occurs can be described as follows. Initial data at t = t o  consist of the 

initial state functional 9 = 9" and the initial values (functions) of embedding variables. In 
addition, lapse and shirt are supposed to be given either explicitly or by additional conditions. 
Equations (9), (10) yield the expectation values (functions) of true dynamic variables and 
their conjugate momenta. The result are substituted in the constraints (11). After this, 
the constraints are solved with respect to the time derivatives of embedding variables. A 
step forward in time (say, with the increment At) is performed by integration of obtained 
expressions to evolve embedding variables and by integration of the Schrodinger equation 
(7) to evolve the state functional. This concludes one step forward in time. The next step is 
performed by repeating the same operations in the same order. 
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One can be referred to [5, 61 for two particular examples illustrating such 
geometrodynamic evolution in cases of Bianchi IA cosmology and Taub cosmology. The first 
one can and has been solved analytically, while the latter one has been solved numerically. 

The resulting canonical gravity quantization procedure circumvents all the standard 
problems of time and removes all Ihe obstacles for describing the time evolution of quantum 
gravitational systems. This has been achieved via including in the picture “off-shell” quantum 
states and imposing constraints only on expectations of dynamic variables. 

It should be stressed that all three components of the evolution description for quantum 
geometrodynamic system - quantum dynamics itself, constraints enforcing the symmetries 
(general covariance), and the interpretation of time - emerge together as the solution of the 
total problem of geometrodynamic evolution. 
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