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Time in Quantum Geometrodynamics

Nathan D. George!, Adrian P. Gentle, Arkady Kheyfets§, and
Warner A, Miller

Theoretical Division (T-6, MS B288)
Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract.

Standard techcniques of canonical gravity quantization on the superspace of 3—metrics are
known to cause insurmountable difficulties in the description of time evolution. We forward a
new quantization procedure on the superspace of true dynamic variables — geometrodynamic
quantization. The procedure takes into account the states that are off shell with respect to the
constraints and thus circumvents the notorious problems of time. In this approach, quantum
geomeirodynamics, general covariance, and the interpretation of time emerge together as parts
of the solution of the total problem of geometrodynamic evolution.

The standard canonical quantum gravity approach [1, 2] is based on the classical dynamic
picture of the evolving 3—-geometry of a slicing of a spacetime manifold described by the
lapse function N and the shift functions N°. The canonical variables are the 3-metric g
components on a spatial slice ¥ of the foliation induced by the spacetime 4-metric, and their
canonical conjugate momenta 7°*. The customary variational procedure applied to the Hilbert
action expressed in terms of these canonical variables yields Hamilton dynamics that, after
applying the canonical quantization procedure on the superspace of 3—metrics (in both Dirac’s
and ADM square root Hamiltonian approaches), produces quantum theory that appears to be
incapable of providing a consistant description of time evolution of quantum gravitational
systems. The source of the difficulties can be traced to mixing dynamical considerations
with the requirements of general covariance and to restricting quantum states to the shell
determined by constraints.

The situation changes dramatically if York’s analysis of gravitational degrees of freedom
[4] is taken into account and actively utilized. According to York’s analysis of gravitational
degrees of freedom, the set of six parameters describing the slice 3—metric should be split in
two subsets, {51, 52} (two functions) and {4, a, a3, 2}. The first of these is treated as the
set of true gravitational degrees of freedom (the initial values for them can be given freely),
while the second is considered to be the set of embedding variables. The a parameters are
often referred to as coordinatization parameters, while 2 is called, depending on the context,
the slicing parameter, the scale factor, or the many—fingered time parameter. Information
relevant to dynamics is carried by (8 parameters, while o and {) essentially describe time.
The true dynamic variables form what we call a dynamic superspace while the embedding
variables are treated as functional parameters.

The idea is to develop geometrodynamics from the very beginning on the dynamic
superspace instead of the superspace of 3—metrics or 3—geometries. The variational principle
on the dynamic superspace or its phase space (formed by true dynamic variables {5, 52}
and their conjugate momenta {7g,, 7, }) yields the dynamic equations describing evolution
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of true dynamic variables. All of these equations depend on lapse and shift and contain
embedding variables as functional parameters. These are treated as an external field and
are determined by additional equations that do not follow from the variational principle on
dynamic superspace. The quantization procedure is performed on the dynamic superspace
(only f3-s are quantized, i. e. generate commutation relations, while embedding variables form
a classical field). The Schrédinger equation is obtained by a quantization procedure from the
Hamilton-Jacobi equation on the dynamic superspace and describes the time evolution of
the state functional on the true dynamic superspace coupled with the external classical field
determined by embedding variables. Such a coupling can be achieved via a procedure similar
to that of Hartree-Fock.

In a more detailed and precise description that follows, we omit indices on variables 3
and « for the sake of notational simplicity. They can be recovered easily whenever it becomes
necessary.

We start from the standard Lagrangian £ (written in terms of the 3-metric, shift and
lapse) and the associated action (with appropriate boundary terms, as needed, to remove the
second time derivatives terms) and we introduce the momenta conjugate to the true dynamic
variables

5= oL 1)
9
We then use these 75’s to form the geometrodynamic Hamiltonian H gy,
Hayn = 73 ~ L. )
The arguments of the Hamiltonian Hg,, are described by the expression
Hayn = Hayn (B, 76; €1, ). (3)

The variables following the semicolon are treated as describing an external field, while the
ones preceeding the semicolon are the coordinates and momenta of the gravitational true
degrees of freedom, i.e. of the true geometrodynamics. The variation of 3 and 73 produce
Hamilton equations on the dynamic superspace, while variation of the ends leads to the
Hamilton-Jacobi equation

0S8 88

"g - -"HDYN (/B) g[gaﬂ)a> . (4)
Here S is a functional of 3 and, in addition, a function of t,

S=SB;t). &)
and £ is defined by
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'—8—5 = Ed X, (6)

The Hamilton-Jacobi equation (4) is incapable of providing any predictions as its
solutions depend on the functional parameters {2 and o which are not yet known. One can
complete the picture by adding to it the standard constraint equations of general relativity
that are obtained by variations of shift and lapse. They should be satisfied when the solution
for 3, mz of equations of true geometrodynamics (with appropriate initial data) is substituted
in them (we use symbols [§], [mg], for such a solution) These constraint equations should
be treated as additional symmetries, or the equations for an external field. They do follow
from the shift and lapse invariance of action but their derivation in this new setting depends
on the structure of the whole action integral. As a result, they cannot replace the full set
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of equations for geometrodynamic evolution (which is usually done on the superspace of 3—
metrics). However, the resulting complete system of equations is equivalent to that of the
standard geometrodynamics on the superspace of 3~geometries [6].

For the purpose of quantization, we make a transition to the corresponding Schrédinger
equation based entirely on dynamics and ignoring the system symmetries

o

Zh"g? = ﬁdyn (:6; %ﬂ; Qa 07) v (7)
where 715 = %?s% The Schrédinger equation (7) implies that commutation relations are

imposed only on true dynamic variables and treats embedding variables as external classical
fields. The state functional W in this equation is a functional of 3 and a function of ¢.

U= V[B,¢) )

This Schrédinger equation (with specific initial data) can be solved (cf., for instance the
example of the Bianchi 1A cosmological model [5, 6]). The resulting solution ¥, of this
Schrddinger equation is not capable of providing any definite predictions as it depends on
four functional parameters (), o which remain at this stage undetermined. All expectations,
such as the expectation values of

<f>= (,|81L.) = [ 059, D ©)

or of 7ig
< Mg >o= (UiplUs) = [ iR, DF : (10)

also depend on these functional parameters. To specify these functions we resort to the
constraint equations. The treatment of the constraints has nothing to do with the quantization
of geometrodynamics. It merely introduces the coupling between the already quantized
geometrodynamics and the classical field determined by the embedding variables. In other
words, the constraints take care of the symmetries which are classical in nature, to the extent
that they are capable of doing so.

As in case of classical geometrodynamics, we impose the constraints on the solution of
the dynamic equations (Schrédinger equation) with appropriate initial data and in this way,
determine the unique values of (2 and «. It is possible that there are several ways to couple
the constraints to the quantization of the true dynamic variables, 3. Here we impose the four
constraints only on the expectation values of the conformal dynamics

H (< B >5, < mg >4, 0) =0

(1)
H(< B >, < Mg >6,0a) =0

Lapse and shift are assumed to be given either explicitly or by additional conditions.

The way evolution occurs can be described as follows. Initial data at ¢ = #, consist of the
initial state functional ¥ = ¥, and the initial values (functions) of embedding variables. In
addition, lapse and shift are supposed to be given either explicitly or by additional conditions.
Equations (9), (10) yield the expectation values (functions) of true dynamic variables and
their conjugate momenta. The result are substituted in the constraints (11). After this,
the constraints are solved with respect to the time derivatives of embedding variables. A
step forward in time (say, with the increment At) is performed by integration of obtained
expressions to evolve embedding variables and by integration of the Schrodinger equation
(7) to evolve the state functional. This concludes one step forward in time. The next step is
performed by repeating the same operations in the same order.
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One can be referred to [5, 6] for two particular examples illustrating such
geometrodynamic evolution in cases of Bianchi 1A cosmology and Taub cosmology. The first
one can and has been solved analytically, while the latter one has been solved numerically.

The resulting canonical gravity quantization procedure circumvents all the standard
problems of time and removes all the obstacles for describing the time evolution of quantum
gravitational systems. This has been achieved via including in the picture “off-shell” quantum
states and imposing constraints only on expectations of dynamic variables.

It should be stressed that all three components of the evolution description for quantum
geometrodynamic system -— quantum dynamics itself, constraints enforcing the symmetries
(general covariance), and the interpretation of time — emerge together as the solution of the
total problem of geometrodynamic evolution.
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