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cle-in-CeI I 

two meshes ... Eulerian and Lagrangian 

- Eulerian mesh is fixed in space 

* scratch pad for dynamics 

JF storesve ocity, internal energy and mass 

- Lagrangian mesh moves with fluid 

* Lagrangian mesh is distributed point 

set of  particles 

* fluid motion modeled by particle mo- 

tion 



a two phases, Lagrangian and Eulerian 

- Lagran ian phase: solve equations of 
motion on grid as though it were a La-  

grangian grid 

* grid and particles move together 

* particles move t o  final position 

- Eulerian phase: restore Eulerian grid 

* particles stationary, but cell bound- 
aries pass over particles 

* mass, momentum and energy repar- 
titioned among cells in proportion t o  

the mass carried by particles from cell 

t o  cell 



louds-In-Cells 

PIC for plasma simulation 

particle p assigned position xp, velocity vp, mass mp, and charge qp 

- initial particle velocity taken from single particle distribution 

0 charg’e density p ( x ) ,  corn-puted on. a grid by area weighting 

p ( x )  =. c q$(x - xp; h) 
1’ 

e electric field, E, computed on grid 

U * E = - p  

0 electric field interpolated from grid to particle using area-weighting 

E(x,) =I E,S(X - xP) 
9 

solve particle equations of m.otiox.1 

( 3 )  

ref  Birdsall and Fuss, “Clouds-in-clouds, clouds-in-cells physics for many-body plasma simula- 
tion”, J. Corriput. Phys. 3, 494 (1969). 



FLuid mplicit P I C  
0 introduces aspects of kinetic simuations into fluid modeling 

- particle velocity, vp, persistent, 
- velocity updated by forces interpolated from the grid, but not replaced 

d v ,  
m --- = CF,S(x - xg) * d t  9 

0 but retains key feature of Harlow’s PIC 

- particles move with area-weighted grid velocity 

- grid velocity Fabre average of particle velocities 

“it may be better to  think of the simulation particles as Lagrangian mesh points 
randomly embedded in a collisionless phase fluid than as fat real particles” Dickman, 
Morse, and Nielson, “Numerical simulation of axisymmetric, collisionless, finite ,B 
plasma”, Phys. Fluids, 2, 3.708, 1969. 



s on FLIP 

e 1. FLIP is tranlationally and rotationally 
invariant 

a 2-4. Computers are bigger than they were 

in 1960 

41 5. FLIP is an al l  flow speeds method 



lar Flow 

0 equations of motion 

1, 

d t  2 
-I_ deg = - (vvs + vvg*). ( 3 )  

- f  / i s t  e specific contact force exerted gg 
on grain g by grain g'. 



d Explicit 
M 

4, implicit MPM 

1 O - -E 1 [v *ve + vpiv;T] at, ( 5 )  eP - eP - 2 PZ 
i 

vp’ - bo = -VF [VPi v!] Deltat, (6) 
i 

1 0 _. 1 0 ap - al, - T : (ep - eP) ,  (7 )  

- f; is t he  value of the specific force of 
constraint 



explicit M M (leapfrog) 

OT 1 
2 

e l l 2  I e = - (vvo + vv ) At. (11) 



r Stability 

m implicit solutions bounded in L2 norm 

- (e  - ;) cp [mp(v,n - v;-1)*] 

6 explicit solutions are not bounded 

1 1 n 2  n-- 2 -xn+:] (14) E" == - 2 [m(v ) +Kx 7 

or 

2 
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Figure 1: Grain positions in the elastic rebounding grain problem using the implicit MPM 
formulation. 
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Figure 2: Grain positions at time t = 2.00 in the elastic rebounding grain problem using the explicit 
MPM formulation with a CFL stability limit of a = 0.25 and a = 1.00. 
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Figure 3: Total energy, elastic energy and x-momentum comparisons for the implicit and explicit 
formulations for the rebounding elastic grain problem. 
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Figure 4: Fringe plots of the principle stress differences for the compressed grain problem using the 
implicit MPM formulation. 
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Figure 5: Fringe plots of the principle strcss tlifFerences ror the compressed grain problem using the 
explicit MPM Formulation. The CFL stability limit is N = 0.25. 
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Figure 6: Total energy comparisons for the compressed grain simulation for the implicit and explicit 
NIPM formulation. 
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Figure 7: Particle positions and principle stress differences in the monodisperse shearing problem 
using the implicit MPM formulation. 



Implicit Moment Method 
e combines fluid PIC with kinetic simulations 

- Maxwell's equations 

I l, 

- fluid equations 

- closure assumption 
< 1  

Vthermal at 
AX 

e possible to  model low-frequency modes with realistic mass ratios 

0 scaling of relative cost of explicit and implicit simulations 
&tL explicit mi 

cost 2 5 -  
implicit me 



(lost Comparison: 
licit and Implicit 
wmuiations 

a CELESTE33 (implicit) 

.-. N’ x N y  = 64 x 64 

8 explicit simulation 

- lVx x N y  = 512 x 256 
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Figure 8: Evolution of the magnetic field and evolution of the out-of-plane current density (color 
coded) for the simulation whose parameters match those ones of the GEM hallenge. This figure is 
in agreement with Plate 1 in Ref. [?I. 
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Figure 9: Reconnected flux, A 8 ,  as a function of time, for the GEM magnetic reconnection challenge 
[?I. The reconnection rate reported by CELESTE3D is compared with the results (provided by J.F. 
Drake and M.A. Shay) of the different codes which have performed thc GEM challenge (see Fig. 1 
of Ref. [?I>. 
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Figure 10: Comparison between CELESTE311 (solid line) and the explicit kinetic simulation data 
provided by P.L. Pritchett (see Ref. [?I, Figs. 4,6) (dashed line) of the 2-component of the electron 
velocity (a), ion density (b), x-component of the ion velocity (c) and x-component of the magnetic 
field (d), as a function of x and at x = 0, when A s  = 1 [averaged between twCz = 15 and twci = 15.6 
(a-c) and at twCi = 15 (d) for Pritchett's simulation] within the GEM magnetic reconnection challenge. 
The results reported in this figure can also be compared with Fig. 9 of Ref. [?I, 
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Figure 11: Time evolution of' J,(z)  (averaged in the y direction). The case considered has 
mi/m, = 180, U i / V l h , i  := 1 and T\/Te = 1 
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Figure 12: Contour plot of EV at w,,t = 7 with u,/'ui = 1, Ti/Te = 4, rn,/rne = 180, L,/L = 4. Note 
that the dominant LHDI mock has mjM = 8, corresponding to k,L = 12.5. 



Figure 13: Contour plot of B,(y, x) at the end of the simulation (w,it = 110). The case considered 
has mi/rn, = 180, u ~ / z ~ ~ ~ , ~  = 1 and T,/Te = 2. Note that only a portion of the system, -2 5 x / L  5 2,  
is shown (the total vertical size is L,/L = 9). 
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Figure 14: Evolution of the KM (a) and of the LHDI (b), for a current sheet with ui/vi = 1. Three 
runs are shown, with different temperatures: T,/T, = 1 (dashed); Ti/Te = 2 (solid); Ti/?", = 4 
(dotted). A best fit of the second phase of the evolution (shown with the straight lines in figure) 
gives the following growth rates: y/w,i = 0.1,0.07, and 0.04 for T,/T, = 4,2, and 1 repectively. The 
saturation level of the LHDI is computed as the L2 norm of the Fourier component shown in plate (b) 
integrated in time between ucit = 10 and the end of the simulation: < B,(rn, = 4)2 
3.5 - and 1.5 for T,/T, = 4,2, and 1. 

6.5. 
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Figure 15: Velocity profile at time wcat = 12 for a system with u,/v, = 1, malm, = 180 and with four 
different temperature ratios: T,/T, = 10 (solid); T,/T, = 4 (dotted); x /Te  = 2 (dashed); T,/T, = 1 
(das h-clot t ecl) 



Conclud g Remarks 

haven’t mentioned many other developments 

- m agnetohyd rodyna rnics 

- suspension flow 

- particle rezoning 

e current work 

- multiscale problems 

- quantum mechanics? 



Previous session 1 Next session 

Session F1-  Something Old and Something New. 
INVITED session, Tuesday morning August 27 
Regency Ballroom, Hyatt Regency Islandia 

JF1.0011 The First Half Century of the Particle-in-Cell Method 

J. U. Brackbill (Theoretical Division, Los Alamos National Laboratory) 

While this talk is mainly about new results for magnetic reconnection, we will discuss the state of Harlow's 
particle-in-cell method (PIC) after its first half century. PIC is a remarkably versatile method. It was the 
first method to model high-speed and free-surface flow in two dimensions, and the first to model 
collisionless plasmas in two space dimensions. The versatility can be explained by PIC'S use of Lagrangian 
and Eulerian descriptions in a complementary way, which, for example, allows one to model granular 
material in all its complexity, including history-dependent material response, Coulomb friction, and 
bonding. Recently, an implicit granular flow method confimed an old conjecture about the connection 
beween the finite grid instability, nonlinear stability, and energy conservation in PIC plasma simulation. 
New techniques, including Newton Krylov solvers for the field equations and a new understanding of the 
correct boundary conditions, result in accurate and robust implicit plasma simulations with the ability to 
simulate more realistic electron-ion mass ratios. Results from magnetic reconnection studies illustrate why 
this is important, the role of the lower-hybrid drift instability in symmetry breaking, and magnetic 
reconnection in the magnetotail, even with a perpendicular field. 

JFl.0021 Cluster Analysis of DNA-chip data 

Eytan Romany (Rept. of Physics of Complex Systems, Weizmann Inst. of Science, Rehovot 761 00 ISRAEL) 

DNA chips are novel experimental tools that have revolutionized research in molecular biology and 
generated considerable excitement. A single chip allows simultaneous measurement of the level at which 
thousands of genes are expressed. A typical experiment uses a few tens of such chips, each focusing on 
one sample - such as material extracted from particular tumor. Hence the results of such an experiment 
contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one 
for each gene) and 50 - 100 columns' (one for each sample). We developed a clustering methodology to 
mine such data. 

This talk will provide a very basic introduction, with no prior knowledge of any biology assumed. I will 
explain what genes are, what is gene expression and how it is measured by DNA chips. I will also explain 
what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, 
using a novel method called Coupled Two Way Clustering [I], and present results obtained from analysis 
of several types of cancer. If time permits, I will mention briefly how similar methods can be applied to 
other problem areas, such as document classification, antigen chips and the low-temperature phases of 
short range spin glasses. 

l o f 2  

[l] G. Getz, E. Levine, and E. Domany, PNAS 97,12079 (2000) 

8/23/2002 4:02 PM 


