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Particle-in-Cell

o two meshes ... Eulerian and LLagrangian

— Eulerian mesh is fixed in space

x scratch pad for dynamics
* stores velocity, internal energy and mass

— Lagrangian mesh moves with fluid

x Lagrangian mesh is distributed point
set of particles

x fluid motion modeled by particle mo-
tion



o two phases, Lagrangian and Eulerian

— Lagrangian phase: solve equations of
motion on grid as though it were a La-
grangian grid

x grid and particles move together
x particles move to final position

— Eulerian phase: restore Eulerian grid

* particles stationary, but cell bound-
aries pass over particles

x MmMass, momentum and energy repar-
titioned among cells in proportion to
the mass carried by particles from cell
to cell |



Clouds-In-Cells

PIC for plasma simulation
e particle p assigned position x,, velocity v,, mass m,, and charge g,

— initial particle velocity taken from single particle distribution

charge density p(x), computed on a grid by area weighting

px) = 12? GpS (X — Xp; h)

®

electric field, E, computed on grid

V-E=-p

electric field interpolated from grid to particle using area-weighting

E(xp) = %j EgS(x —xp)

e solve particle equations of motion
duy,
My~ = B E(xp)
dx,
— =1
dt P

(5)

ref: Birdsall and Fuss, “Clouds-in-clouds, clouds-in-cells physics for many-body plasma simula-

tion”, J. Comput. Phys. 3, 494 (1969).



FLuid Implicit PIC

e introduces aspects of kinetic simuations into fluid modeling

— particle velocity, vy, persistent

— velocity updated by forces interpolated from the grid, but not replaced
Mo~ = > FyS(x —xy) (6)

e but retains key feature of Harlow’s PIC

— particles move with area-weighted grid velocity

7 > VS (xp — Xg) (7)

g
— grid velocity Fabre average of particle velocities

v, = X mpvpS(Xp — Xg) (8)

> pS (Xp — Xg)

“it may be better to think of the simulation particles as Lagrangian mesh points.
randomly embedded in a collisionless phase fluid than as fat real particles” Dickman,
Morse, and Nielson, “Numerical simulation of axisymmetric, collisionless, finite 3
plasma”, Phys. Fluids, 2, 1708, 1969.



Perspectives on FLIP

e 1. FLIP is traniationally and rotationally
invariant

o 2-4. Computers are bigger than they were
in 1960 |

e 5. FLIP is an all flow speeds method



Granular Flow

e equations of motion

— = —pgV - Vg, (1)

5‘{%9_ =T, : %ig—, (2)

0 =~ (Vv + V"), (3)
Pg%‘%g' =V .09+ %;pgfgg” (4)

— fgg, is the specific contact force exerted
on grain g by grain ¢’.



Implicit and Explicit
MP M

e implicit MPM

1

1 0 o or

% =5 Z [sz'Vz' + Vpiv; } At, (5)
(]

Vy — V0 = —-Vpoz Vi v?!| Deltat, (6)

?

op —on =T : (e} —eD), (7)
1 0
mi=t ot = =3 Vi (V) + £, (8)

p

— f; is the value of the specific force of
constraint

<H<1.

N =



o explicit MPM (leapfrog)
1/2 ~1/2 —1/2
V2= = P [0, 90 A
2
(9)

/2 e =~ (VWO 4 vvOT) Ar (11)

mq;-Y-—*——*— — }_J pi ( 2y 1/2) + mifio'
(12)



Nonlinear Stability

e implicit solutions bounded in L, norm

BN = En-1
—(0 - 3) =y [mp(vi —vE~1)?]

— (0 — —%) >op [(eg — eg“l) T (eg — eg”l)]

(13)
e eXxplicit solutions are not bounded
1 1 1

B = [m(v)?2 4+ Kx"E x4 (14)

or
Bt = X [y vt g ot ]
2

(15)



Figure 1: Grain positions in the elastic re

formulation.
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bounding grain problem using the implicit MPM
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Figure 2: Grain positions at time ¢ = 2.00 in the elastic rebounding grain problem using the explicit
MPM formulation with a CFL stability limit of oo = 0.25 and o = 1.00.
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Figure 3: Total energy, elastic energy and x-momentum comparisons for the implicit and explicit
formulations for the rebounding elastic grain problem.
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Figure 4: Fringe plots of the principle stress differences for the compressed grain problem using the
implicit MPM formulation.
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Figure 5: Fringe plots of the principle stress differences for the compressed grain problem using the
explicit MPM formulation. The CFL stability limit is o = 0.25.
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Figure 6: Total energy comparisons for the compressed grain simulation for the implicit and explicit
MPM formulation.
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Figure 7: Particle positions and principle stress differences in the monodisperse shearing problem
using the implicit MPM formulation.



Implicit Moment Method

e combines fluid PIC with kinetic simulations

— moment definitions

p(r) = TpgpSY(r — 1)
J(r) = ZpgpupsS Si= 1)(1' —1p)
P(r) =%, mpupupS(l"z)(r —1p)

— Maxwell’s equations

— fluid equations

pn-i-l - pn 1
7 . Jn+2 =0
A + V ,
and +1 +3
Jntt —Jgn Jrts x B”
_____‘_______g__annM?_{__”_________v.Pn,
At m | 5
— closure assumption A
Vihermal t
Ax.

e possible to model low-frequency modes with realistic mass ratios

( 1Bn+1 B”
VxEW 4 - ———— =0
+ 77+1A‘t 7
{ \7><B“+9—~—E‘ —k :4_73_]“#%
c At c
V - Evt = 4ppnt?
V- -B"=V. B! =0,

e scaling of relative cost of explicit and implicit simulations

explicit — m; %
o

implicit  me

(10)



Cost Comparison:
Explicit and Implicit
Simulations

o m;/me = 25

o CELESTE3D (implicit)
— 2. 105pa'rtz'cles

e explicit simulation
— Nz X Ny =512 x 256
— 9.12 - 10%particles

- (.UpeAt = 0.15



Figure 8: Evolution of the magnetic field and evolution of the out-of-plane current density (color
coded) for the simulation whose parameters match those ones of the GEM hallenge. This figure is
in agreement with Plate 1 in Ref. [?].
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Figure 9: Reconnected flux, AW, as a function of time, for the GEM magnetic reconnection challenge
[?]. The reconnection rate reported by CELESTE3D is compared with the results (provided by J.F.
Drake and M.A. Shay) of the different codes which have performed the GEM challenge (see Fig. 1
of Ref. [?]).
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Figure 10; Comparison between CELESTE3D (solid line) and the explicit kinetic simulation data
provided by P.L. Pritchett (see Ref. [?], Figs. 4,6) (dashed line) of the z-component of the electron
velocity (a), ion density (b), z-component of the ion velocity (c) and z-component of the magnetic
field (d), as a function of z and at z = 0, when AV =1 [averaged between fwe; = 15 and twe; = 15.6
(a-c) and at tw; = 15 (d) for Pritchett’s simulation] within the GEM magnetic reconnection challenge.
The results reported in this figure can also be compared with Fig. 9 of Ref. [?].
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Figure 11: Time evolution of J,(z) (averaged in the y direction). The case considered has
mi/me = 180, u;/vy; = 1 and T;/T, = 1

Figure 12: Contour plot of E, at w.t = 7 with u;/v; = 1, T;/T. = 4, m;/m. = 180, L,/L = 4. Note
that the dominant LHDI mode has m, = 8, corresponding to k, L = 12.5.
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Figure 13: Contour plot of B,(y, z) at the end of the simulation (w,t = 110). The case considered
has m;/me = 180, u; /vy ; = 1 and T;/T, = 2. Note that only a portion of the system, —2 < z/L <2,
is shown (the total vertical size is L, /L = 9).
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Figure 14: Evolution of the KM (a) and of the LHDI (b), for a current sheet with u;/v; = 1. Three
runs are shown, with different temperatures: T;/T, = 1 (dashed); T;/T. = 2 (solid); T;/T. = 4
(dotted). A best fit of the second phase of the evolution (shown with the straight lines in figure)
gives the following growth rates: v/weg = 0.1,0.07, and 0.04 for T;/T, = 4,2, and 1 repectively. The
saturation level of the LHDI is computed as the L, norm of the Fourier component shown in plate (b)
integrated in time between we;t = 10 and the end of the simulation: < By(m, = 4)? >/2=6.5-107%,
3.5-1073, and 1.5+ 1073 for T;/T, = 4,2, and 1.
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Figure 15: Velocity profile at time wet = 12 for a system with w;/v; = 1, m;/m, = 180 and with four
different temperature ratios: 7;/7, = 10 (solid); T; /7T, = 4 (dotted); T;/T. = 2 (dashed); T;/T. = 1
(dash-dotted)



Concluding Remarks

e haven't mentioned many other developments
— magnetohydrodynamics
— suspension flow

— particle rezoning

e Current work
— multiscale problems

— guantum mechanics?
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Sessidn F1 - Something Old and Something New.
INVITED session, Tuesday morning, August 27
Regency Ballroom, Hyatt Regency Islandia

[F1.001] The First Half Century of the Particle-in-Cell Method

J. U. Brackbill (Theoretical Division, Los Alamos National Laboratory)

While this talk is mainly about new results for magnetic reconnection, we will discuss the state of Harlow's
particle-in-cell method (PIC) after its first half century. PIC is a remarkably versatile method. It was the
first method to model high-speed and free-surface flow in two dimensions, and the first to model
collisionless plasmas in two space dimensions. The versatility can be explained by PIC's use of Lagrangian
and Eulerian descriptions in a complementary way, which, for example, allows one to model granular
material in all its complexity, including history-dependent material response, Coulomb friction, and
bonding. Recently, an implicit granular flow method confimed an old conjecture about the connection
beween the finite grid instability, nonlinear stability, and energy conservation in PIC plasma simulation.
New techniques, including Newton Krylov solvers for the field equations and a new understanding of the
correct boundary conditions, result in accurate and robust implicit plasma simulations with the ability to
simulate more realistic electron-ion mass ratios. Results from magnetic reconnection studies illustrate why
this is important, the role of the lower-hybrid drift instability in symmetry breaking, and magnetic
reconnection in the magnetotail, even with a perpendicular field.

[F1.002] Cluster Analysis of DNA-chip data

Eytan Domany (Dept. of Physics of Complex Systems, Weizmann Inst. of Science, Rehovot 76100 ISRAEL)

DNA chips are novel experimental tools that have revolutionized research in molecular biology and
generated considerable excitement. A single chip allows simultaneous measurement of the level at which
thousands of genes are expressed. A typical experiment uses a few tens of such chips, each focusing on
one sample - such as material extracted from particular tumor. Hence the results of such an experiment
contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one
for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to
mine such data.

This talk will provide a very basic introduction, with no prior knowledge of any biology assumed. I will
explain what genes are, what is gene expression and how it is measured by DNA chips. I will also explain
what is meant by "clustering” and how we analyze the massive amounts of data from such experiments,
using a novel method called Coupled Two Way Clustering [1], and present results obtained from analysis
of several types of cancer. If time permits, I will mention briefly how similar methods can be applied to
other problem areas, such as document classification, antigen chips and the low-temperature phases of
short range spin glasses.

[1] G. Getz, E. Levine, and E. Domany, PNAS 97, 12079 (2000)
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