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ABSTRACT 

 

Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has 

been widely used for analysis of biological molecules, especially macromolecules such as 

proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis 

because of the signal saturation by organic matrixes in the low mass region. In imaging MS 

(IMS), inhomogeneous surface formation due to the co-crystallization process by organic 

MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make 

laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging 

of small molecules directly from raw biological tissues, LDI MS protocols with various 

alternative assisting materials were developed and applied to many biological systems of 

interest.  

Colloidal graphite was used as a matrix for IMS of small molecules for the first time 

and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant 

tissues were developed. With rat brain tissues, the signal enhancement for cerebroside 

species by colloidal graphite was observed and images of cerebrosides were successfully 

generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging 

tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and 

heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-

assisted LDI(GALDI) IMS.  

Aqueous-based colloidal silver solution was also investigated as an alternative matrix 

for IMS application. For Arabidopsis thaliana wild-type and its cer2 mutant flowers, direct 

profiling and imaging of cuticular wax compounds by silver LDI MS and gas 

chromatography (GC) - MS were carried out for the first time and cuticular wax metabolites 

of them were compared for predicting the function of cer2 gene products. Results from silver 

LDI MS showed a good agreement with those from traditional GC-MS analysis and we 
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propose that cer2 gene mutation mainly affects the conversion from C30 fatty acid to C29 

alkane in wax biosynthesis pathway. We also applied silver LDI MS to probe cholesterol, 

which is the major component of lipid raft domains, from the Astrocyte cell monolayer. With 

colloidal silver, cholesterol was readily detected with high sensitivity and cholesterol level 

changes on cell monolayer by methyl β-cyclodextrin treatment were successfully assayed by 

introducing relative intensity profiling. Results from more rapid, and simpler silver-LDI MS 

cholesterol assay method also showed a good agreement with those from traditional 

enzymatic fluorometry cholesterol assay method.   
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CHAPTER 1. GENERAL INTRODUCTION 

 

Dissertation Organization 

This dissertation begins with a general introduction of small molecule analysis by 

laser desorption/ionization (LDI) mass spectrometry (MS) and imaging mass spectrometry 

(IMS). The following four chapters are organized with published papers and a manuscript to 

be submitted. Chapters two and three are comprehensive studies of LDI MS and IMS of 

small metabolites in intact animal and plant tissues by using colloidal graphite as a matrix. 

Chapters four and five are projects related to LDI MS and IMS of small metabolites in plant 

tissues and cell monolayer by using colloidal silver as a matrix. Tables, cited literature, and 

figures for each chapter were placed at the end of each chapter. Chapter six includes 

summary of work and the general conclusions. The following three appendixes include the 

extended work related to chapter two and supporting information for chapter two and three.   

 

Laser Desorption Ionization Mass Spectrometry  

Since the concept of the mass spectrometry was introduced by J.J Thomson’s cathode 

ray tube experiment, mass spectrometry has been developed over 100 years by innovative 

researchers and has become one of the most important analysis techniques in almost every 

field of natural sciences. Mass spectrometry is the analytical technique measuring mass and 

charge state of the analyte. In mass spectrometry (MS), the most important step is the 

ionization step because this step makes neutral molecules detectable by converting them to 

charged ions. Ionization can be done through various mechanisms such as protonation, 

deprotonation, cationization, electron ejection, and electron capture. To achieve ionization 

through one or more mechanisms above, many ionization techniques have been developed.  

Electron ionization (EI) is the classical ionization technique for MS had and has been 

used as the primary ionization techniques in the early stage of MS. EI is based on the 
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interaction between emitted electrons and neutral analytes. In 1960 and 1970’s various 

ionization methods such as chemical ionization1, electrospray ionization2, field desorption 

ionization3, plasma desorption ionization4 and atmospheric pressure chemical ionization5 

techniques were developed for MS. In early 1980’s, inductively coupled plasma was 

introduced as an ion source for MS6 and fast atom bombardment technique has also 

developed for an ion source.7  

Laser sources were demonstrated as a fast surface heating source for generating atom 

ions from solid samples8 a few years after discovery of lasing in 1960. Since then, laser-

induced desorption/ionization techniques have been thoroughly investigated as ion sources 

for MS. In 1978, polar, nonvolatile organic molecules were ionized and detected by using 

submicrosecond pulsed laser.9 Those molecules were ionized through cationization and 

detected as sodium or potassium adduct ions.9  In the 1980’s, ultra fine metal powder 

(UFMP) which had been used for alloy production was introduced as an assisting material for 

laser desorption.10 Compared to bulk material, UFMP has much smaller dimensions which 

are in the range of the long light wavelength. Therefore, UFMP could absorb energy more 

efficiently from the light source without loss or dispersion of heat and high temperature 

required for intact molecule desorption could be achieved by using UFMP as an assisting 

material.10  With UFMP, intact polyethylene glycols were detected with very little 

fragmentations.11 The use of UFMP for LDI MS was further developed by Tanaka. He used a 

UFMP suspension in glycerin as an assisting material for LDI MS, and macromolecules over 

100 kDa were observed without fragmentation by this method.12 Inspired by UFMP 

suspension matrix for LDI MS, Karas and Hillenkamp further optimized this methodology 

for macromolecule analysis13, 14. By using nicotinic acid as a matrix, they observed several 

proteins including lysozyme, trypsin, and albumin in the form of molecular ion (MH+).13 LDI 

MS with organic acids as matrixes is referred to as matrix-assisted laser desorption/ionization 

mass spectrometry, MALDI MS. With elctrospray ionization (ESI) technique15, MALDI MS 
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has become the most widely-used soft-ionization technique for macromolecule analysis, 

especially proteins. 

 

        Laser Desorption Ionization Mass Spectrometry of Small Molecules  

Application of MALDI to small molecule analysis (<1000 Da) seems to be 

problematic because of a high degree of signal suppression in the low mass region by 

dominant matrix ion signals. However, MALDI MS is still attractive in small molecule 

analysis because of the direct sampling capability from complex mixtures and the tolerance 

for contaminants. With successes in interfacing between MALDI sampling part and a variety 

of mass analyzers, the instrumental capability of LDI mass spectrometers such as mass 

spectral resolution and tandem MS capability is no longer a limiting factor any more in small 

molecule analysis. In addition, great achievements in alternative sample preparation methods 

for LDI MS allow us to detect small molecules with less severe matrix interference and/or 

sample inhomogeneity.  

First, organic matrixes which have relatively large molecular weights and therefore 

there was no interference present in the low mass region were used. For example, meso-

tetrakis(pentafluorophenyl) porhyrin (MW. 974.46) was used as a matrix to analyze low 

molecular weight alkylphenol ethoxylates which range from m/z 300 to m/z 800.16  Second, 

alternative inorganic matrixes such as cobalt powder12, silver colloids17, gold nanoparticles18 

and carbon particles were used to analyze small molecules. Among those, carbon particles 

including graphite, carbon powder, and carbon nanotubes showed relatively clean 

background which is suitable for small molecule analysis. Examples of small molecule 

analysis by using carbon materials are reviewed briefly in this dissertation at the introduction 

part in Chapter 2. Recently, 30nm-sized silicon nanoparticles were used as a matrix to 

analyze various drug, small peptide, and pesticide molecules.19 Interestingly, much lower 

laser fluence was required for the silicon nanoparticle matrix compared to conventional 
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MALDI matrixes.19 Third, electrochemically etched porous silicon surfaces without any 

additional matrix were used for small molecule analysis by LDI MS. This technique is 

referred to as desorption/ionization on silicon MS (DIOS MS).20 Various classes of small 

molecules including carbohydrates were analyzed with very low detection limit and with low 

background.21-23 Further development on DIOS has been made by utilizing silicon nanowires 

as sample support and it required much lesser laser fluence than porous silicon surface or 

conventional MALDI environment.24  Lastly, nanostructures coated with liquid-phase 

perfluorinated initiator molecules were used as sample support for both LDI MS and SIMS.25 

This technique is called as ‘nanostructure initiator MS (NIMS)’. NIMS showed greater 

sensitivity (~tens of attomoles) over MALDI and ESI in detecting small molecules including 

lipids and drug molecules.25  

 

Imaging Mass Spectrometry of Small Molecules 

Pulsed laser-based or energetic particle-based techniques in mass spectrometry have 

the capability of generating ions directly from the specific location of sample surfaces. This 

capability of spatial sampling allowed us to investigate chemical spatial distribution by 

performing serial data collection through sample surfaces. This ‘microscope-concept’ 

approach by mass spectrometry is called as ‘imaging mass spectrometry (IMS)’ or mass 

spectral imaging’. Major methodologies used for IMS are MALDI MS26 and secondary ion 

MS (SIMS)27. MALDI IMS was first introduced by Caprioli group.28 MALDI IMS is 

advantageous over SIMS in detecting intact large molecules (>1000 Da). However, since the 

spatial resolution is limited by laser spot size in MALDI IMS, a spatial resolution of MALDI 

(10 to hundreds of microns) is worse than that of SIMS (~100 nm). To get higher spatial 

resolution in MALDI IMS, decreasing the laser spot size close to the diffraction limit29 or 

using astigmatic optics with a position-sensitive detector30, 31 were demonstrated. In addition, 

homogeneous deposition of matrixes is critical in MALDI IMS because all conventional 
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MALDI matrixes crystallize inhomogeneously on sample surfaces. For homogeneous matrix 

deposition, finely controlled matrix spraying devices such as acoustic droplet ejection 

instrument and piezoelectric microdispenser have been developed.32-34    

Because of the soft-ionization characteristic of MALDI, MALDI IMS has been 

mainly used for studying protein distribution from tissue sections35-37. However, small 

molecules below 1 kDa such as drug molecules38, 39 and endogenous primary or secondary 

metabolites were also spatially investigated from many biological systems by MALDI IMS. 

Among various primary and secondary metabolites, lipid is the major class of compounds in 

small molecule imaging by MALDI IMS because of their abundances in tissue samples. 

However, there are two major challenging issues in IMS of small molecules. First, peaks 

from conventional MALDI matrixes are dominant in the low mass region and these peaks 

interfere with or suppress signals from small sample molecules. To overcome this, matrix-

free methodology such as IR-MALDI was  applied to profile plant metabolites40, or matrix-

embedded surfaces  such as clathrate nanostructures25 and silicon41 were employed to image 

small molecules from intact tissues. 

Second, several isobaric ions can be associated in one nominal m/z value which can 

cause wrong or overlapped spatial information for a specific compound when generation of 

mass spectral images was simply based on extracting intensity values from mass spectra. 

Because of compositional similarities of small metabolites, there are many possible overlaps 

by several different compounds in the low mass region. To separate distributions of isobaric 

ions, imaging tandem MS (IMS/MS)42, high mass resolution MS36, and ion mobility 

spectrometry43 were employed. 

 In IMS/MS, first generation product ions which were specifically from only one of 

isobaric ions were chosen for generating chemically selective images. For example, both 

sodiated phosphatidylcholine 38:6 ions ([PC 38:6 + Na]+) and DHB matrix cluster ions 

contributed the peak intensity at m/z 828.44 But distribution of these two ions were 
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successfully separated by generating images of their specific product ions at m/z 769 (neutral 

loss of 59 Da, loss of PC headgroup) and at m/z 652 (loss of a sodiated DHB molecule).44 

One major disadvantage of IMS/MS is that it is a time-consuming process because a tissue 

sample needs to be scanned separately for all single m/z values which were associated with 

several isobaric ions. 

High mass spectral resolution and accurate mass measurement by using MALDI 

fourier transform ion cyclotron resonance(FTICR) MS can resolve isobaric ions which 

cannot be resolved by low-mass resolution TOF or ion-trap mass spectrometers. For example, 

Images for three peptides within 0.24 Da range at m/z 1293 were successfully obtained from 

the rat brain tissue.36 Mass accuracy was 6 ppm in this experiment.36 However, high mass 

resolution imaging is also time-consuming process because of longer measuring time by FT-

ICR. 

Ion mobility spectrometry is a real-time gas phase ion separation technique.45, 46 

Because ion mobility separation was performed prior to mass analysis, detected ions bear the 

information of ions mobility drift time as well as their m/z values. Isobaric ions from 

different classes can be separated by choosing different drift time region. For example, lipids 

detected from rat brain tissues showed about 12% longer drift time than isobaric peptides.47 

Therefore, signals from lipids were separated from chemical noises and other isobaric ion 

signals by choosing a specific mobility drift time.43 However, acquiring mass and drift time 

are limited in the current software and hardware instrumentation of ion mobility spectrometry 

because the allowed data capacity is not enough to process all ions collected from one 

scanning point.43, 47  
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Figure 1. Isobaric ion separations in IMS. Isobaric ions can be separated by (a) high 

mass spectral resolution MS36, (b) ion mobility MS43, (c) tandem MS42. 
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CHAPTER 2. IMAGING OF CEREBROSIDES DIRECTLY FROM RAT 

BRAIN TISSUE BY COLLOIDAL GRAPHITE-ASSISTED LASER 

DESORPTION/IONIZATION MASS SPECTROMETRY 

 

A paper published in Analytical Chemistry* 

Sangwon Cha and Edward S. Yeung 

 

 

 

Abstract 

Graphite assisted laser desorption/ionization (GALDI) mass spectrometry (MS) was 

investigated for analysis of cerebrosides in complex total brain lipids extract. Conventional 

MALDI MS and graphite GALDI MS were compared regarding lipid analysis by using high-

vacuum (HV, <10-6 Torr) LDI time-of-flight (TOF) mass spectrometry and intermediate 

pressure (IP, 0.17 Torr) linear ion trap (LIT) mass spectrometry. Cerebrosides were not 

detected or detected with low sensitivity in MALDI MS because of other dominant 

phospholipids. By using GALDI, cerebrosides were detected as intense mass peaks without 

prior separation from other lipid species while mass peaks corresponding to 

phosphatidylcholines (PCs) were weak. The signal increase for cerebrosides and the signal 

decrease for PCs in GALDI MS were more significant in HV than in IP. MSn experiments of 

precursor ions corresponding to cerebrosides and PCs in brain lipid extract were performed 

for identifying the detected species and for distinguishing isobaric ions. 22 cerebroside  

___________________________________________________________________________ 

* Reprint with permission from Analytical Chemistry 2007, 79(6), 2373-2385. 

Copyright © 2007 American Chemical Society 
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species were detected by GALDI whereas 8 cerebroside species were detected by MALDI. 

Sulfatides in brain lipid extract were also easily detected by GALDI MS in the negative ion 

mode. By forming a colloidal graphite thin film on rat brain tissue, direct lipid profiling by 

imaging mass spectrometry (IMS) was performed. Chemically-selective images for 

cerebrosides and sulfatides were successfully obtained. Imaging tandem mass spectrometry 

(IMS/MS) was performed to generate images of specific product ions from isobaric species. 

 

Introduction 

Cerebrosides are one class of glycosphingolipids. A cerebroside is composed of a 

hexose (galactose or glucose) and a ceramide consisting of a sphingosine or a sphinganine 

base and an amide-linked long chain fatty acid. Depending on the hexose unit, a cerebroside 

can be called a galactosylceramide (GalCer) or a glucosylceramide (GlcCer). As mediators, 

cerebrosides are involved in many biological processes, such as cell adhesion, cell growth, 

cell morphogenesis, and cell-to-cell communication.1-3 Cerebrosides also act as receptors or 

as binding sites for viruses on a cellular membrane.4 Deficiency of GalCer causes abnormal 

function and local instability during myelination.5 Abnormal accumulation of GalCer or 

GlcCer also results in Krabbe disease or Gaucher’s disease, respectively. This increased level 

of GalCer or GlcCer is caused by a deficiency of galactosylceramidase or 

glucocerebrosidase.6 Krabbe disease causes severe mental degeneration because of 

insufficient development of myelin and Gaucher’s disease leads to bone damage, anemia, and 

enlargement of spleen and liver.6 In brain tissue, GalCer species are abundant,7, 8 at up to 40 

mol% of the phosphatidylcholines (PCs) in rat brain cortex depending on their locations.8-10 

Among cortex parts, GalCers are 8 to 10 times more enriched in white matter than in gray 

matter.3 In addition to GalCers, 2-hydroxy GalCer species are also abundant in mammalian 

brain tissues and their total amount is about 50% of GalCer species.3 
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Since soft ionization techniques for mass spectrometry (MS) such as matrix-assisted 

laser desorption/ionization (MALDI) and electrospray ionization (ESI) have been 

introduced,11-13 many researchers applied these techniques to analyze lipids. Excellent recent 

reviews about lipid analysis by using MALDI or ESI technique can be found elsewhere.10, 14, 

15 Lipid analysis with MALDI has the potential advantage over ESI in sample preparation 

because of the possibility of using raw biological materials such as tissue sections directly 

(without extraction) to obtain spatial information. MALDI MS, however, has a problem with 

analyzing lipid mixtures because ionization efficiencies are different according to their head 

groups. The presence of PCs and sphingomyelines (SMs) which have a quaternary 

ammonium polar head group has been known to suppress signals of other lipid species in the 

positive ion mode.16 For lipid analysis with MALDI MS, the most common organic matrix is 

2,5-dihydroxy benzoic acid (DHB).17-19 Using DHB with the addition of cesium ion (Cs+) 

resulted in reducing spectra complexity and enhancing sensitivity.20, 21 Other matrixes, such 

as 2,6-dihydroxyacetophenone (DHA), sinapinic acid (SA), α-cyano-4-hydroxycinnamic 

acid (CHCA), p-nitroaniline (PNA), and others, have also been tested,17, 19-21 PNA 

generated good profiles of PEs in the presence of PCs and SMs.20 CHCA and SA, however, 

suffered from interference signals originated from matrixes. Their low solubility in methanol 

was also problematic.14, 17 

Whereas numerous MALDI MS analyses of phospholipids have been reported and 

many MALDI MS analyses of gangliosides which consists of a glycosphingolipid and one or 

more sialic acids have been performed,19, 22-28 relatively little research has been carried out 

on the analyses of cerebrosides by using MALDI MS despite their biological importance. 

Harvey examined comprehensively the applicability of MALDI MS to sphingolipids and 

glycosphingolipids.18 Analysis of less-polar neutral and acidic cerebrosides’ derivatives in 

monkey brain was performed by MALDI MS after serial chromatographic separations of 

cerebroside-related compounds.29 Yurkova and coworkers induced free-radical 
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fragmentations of cerebrosides by irradiation of γ-ray of cerebroside-containing micelles and 

analyzed the lipid extracts from these irradiated micelles by MALDI MS.30 Fujiwaki and 

coworkers analyzed sphingolipids in tissues and body fluids from patients with Gaucher’s 

disease and found that cerebrosides/SM ratio was elevated in samples from patients with 

Gaucher’s disease.23, 31 However, all analyses of cerebrosides mentioned above required one 

or more separation steps for isolating glycosphigolipids from other lipid species before MS 

analysis.23, 29, 31 Without separation, it is hard to detect cerebrosides by conventional 

MALDI MS because phospholipids, especially PCs, are usually dominant in crude extracts 

from eukaryotes and the m/z region of phospholipids in the mass spectra substantially 

overlaps that of cerebrosides. 

Many types of graphite matrices have been suggested as alternative matrices for laser 

desorption/ionization (LDI) mass spectrometry because they are near blackbody and disperse 

the energy very effectively. Graphite has been used in forms of suspension in glycerol32, 33 

or 2-propanol,34 powder35 and plate.36-39 These particles or flakes can range from 2 µm to 

150 µm. Sunner and coworkers first showed that graphite matrix in glycerol helped the 

detection of proteolytic digest of cytochrome c and cytochrome c itself.32 Further 

development of graphite/liquid matrix was achieved by Dale and coworkers and proteins, 

oligosaccharides, and synthetic polymers were successfully detected with a glycerol/graphite 

matrix.33 The aging of the triterpene in mastic and dammar films was also studied with 

graphite powder as a matrix.35 With graphite plate, poly(methylsilsesquioxane)s,38 fatty 

acids,39 and synthetic polymers36, 37 were analyzed. Peng and coworkers developed an 

interface for thin-layer chromatography (TLC) plate scanning by atmospheric pressure (AP) 

LDI MS. They used graphite particle suspension in 2-propanol as a matrix for detecting SMs 

and PCs directly from the TLC plate.34 Graphite trapped in silicon polymer was also used for 

the surface support to facilitate detecting peptides and proteins with desalting effect.40 Pencil 

leads, which are mixed forms of graphite, wax, and clay were used as a matrix to analyze 
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actinide materials and as a calibrant.41 Activated carbon powder was used for detecting 

various organic compounds including peptides, prometryn, and hydrochlorothiazide on the 

TLC plate.42 Functionalized fullerenes, C60((CH2)2COOH)n or C60(C11H23)n, were also 

used for the detection of peptides and phospholipids.43 Recently, carbon nanotubes or 

oxidized carbon nanotubes were suggested as matrixes for detecting small peptides, small 

oligosaccharides, and cyclodextrins.44, 45 Oxidized carbon nanotubes, which have carboxyl 

groups on oxidized surfaces of carbon nanotubes, have more polar surfaces and increased 

solubility in aqueous solution.46, 47  

For imaging mass spectrometry (IMS), several ionization techniques such as matrix 

enhanced secondary ion mass spectrometry (ME-SIMS)48, metal-assisted SIMS,49, 50 

MALDI, and cluster SIMS51 have been used. The advantages and disadvantages of these 

ionization methods for IMS are well described in the recent review article.52 Briefly, SIMS 

has the advantage in spatial resolution but MALDI is more suitable for detecting intact 

biological macromolecules. MALDI is also advantageous in terms of instrumental simplicity 

and cost. IMS with MALDI has been applied to biomarker studies and many other 

pathologically interesting case studies. 53-58 

There are two major issues in MALDI IMS. First, spatial resolution is usually limited 

by the laser spot size, which usually ranges from 80 µm to 200 µm in diameter. Spengler and 

coworkers decreased the spot size to about 0.6 µm by modifying the focusing lens.59 

Similarly, Luxembourg and coworkers utilized astigmatic optics and a position-sensitive 

detector.60, 61 However, the spatial resolution of 4 µm from this system was determined by 

the 2D-position sensitive detector and not by the laser spot size.  

Second, organic matrices used in conventional MALDI need co-crystallization that 

can lead to surface inhomogeneity. Luxembourg and coworkers showed different spectral 

profiles throughout the DHB-spotted surface by ME-SIMS.62 Spraying a matrix solution 

electrically or pneumatically, immersing the sample in matrix solution, and dispensing matrix 
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solution by a piezoelectric microdispenser were suggested for generating homogeneous 

sample surface with matrixes.63-65 Recently, Aerni and coworkers used acoustic droplet 

ejection66 to generate 180-200 µm matrix droplets reproducibly on tissues. The other 

solution for generating matrix-sample surface is using ionic matrices. Armstrong and 

coworkers introduced new ionic liquids, which are basically combinations of acidic MALDI 

matrixes (e.g., DHB, SA, CHCA and etc.) and basic organic solvents such as pyridine,  as 

MALDI matrixes.67 Ionic liquid matrixes showed advantages of  homogeneity, signal 

reproducibility, and vacuum-stability.68-70 Lemaire and coworkers improved the 

performance of MALDI MS and IMS on rat brain tissue by using solid ionic matrixes such as 

CHCA/aniline in the negative-ion mode.71 Recently, imaging tandem mass spectrometry 

(IMS/MS) of rat brain tissues by using IP-MALDI LIT mass spectrometer has been 

reported.72 By doing MS/MS for site-specifically generated ions, separate chemically-

selective images of product ions were generated for the isobaric ions at m/z 828.6 which 

could be composed of sodiated PC 38:6, DHB cluster, and phosphatidylethanolamine 38:4 

(PE 38:4).72  

Here we demonstrated a simple approach for GALDI MS by using an aerosol spray 

which contains 2-propanol-based colloidal graphite. Colloidal GALDI and conventional 

MALDI mass spectral analyses were performed for standard lipid mixtures which contain 

various compositions of PCs and GlcCers in high-vacuum (HV, 10-6 Torr) and at 

intermediate pressure (IP, 0.17 Torr). Softer ionization induced by collisional or vibrational 

cooling in IP-MALDI resulted in less fragmentation for labile molecules including 

gangliosides.24, 25 By performing imaging MS of sample spots prepared by DHB matrix, we 

can derive location-specific mass spectral profiles for PC/GlcCers lipid mixtures as in earlier 

studies.62, 73, 74 Total brain lipid extract was chosen as a model of a complex lipid mixture 

and was analyzed under four different sampling conditions. In addition, GALDI MSn 

experiments were performed to identify the ionized species and to examine isobaric ions. We 
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also investigated the applicability of the colloidal graphite spraying method to direct rat brain 

tissue analyses and IMS. Finally, overlapping spatial information originating from PC and 

GalCer isobaric ions were separated from each other by performing IMS/MS. 

 

Experimental Section 

1,2-Dipalmitoyl-sn-glycero-3-phosphorylcholine (PC 32:0) and standard GlcCers 

from bovine buttermilk were purchased from Matreya LLC (Pleasant Gap, PA). Fatty acid 

composition of GlcCers from bovine buttermilk provided by the manufacturer is 14:0 (trace), 

16:0 (15%), 18:0 (3%), 20:0 (2%), 22:0 (31%), 23:0 (28%), 24:0 (17%), and others (4%). 

Long chain bases for these GlcCers are all C18-sphingosine (d18:1) bases. Brain total lipid 

extract in chloroform solution (10 mg/ml) was obtained from Avanti Polar Lipids Inc. 

(Alabaster, AL). DHB from Bruker Daltonics (Billerica, MA) was used. 2-propanol-based 

colloidal graphite aerosol spray (Aerodag® G) was obtained from Acheson Colloids (Port 

Huron, MI). All other chemicals were obtained from Fisher Scientific (Fairlawn, NJ). 

Rat brain was collected from Spargue-Dawley rats from the College of Veterinary 

Medicine at Iowa State University and was frozen in liquid N2 immediately. The frozen rat 

brain was cryosectioned into 15 µm thick specimens without embedding in the optimum 

cutting temperature (OCT) compound. Without the OCT compound, mass spectral 

interference is known to be decreased.63 A cryostat from International Equipment Co. 

(Needham Heights, MA) was used for cryosectioning. Sectioned tissues were directly 

transferred and mounted onto a stainless-steel plate. The prepared tissue sections were stored 

at –20 °C before mass spectrometric analysis.  

HV (<10-6 Torr) LDI mass-spectrometric analysis was done with the Biosystems 

Voyager-DE PRO time-of-flight (TOF) mass spectrometer (Framingham, MA) equipped 

with a N2 laser (337 nm, and maximum 180 µJ/pulse). Mass spectra were collected both in 

positive ion mode and negative ion mode with a ±20 kV accelerating potential. Mass 



19 
 

calibration was performed with lipid standards. An LTQ linear ion trap mass spectrometer 

equipped with vMALDI source (Thermo Electron, Mountain View, CA) was used for IP 

(0.17 Torr) LDI mass-spectrometric analysis and imaging MS. A description of the LTQ with 

vMALDI source can be found elsewhere.75, 76 The laser source in this mass spectrometer is a 

fiber-optic guided N2 laser (337 nm, and maximum 280 µJ/pulse before entering the optical 

fiber cable). The measured laser spot size is about 100 µm in diameter on the sample plate 

surface.  

For lipid standard mixtures, 1 mg/ml of PC 32:0 and 1 mg/ml of total GlcCers stock 

solution were prepared in chloroform and in 70% chloroform/ 30% methanol respectively. 

Two types of lipid standard mixture batches were prepared. One batch contained a constant 

concentration of PC 32:0 (0.5 mg/ml) and various concentrations of GlcCers (from 0.005 

mg/ml to 0.5 mg/ml). In the other batch, the concentration of GlcCers was kept constant (0.5 

mg/ml), but the concentration of PC 32:0 were from 0.005 mg/ml to 0.5 mg/ml. The total 

lipid concentrations in the mixtures thus varied from 0.505 mg/ml to 1 mg/ml. Total brain 

lipid extract was diluted with chloroform and the final total lipid concentration was 2 mg/ml. 

50 mg/ml DHB solution in 70% methanol and 30% water (containing a 0.1% trifluoroacetic 

acid) was prepared as a conventional MALDI matrix.  

For conventional MALDI MS, 1 µl of sample solution was applied to the stainless 

sample plate followed by 1 µl of DHB matrix solution. For GALDI MS of PC/GlcCer 

mixtures and brain lipid extracts, colloidal graphite was sprayed directly onto the stainless-

steel sample plate by using the aerosol spray can (Aerodag® G). The distance between the 

nozzle of the spray can and the sample plate was kept at 25 cm. Spraying was performed for 

10 to 15 s to form a thin graphite film on the sample plate surface. After spraying, the surface 

was dried in air at room temperature for 5 min before the application of sample solutions. For 

the standard lipid mixture or total brain lipids extract, 1 µl of sample solution was applied 

onto the graphite-coated surface by using a micropipette. For brain tissues, colloidal graphite 
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was diluted four times with 2-propanol and the diluted solution was loaded into a sample 

bottle for an airbrush. Double-action airbrush, model “Aztek A470” with a 0.30 mm nozzle 

from Testor (Rockford, IL), was used. Spraying with 20 psi air pressure was performed 15.4 

cm away from the sample plate. This way, the whole rat brain tissue was covered with 

colloidal graphite without moving either the airbrush or the sample plate. Spraying for 30 to 

40 s gave the strongest signals from analytes and the lowest graphite background signals. 

After spraying, samples were allowed to dry in air for 10 min. 

In HV-MALDI MS, mass spectra were recorded from the “big, needle-like crystals” 

area at the boundary of the sample spot and from the “small crystals” area at the center of the 

sample spot separately. These two mass spectra were then averaged and the averaged mass 

spectrum was used for data interpretation. In the case of IP-MALDI MS, rastering over a 

sample spot was performed. First, for one sample spot, serial optical images were taken every 

1 mm-movement of the sample stage in either x- or y-directions. Each segment of the images 

has a size of 140 pixels by 170 pixels. These segments of optical images were reconstructed 

as one optical image for one sample spot. Second, a sample spot were rastered with a 100 µm 

step size. For each spot, a mass spectrum was recorded for desorbed ions by co-adding over 

five laser shots. For each MALDI sample spot, a mass spectrum constructed by averaging 

mass spectra from all rastering points was used for data interpretation.  

For IMS of rat brain tissue, the number of laser shots for each sample spot was first 

determined by collecting mass spectra in a small area (usually 10 rastering points) with 

automatic gain control (AGC, which keeps ion amounts in the trap constant by changing the 

number of laser shots). Based on the average number of shots per spot with AGC, the number 

of laser shots was fixed without AGC (usually 5 to 8 shots per spot) when collecting mass 

spectra over the whole tissue. The tissue sample was rastered with 100 µm steps. In the case 

of IMS/MS, target precursor ions were first selected based on first generation product ion 

spectra for the major peaks in the extracted mass spectra and then first generation product ion 
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spectra of the selected precursor ion were collected with spatial information for all rastering 

points over the tissue section (instead of collecting full mass profiles). For a 1.8 cm × 0.8 cm 

tissue sample, about 10,000 mass spectra were collected over 1.7 h for IMS and 3.1 h for 

IMS/MS, respectively. 

Chemically-selective images and extracted mass spectra from specific locations were 

generated by using the custom software from Thermo (vMALDI Data Browser). Chemically-

selective images were plotted as maps using either absolute intensity values or normalized 

intensity values. The normalized intensity is defined as the fractional peak intensity for the 

peak of interest compared to the total ion current (TIC) of each mass spectrum. The mass 

window for generating chemically-selective images was 0.8 Da. 

 

Results and Discussion 

Colloidal graphite surface for GALDI MS. The electron microscopic image of the 

graphite surface generated by colloidal graphite aerosol spray is shown in Figure 1. Graphite 

particles in the aerosol spray are about 1 µm-sized with flake shapes (Figure 1) and are finer 

than most other types of preparations. The graphite surface generated in this manner has 

advantages over other methods of generating graphite surfaces. First, this method is fast and 

has minimum preparation steps. Only cleaning of the substrate surface (a stainless steel 

sample plate), spraying colloidal graphite, and drying the plate in the air are needed for MS. 

It took less than 10 min for the whole preparation. Second, after performing MS, the graphite 

surface was easily removed by washing with 2-propanol or acetone. The cleaned plate can be 

reused for either GALDI MS or conventional MALDI MS. Third, because of using 

conventional stainless steel sample plate as a base, the mechanical stability of the sample 

plate, which could be an issue when using a pressurized graphite plate, is very good. Last, 

because the colloidal graphite spray contains thermoplastic resin as a binder, formation of 

graphite dust is much less problematic than when using a graphite/liquid suspension.  
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MALDI and GALDI MS of mixtures of PC and GlcCers at different sample 

chamber pressures. As mentioned before, the presence of PCs and SMs prevents the 

detection of other lipid species in MALDI MS. To examine whether this phenomenon occurs 

in GALDI MS, standard batch solutions of various compositions of PC 32:0 and GlcCers 

were analyzed by MALDI MS and GALDI MS at two different sample chamber pressures. 

The mass spectra are shown in Figure 2 and mass peak assignments are listed in Table 1 with 

relative abundances. With DHB matrix, protonated PC ions are dominant at both pressures 

(Figure 2(a), 2(b), and Table 1). However, with colloidal graphite, the sodiated GlcCer ions 

were the most intense at both pressures (Figure 2(c), 2(d), and Table 1). The signal intensity 

ratios among different lipid species were different depending on sample chamber pressures. 

PC to GlcCer signal intensity ratios were higher in IP than in HV with DHB matrix (Figure 

2(a), 2(b), and Table 1). This tendency was even more significant with colloidal graphite 

(Figure 2(c), 2(d), and Table 1). In other words, the decrease of PC-related mass peaks or the 

increase of GlcCer-related mass peaks was more distinct in HV than in IP.  

To examine the ion signals as a function of lipid concentration and composition, 

various ratios of PC/GlcCers mixtures were analyzed under the four different conditions. 

Relative intensities for the major peak of each lipid species are listed in Table 2, and mass 

spectra for these lipid standard mixtures are shown in Supporting Information Figure S-1, S-2, 

S-3, and S-4. First, the mass peak corresponding to [PC 32:0 + H]+ was dominant in both 

HV- and IP-MALDI mass spectra even when the concentration of PC 32:0 was tenths of that 

of total GlcCers (Batch 1). Second, in MALDI, no obvious difference between in IP and in 

HV was observed in terms of the relative peak intensities. Third, in contrast to HV- and IP-

MALDI, significant peak intensity for the mass peak corresponding to [GlcCer 22:0 + Na]+ 

was observed in both HV- and IP-GALDI (Batch 2). Fourth, in GALDI, the peak suppression 

of PC 32:0 related ions was less in IP than HV (Batch 1) and the peak enhancement for 

[GlcCer 22:0 +Na]+ was higher in HV than IP (Batch 2). In other words, IP-GALDI MS may 
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be more suitable for the simultaneous analysis of various lipid species in complex mixtures, 

while HV-GALDI MS may be better for the analysis of cerebrosides in complex lipid 

mixtures without separation.  

Localization of analytes with DHB matrix. Mass spectral studies for elucidating the 

incorporation of analytes into DHB matrix crystals and the heterogeneity of MALDI samples 

prepared with DHB matrix have already been reported by many researchers.62, 73, 74 Because 

PCs and GlcCers showed very different characteristics in ionization, localization of analytes 

was examined by LDI imaging MS. Because the size of conventional laser beams at the 

target plate (80-200 µm) is bigger than those of most crystals, resolving one matrix crystal 

from another is hard to achieve. However, due to the deposition/drying process, there are two 

distinct regions which can be macroscopically recognized from the optical image shown as 

the first image in Figure 3(a). One region is located at the boundary of the sample spot and is 

mainly composed of “big, needle-like crystals”. The other region is at the center of the 

sample spot and “small crystals” are distributed heterogeneously throughout this region. The 

subsequent images in Figure 3(a) represent chemically-selective images for the major ions 

detected from the PC 32:0/GlcCers mixture. As Luxembourg and coworkers pointed out,62, 

73, 74 protonated molecules, [PC 32:0 + H]+, showed the most intense peaks at the boundary 

of the sample which consists of big matrix crystals. However, sodiated molecules, such as 

[PC 32:0 + Na]+, [GlcCer 22:0 + Na]+, and [GlcCer 23:0 + Na]+ showed much higher peak 

intensities at the interior of the MALDI sample spot. This phenomenon also can be seen 

clearly from the mass spectra extracted from the two different regions (Figure 3(b) and 3(c)). 

This indicates that incorrect mass profiles of lipid mixtures could be generated when spectra 

was collected and averaged for a certain region but not for the whole sample spot prepared 

with DHB matrix. In contrast to DHB matrix, colloidal graphite does not involve any 

crystallization process and are much finer in dimension. Therefore, the surface formed by 
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colloidal graphite provides uniform signals without hot spots, and is well suited for chemical 

imaging. 

MALDI and GALDI MS and MSn of total brain lipid extract at different sample 

chamber pressures. Total brain lipid extract was studied under the various ionization modes 

because the components and their structures have been relatively well identified or analyzed 

by several mass spectral techniques. Mass spectral profiles of the brain lipid extract in 

various ionization environments are shown in Figure 4. First, mass peaks from m/z 730 to m/z 

810 are dominant in MALDI, whereas mass peaks from m/z 820 to m/z 880 are the major 

peaks in GALDI. This tendency is similar to that in the PC/GlcCer lipid standard mixtures. 

Second, for MALDI, no major difference between HV and IP was observed (Figure 4(a) 

versus 4(b)). Third, for GALDI, the higher mass peak intensities in the region of m/z 820-880 

and the lower mass peak intensities in the region of m/z 730-810 are more pronounced in HV 

than in IP (Figure 4(c) versus 4(d)). In other words, lipid species in the region of m/z 820- 

880 were detected more selectively in HV than in IP. This trend is also analogous to that in 

the mass profiles of PC/GlcCer lipid standard mixtures.  

To identify the lipid species detected, MS/MS and MS3 experiments for most of the 

major peaks the mass spectra of brain lipid extract (Figure 4(b) and (d)) were performed. 

Many structural studies of cerebrosides using tandem mass spectrometry have been reported 

with ESI MS,3, 10, 77 but not many with LDI MS so far. For example, GALDI 1st generation 

product ion spectrum of m/z 850.66, the most intense peak in Figure 4(d), is shown in Figure 

5(a). Neutral loss of 162 Da (NL 162) and NL 180 correspond to the loss of C6H10O5 and the 

loss of a galactose unit at the head group position of the sphingosine long chain. NL 18, 

which corresponds to the loss of water, was also observed. The predominant mass peak at 

m/z 484.50 corresponds to the sodiated C18 sphingosine long chain base and m/z 512 can be 

assigned as the sodiated aldehyde form of the C18 sphingosine long chain base (see the 

scheme on Figure 5(a)). The mass peak at m/z 850.66 can be assigned as [GalCer 
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d18:1/24:0h + Na]+. GalCer d18:1/24:0h has been known to be the major hydroxylated 

cerebroside compound in brain.3, 78 Both NL 162 and NL 180 are highly characteristic 

patterns in the first generation product ion spectra for precursor ions of cerebrosides. For all 

mass peaks assigned as cerebrosides including both standards (data not shown) and the brain 

lipid extract, these two NLs were always observed in their first generation product ion spectra. 

In addition, the mass peaks at m/z 484 (C18 sphingosine long chain base) and at m/z 486 (C18 

sphinganine long chain base) represent also significant mass fragment ions for cerebrosides 

and one of both was observed in most cerebrosides (Table 3). To verify the structure of the 

cerebroside further, MS3 experiments was also performed for the m/z 484.50 ion (Figure 

5(b)). NL 162 and NL 180 were observed again in the second generation product ion mass 

spectrum. In addition to these, the loss of NH3 (NL 17) was also observed. The peaks at m/z 

203 and m/z 185 could be identified as the sodiated galactose ion and subsequent loss of 

water from it. 

Mass peak assignments for cerebrosides and PCs based on the major fragment ions 

and NLs are listed in Table 3. Only the major ions which have been verified by first 

generation product ion spectra are listed. Fragment ions and neutral loss patterns of 

cerebroside species have already been explained with Figure 5. For PCs, the characteristic 

mass fragment ion m/z 184 (phosphocholine head group), was observed for some PC 

precursor ions. NL 18(-H2O), NL 59 

(–N(CH3)3), NL 124(-ethyl phosphate), NL 183(-phosphocholine head group) were observed 

for PCs. Similar patterns were observed in earlier studies75, 79-81 and the information was 

used for identifying PCs. NL 146, NL 162, NL 205 were also observed for some PC 

precursor ions. NL 146 could correspond to NL of ethyl phosphate with sodium (ethyl 

phosphate + Na – H) and NL 205 could correspond to NL of phosphocholine head group 

with sodium (phosphocholine head group + Na – H). NL 162 from PC precursor ions could 

correspond to NL of ethyl phosphate with potassium (ethyl phosphate + K – H). Note that 
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there are two neutral losses which have the same decrease of 162 Da but originated from 

different species; NL 162 from GalCer precursor ions and NL 162 from adduct ions 

consisting of PC and potassium. The difference between these two neutral losses is that NL 

162 from GalCers precursor ions was always observed with NL 180 (-galactose) but NL 162 

from PC precursor ions was not. In Table 3, NL 162 from PC precursor ions was annotated 

as “NL 162k” to distinguish from NL 162 from GalCer precursor ions. As expected from the 

analysis of the standard lipid mixture, GALDI gives more informative mass profiles for 

cerebroside species whereas MALDI gives more informative mass profiles for PCs.  

In Table 3, note that more than one lipid species can be associated with one m/z. 

There are two possible causes for these isobaric ions in mass spectrum. First, several types of 

adduct ions can be formed, even if two compounds have quite different monoisotopic masses. 

In the case of PC 38:4 and PC 36:1, which are present in the brain, their difference in 

calculated exact mass is 21.98 Da. This is the same as the calculated exact mass difference 

between H and Na. Therefore, [PC 38:4 + H]+ and [PC 36:1 + Na]+ can be detected 

simultaneously at m/z 810. Second, if the monoisotopic masses of two or more compounds 

are too close to each other (less than 0.1 Da difference), they overlap and cannot be selected 

separately for MS/MS experiments. For example, the monoisotopic masses for GalCer 

d18:1/24:1 and PC 38:4 are 809.59 Da and 809.67 Da respectively and both compounds are 

known to be present in the brain. They were observed together in both MALDI and GALDI 

as listed in Table 3.  

However, the ratio of [GalCer d18:1/24:1 + Na]+ and [PC 38:4 + Na]+ in MALDI MS 

was different from that in GALDI MS. Figure 6 shows the two first generation product ion 

spectra of m/z 832. Similar fragment patterns were observed but the relative abundances are 

different in the two modes. The mass peak at m/z 773.25 corresponding to NL 59 from PCs is 

dominant in IP-MALDI product ion spectrum (Figure 6(a)) while the mass peak at m/z 

670.58 corresponding to NL 162 from cerebrosides is the most intense peak in IP-GALDI 
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product ion spectrum (Figure 6(b)). Comparison between the two mass spectra confirms that 

GALDI MS is advantageous when cerebrosides need to be analyzed without separation from 

the lipid pools, such as crude lipid extracts or tissue samples. In both mass spectra, mass 

peaks corresponding NL 43 and NL 87 were also observed. NL 87 could correspond to the 

loss of the C3H5O2N from the phosphatidylserine head group82 and NL 43 could be the 

neutral loss of aziridine from phosphatidylethanolamine.83 This means that many other lipids, 

such as PE, PS, and PG, can also be incorporated into one m/z for the same reasons. 

Detection of sulfatides in negative ion mode by GALDI MS. Sulfatides (STs), one 

of the derivatives of GalCers, are 3-sulfate esters of GalCers. STs are enriched in brain 

tissues and mediate several biological processes including cell growth, cell adhesion, and 

morphogenesis.84 By using MALDI MS, STs were successfully detected from brain tissue, 

serum and renal tubule cells in earlier studies.19, 85, 86 Because ST has a sulfate group (SO4–), 

they are also easily detected in negative ion mode as shown in Figure 7. The hydroxylated 

forms of STs were also observed. Since C24 fatty acids are dominant in the mammalian 

nervous system,84 STs and hydroxylated STs which have 24:1 or 24:0 fatty acid composition 

were observed as the major species here. 

IMS and IMS/MS in rat brain tissues by using GALDI MS. To analyze 

constituents directly from tissue samples, ionization assisting materials need to be coated on 

top of the tissue. Because extract or other liquid samples were loaded on top of the graphite 

layer, the thickness of the graphite layer was not critical in extract analysis. In tissue analysis, 

however, too small an amount of colloidal graphite could give weak signals and too large an 

amount could generate strong interference signals from the colloidal graphite. To spray more 

reproducibly, an airbrush was used with the four-times diluted colloidal graphite solution 

instead of an aerosol spray can. We note that too dilute (over ten times) a solution could not 

give a firmly-coated surface.  
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A lipid mass profile in the positive ion mode was generated from a rat brain tissue as 

shown in Figure 8(b). The lipid profile in negative-ion mode is shown in Supporting 

Information Figure S-5. To identify lipid species, MS/MS and MS3 experiments were 

performed for major peaks in the lipid profile mass spectrum. For example, the mass peak at 

m/z 844.50 in Figure 8(b) could be identified as [PC 38:6 +K]+ and [PE 38:4 + 2K – H]+ 

based on previous studies72, 83 and first generation product ion mass spectrum (See 

Supporting Information Figure S-6). Chemically-selective images for the identified ions are 

shown in Figure 9. Note that not only the ions listed in Figure 9 but also other isobaric ions 

could contribute to these chemically selective images as discussed previously. From the 

images in Figure 9, cerebroside-rich areas and cerebroside-deficient areas can be recognized 

clearly and the extracted mass spectra from these two regions are shown in Figure 8(c) and 

8(d). The mass region of m/z 800-880, where most of the cerebrosides were found, is 

obviously different in Figures 8(c) and 8(d) in terms of mass profiles and relative intensities. 

To separate the spatial information of isobaric ions from each other, IMS/MS was 

performed. The mass peak at m/z 832.58 was chosen here because both PC and cerebroside 

species show this common mass peak from the lipid extract analysis. First product ion 

spectra of ions at m/z 832.58 (data are not shown) from the rat brain tissue have the same 

fragmentation patterns as those from lipid extracts (Figure 6). Chemically-selective images of 

the precursor ion at m/z 832, the product ion at m/z 773, and the product ion at m/z 670 are 

shown in Figure 10. The spatial distribution of product ions at m/z 670, which corresponds to 

NL 162 from [GalCer d18:1/24:1 + Na]+, is similar to those of other GalCer species shown in 

Figure 9. Figure 10 shows that the spatial distribution of the two isobaric ions can be clearly 

separated by performing IMS/MS. 

 



29 
 

Conclusions 

In this study, a simple and effective method of LDI based on colloidal graphite was 

developed and was applied to lipid analyses. Comparison between GALDI and MALDI of 

standard lipid mixtures clearly showed the increase in signal from cerebrosides for the former, 

making the former more suitable for detection of cerebroside species from lipid pools 

without separation. With total brain lipid extract, twenty-two cerebroside species were 

detected as major compounds by IP-GALDI MS and confirmed by MSn experiments while 

only eight cerebroside species were verified by IP-MALDI MS and MSn experiments. From 

Table 3 and Figure 4(c), we can conclude that the major mass peaks in HV-GALDI mass 

spectrum correspond to cerebroside species. The peak enhancement for cerebrosides and the 

peak suppression for PCs were more significant in HV than in IP. Therefore, HV could be 

more suitable for selective detection of cerebrosides and IP could be more appropriate for 

profiling various kinds of lipid species in complex lipid mixtures. Negative ion mode of 

GALDI also showed comparable performance as MALDI for detecting sulfatides in brain 

lipid extracts. For rat brain tissue, mass profiles and chemically-selective images for lipids 

were successfully obtained with the modified colloidal graphite spraying technique. 

Cerebrosides and sulfatides were well detected in tissue analysis as in extract analysis, and 

the increase in intensities of cerebrosides facilitated the generation of images for cerebrosides. 

Automated MS/MS experiments over the tissue surface and image processing from these 

experiments showed the inherent problem of full mass scan data and the need for MS/MS 

imaging. However, performing MS/MS for even one precursor ion over the tissue surface is 

already time consuming. Therefore, faster protocols for IMS and further development of 

IMS/MS are needed. In this work, the issue about sensitivity increase for fragile 

biomolecules in IP LDI MS due to stabilization of labile bonds by collisional cooling was not 

discussed. Future studies on the analyses of labile molecules such as gangliosides in HV and 

IP by using GALDI MS and MSn would be valuable. 
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Appendixes 

Supplemental GALDI mass spectra for lipid mixture standards with various ratios and 

rat brain tissues, and product ion mass spectrum for the m/z 844 are listed in Appendix 1. In 

Appendix 2, a complete scientific paper which describes GALDI MS studies of fruit samples 

is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1. Mass peak assignments with relative intensities for lipid species in lipid standard mixturesa under different 
sample chamber pressures 

Identification 

 High-Vacuum   Intermediate Pressure 

Theoretical 
m/z (Da)b 

Observed m/z 
(Relative 

Intensityc) 
with DHB 

Observed m/z 
(Relative Intensity) 

with Graphite 

 Observed m/z 
(Relative 
Intensity) 
with DHB 

Observed m/z 
(Relative 
Intensity) 

with Graphite 

[GlcCer 16:0+Na]+ d 722.55 722.59 (29.4) 722.50 (78.2)  722.66 (12.3) 722.58 (54.8) 
[PC 32:0+H]+ e 734.57 734.56 (100.0) —  734.50 (100.0) 734.50 (17.6) 
[GlcCer 18:0+Na]+ 750.58 750.52 (4.4) 750.53 (13.0)  750.66 (2.6) 750.66 (12.8) 
[PC 32:0+Na]+ 756.55 756.52 (39.7) 756.57 (6.8)  756.50 (81.2) 756.50 (81.2) 
[PC 32:0+K]+ 772.53 — —  — 772.50 (7.8) 
[GlcCer 20:0+Na]+ 778.62 778.56 (10.1) 778.59 (30.5)  778.66 (5.0) 778.66 (27.3) 
[GlcCer 21:0+Na]+ 792.63 792.62 (11.0) 792.60 (38.6)  792.66 (5.6) 792.66 (33.7) 
[GlcCer 22:0+Na]+ 806.65 806.66 (23.6) 806.63 (100.0)  806.66 (16.5) 806.66 (100.0) 
[GlcCer 23:0+Na]+ 820.66 820.60 (19.6) 820.65 (67.2)  820.66 (13.2) 820.66 (85.1) 
[GlcCer 24:0+Na]+ 834.68 834.61 (13.1) 834.66 (41.4) 834.75 (8.2) 834.66 (53.8)

aStandard lipid mixture contains 0.5mg/ml of PC 32:0 and 0.5mg/ml of total GlcCers.  
bMasses are monoisotopic. 
cRelative intensity = [(Intensity of relevant mass peak)/(Intensity of the most intense mass peak in the mass spectrum)] × 100.  
dAll glucosylceramide standards have C18 sphingosine (d18:1) base and the numbers m:n correspond to the number of the total carbons 
(m):number of double bonds (n) in the amide-linked fatty acid.  
eNumber x:y corresponds to the number of the total carbons of fatty acids at sn-1 and sn-2 position (x): number of double bonds (y) of PC. 
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Table 2. Relative peak intensities of major peaks in lipid standard mixtures with various PC/GlcCers ratiosa  
 Concentration (mg/ml)  Relative Intensity with DHB (%)  Relative Intensity with Graphite (%) 

 PC 32:0 GlcCers [PC32:0+H]+ [GlcCer22:0+Na]+  [PC32:0+Na]+ [GlcCer22:0+Na]+ 

Pressure   HV IP HV IP  HV IP HV IP 

Batch 1 

0.25 

0.5 

346.6 559.3 

100 

 12.4 57.1 

100 
0.125 186.8 311.6  10.1 33.2 
0.025 115.5 134.1  n.d. 7.6 
0.005 83.9 112.8  n.d. 5.1 

Batch 2 0.5 

0.25 

 100 

9.2 8.3  

100 

634.5 95.0 

0.125 8.4 6.0  410.3 33.0 

0.025 2.2 4.5  30.5 15.7 

0.005 n.d. 3.4  n.d. 8.3 

aMass spectra used for calculation are listed in Supporting Information Figure S-1, S-2, S-3, and S-4.  
bn.d. represents “not detected”. 
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Table 3. Mass peak assignments for cerebrosides and phosphatidylcholines in brain 
lipid extract based on MS/MS experiments 

IP-GALDI  IP-MALDI 
Observed Product Ionsa 

and Neutral Losses (NLs)b  
Ions Assigned m/z Ions Assigned Observed Product  Ions 

and Neutral Losses (NLs) 
 Cerebrosides  Cerebrosides  

NL 18, NL 162, NL 180 [GalCer d18:1/18:0
c

+ Na]
+

 750   

m/z 484, NL 18, NL 162, NL 180 
[GalCer d18:1/18:0h

d
+ 

Na]
+

 
766   

NL 18, NL 162, NL 180 [GalCer d18:1/22:1 + Na]
+

 804   

NL 18, NL 162, NL 180 [GalCer d18:1/22:0 + Na]
+

 806 [GalCer d18:1/22:0 + Na]
+

 NL 18, NL 162, NL180 

m/z 484, NL 18, NL 162, NL 180 [GalCer d18:0/22:0 + Na]
+

 808 [GalCer d18:0/22:0 + Na]
+

 m/z 484, NL 18, NL 162, NL180 

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/23:0 + Na]
+

 820   

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/22:0h + Na]
+

 822 [GalCer d18:1/22:0h + Na]
+

 m/z 484, m/z 512, NL 18, NL 162, NL180 

m/z 486, m/z 514, NL 18, NL 162, NL 180 [GalCer d18:0/22:0h + Na]
+

 824   

NL 18, NL 162, NL 180 [GalCer d18:1/24:1 + Na]
+

 832 [GalCer d18:1/24:1 + Na]
+

 NL 18, NL 162, NL180 

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/24:0 + Na]
+

 834   

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/23:0h + Na]
+

 836 [GalCer d18:1/23:0h + Na]
+

 m/z 484, NL 18, NL 162, NL180 

m/z 486, NL 18, NL 162, NL 180 [GalCer d18:0/23:0h + Na]
+

 838   

m/z 484, m/z 512, NL 18, NL 162, NL 180 
[GalCer d18:1/24:1h + Na]

+

[GalCer d18:1/25:0 + Na]
+

 
848 

[GalCer d18:1/24:1h + Na]
+ 

[GalCer d18:1/25:0 + Na]
+

 
m/z 484, m/z 512, NL 18, NL 162, NL180 

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/24:0h + Na]
+

 850 [GalCer d18:1/24:0h+Na]
+

 m/z 484, m/z 512, NL 18, NL 162, NL180 

m/z 486, m/z 514, NL 18, NL 162, NL 180 [GalCer d18:0/24:0h + Na]
+

 852 [GalCer d18:0/24:0h+Na]
+

 m/z 486, NL 18, NL 162, NL180 

m/z 484, NL 18, NL 162, NL 180 [GalCer d18:1/26:1 + Na]
+

 860   

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/25:1h + Na]
+

 862   

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/25:0h + Na]
+

 864   

m/z 486,  NL 18, NL 162, NL 180 [GalCer d18:0/25:0h + Na]
+

 866   

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/26:1h + Na]
+

 876   

m/z 484, m/z 512, NL 18, NL 162, NL 180 [GalCer d18:1/26:0h + Na]
+

 878   

m/z 486, m/z 514, NL 18, NL 162, NL 180 [GalCer d18:0/26:0h + Na]
+

 880   
 Phosphatidylcholines  Phosphatidylcholines  

NL 124, NL 146 [PC 34:1 - N(CH3)3 + Na]
+ 

 723   

  734 [PC 32:0 + H]
+

 m/z 184, NL 59, NL124 

NL 124, NL 162k [PC 34:1 - N(CH3)3 + K]
+

 739   

NL 124, NL 146 [PC 36:1 - N(CH3)3 + Na]
+

 751   

NL 59, NL 124, NL146 [PC 32:0 + Na]
+

 756 [PC 32:0 + Na]
+

 NL 59, NL 183, NL 205 

  760 [PC 34:1 + H]
+

 m/z 184, NL 59, NL 124, NL183 

  762 [PC 34:0 + H]
+

 m/z 184, NL 59 

NL 59 [PC 32:0 + K]
+

 772 [PC 32:0 + K]
+

 NL 59,  NL183 

NL 59 [PC 34:1 + Na]
+

 782 [PC 34:1 + Na]
+

 NL 59, NL 124, NL 183, NL 205 

  784 [PC 34:0 + Na]
+

 NL 59, NL 183, NL 205 

  786 [PC 36:2 + H]
+

 NL 59, NL 183 

  788 [PC 36:1 + H]
+

 NL 59, NL183 

NL 59, NL162k [PC 34:1 + K]
+

 798 [PC34:1 + K]
+

 NL 59, NL 183 

  806 [PC 38:6 + H]
+

 NL 59, NL 124, NL 183 

NL 59 [PC 36:2 + Na]
+

 808 [PC 36:2 + Na]
+

 NL 59, NL 124, NL 183 

NL 59 [PC 36:1 + Na]
+

 810 
[PC 36:1 + Na]

+ 
 

a/o [PC 38:4 + H]
+

 
NL 59, NL 124 

NL 59 [PC 38:4 + Na]
+

 832 [PC 38:4 + Na]
+

 NL 59, NL 124, NL 183 

  836 [PC 38:2 + Na]
+

 NL 59, NL 183 
a,bSee text for assignments of product ions and neutral losses  
cGalCer A/B corresponds to galactosylceramide sphingoid long chain base (A)/amide-linked fatty acid (B).  
dh corresponds to the hydroxyl group at the C2 position of the amide-linked fatty acid. 
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Figure Captions 

 

Figure 1. Scanning electron microscopy image of the colloidal graphite sprayed surface. 

 

Figure 2. LDI mass spectra of the standard lipid mixture under four different conditions, 

(a) high-vacuum (HV)-MALDI, (b) intermediate pressure (IP)-MALDI, (c) 

HV-GALDI, and (d) IP-GALDI. The standard lipid mixture contains 

0.5mg/ml PC 32:0 and 0.5 mg/ml total GlcCers. Mass peak assignments and 

relative abundances are listed in Table 1.  

 

Figure 3. (a) On the left is the optical image of the MALDI sample spot consisting of 1 

µl of the standard lipid mixture (0.25 mg/ml of PC 32:0 and 0.5 mg/ml of total 

GlcCers) and 1 µl of 50 mg/ml of DHB matrix solution. The sample spot size 

is about 2.7 mm by 2.4 mm. Following are four chemically-selective images 

corresponding to the normalized intensity map (mass peak intensity divided 

by total ion current of each point) of the major lipid species. (b) IP-MALDI 

spectrum extracted from the region of “big, needle-like crystals” at the 

peripheral of the sample spot. (c) IP-MALDI spectrum extracted from the 

region of “small crystals” at the interior of the sample spot.  

 

Figure 4. LDI mass spectra of total brain lipid extract under different conditions, 

(a) HV-MALDI, (b) IP-MALDI, (c) HV-GALDI, and (d) IP-GALDI in 

positive ion mode. Mass peak assignments and corresponding MS/MS data 

are listed in Table 3.  
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Figure 5. (A) First generation product ion spectrum of ions detected at m/z 850.66 from 

IP-GALDI mass spectrum of total brain lipid extract (Figure 4(d)). The neutral 

loss of 18 Da (NL 18) corresponds to the loss of water. NL 162 corresponds to 

the loss of C6H10O2 from the sphingosine long chain. NL 180 is the loss of a 

galactose unit. Mass peaks at m/z 484 and at m/z 512 correspond to the 

sodiated C18 sphingosine long chain and its aldehyde form as seen in the 

scheme. (b) First generation product ion spectrum of ions at m/z 484.50 which 

are the first generation product ions of m/z 850.66. NL 17 corresponds to the 

loss of NH3. NL 162 and NL 180 are the same as those in Figure 5(a). The 

precursor ion at m/z 850.66 can be assigned as [GalCer d18:1/24:0h+Na]+. 

 

Figure 6. First generation product ion spectra of ions at m/z 832 from (a) IP-MALDI 

(Figure 4(c)) and (b) IP-GALDI (Figure 4(d)) mass spectra of the total brain 

lipid extract. NLs of 18, 162, and 180 are the same as those in Figure 5. NL 59, 

NL 124, and NL183 correspond to losses of trimethylamine (N(CH3)3), ethyl 

phosphate from PC, and phosphocholine head group, respectively. NL 87 

could correspond to the loss of the C3H5O2N from the phosphatidylserine 

group. Note that NL 59 from PC is dominant in the MALDI mass spectrum 

whereas NL 162 and NL 180 from cerebrosides are dominant in the GALDI 

mass spectrum. 

 

Figure 7. IP-GALDI mass spectrum of total brain lipid extract in the negative ion mode. 

Sulfatides (STs) were mainly detected. ST m:n(h) represents sulfatide with 

number of the total carbons (m):number of double bonds (n) in the amide-

linked fatty acid (hydroxylated).  
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Figure 8. (a) Chemically-selective image of ions at m/z 810 with grayscale gradation-

coded intensities. (b) The mass spectrum is the average of mass spectra at all 

rastering points on the tissue (10,732 points) in the positive-ion mode. Each 

mass spectrum in (c) and (d) was extracted from the small specific area (3 × 3 

rastering points) as indicated in (a).  

 

Figure 9. Chemically-selective images in the positive-ion and negative-ion modes. 

Major ionic species identified by MS/MS and MS3 experiment were listed 

together with the intensity ranges that correspond to the scale bar at the top 

center of the figure. 

 

Figure 10. Chemically-selective images of rat brain tissue for (a) the precursor ion at m/z 

832, (b) the product ion at m/z 773 which represents NL 59 from PCs, and (c) 

the product ion at 670 which represents NL 162 from cerebrosides. Therefore, 

the isobaric ions at m/z 832 corresponding to [GalCer d18:1/24:1 + Na]+ and 

[PC 38:4 + Na]+ in (a) can be separated into the image for [PC 38:4 + Na]+ in 

(b) and  the image for [GalCer d18:1/24:1 + Na]+ in (c) by performing 

IMS/MS.  
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Figure 3. 
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CHAPTER 3. DIRECT PROFILING AND IMAGING OF PLANT 

METABOLITES IN INTACT TISSUES BY USING COLLOIDAL 

GRAPHITE-ASSISTED LASER DESORPTION IONIZATION MASS 

SPECTROMETRY 

 

A paper accepted for publication in The Plant Journal* 

Sangwon Cha, Hui Zhang, Hilal I. Ilarslan, Eve Syrkin Wurtele, Libuse Brachova, 

Basil J. Nikolau and Edward S. Yeung 

 

Abstract 

Laser desorption/ionization (LDI)-based imaging mass spectrometry (MS) has been 

applied to several biological systems to obtain information about both the identities of the 

major chemical species and their localization. Colloidal graphite-assisted LDI (GALDI) MS 

imaging was introduced for imaging of small molecules such as phospholipids, cerebrosides, 

oligosaccharides, flavonoids, and other secondary metabolites with high spatial homogeneity 

due to the finely dispersed particles. Mass profiles and images of Arabidopsis thaliana were 

recorded directly from various plant surfaces and cross-sections. The main targeted 

metabolites were flavonoids and cuticular waxes, both of which are important in many 

aspects of functional genomics, proteomics, and metabolomics. Mass spectral profiles 

revealed tissue-specific accumulation of flavonoids in flowers and petals. In addition, many 

other location-specific ions were observed. The location and the degree of light-induced 

flavonoid accumulation in stem sections were successfully probed by GALDI MS. 

___________________________________________________________________________ 

* Reprint with permission from The Plant Journal 2008,  

doi: 10.1111/j.1365-313X.2008.03507.x, Copyright © 2008 Blackwell Publishing Ltd. 
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Introduction 

Because low molecular weight metabolites exhibit a variety of different chemical 

properties, many analytical methods have been used to assay their structures, abundances, 

and locations 1, 2. Among these methods are nuclear magnetic resonance (NMR) spectroscopy 
3, 4 for structural analysis of the metabolites, vibrational spectroscopy for metabolic 

fingerprinting, and mass spectrometry (MS) for metabolite profiling 5. Gas chromatography-

MS (GC-MS) has been extensively used over the last 20 years 1, 6, 7 because it is a relatively 

well-constructed methodology that has good reproducibility and wide applicability to various 

classes of metabolites. Moreover, GC-MS has the ability to identify and quantify metabolites. 

Since the development of electrospray ionization (ESI) techniques 8 and advances in tandem 

MS technologies, liquid chromatography-MS (LC-MS ) is also becoming a workhorse with 

high throughput and high sensitivity 9.  

It is known that metabolic processes in plants are spatially non-uniform. This is 

readily apparent via microscopic examination of plant organs that reveals considerable 

heterogeneity in cell morphology and the distribution of pigments (e.g., chlorophylls, 

anthocyanins) among these cells. At the biochemical level a very good example of this cell-

level asymmetry is that of C-4 photosynthesis, which requires a distinct distribution of 

metabolic processes among mesophyll and the bundle-sheath cells, respectively, to 

concentrate carbon dioxide at the active site of RuBISCO (ribulose–1,5-biphosphate 

carboxylase/oxygenase). This discovery required the physical separation of the two cell types 

before their proteome and/or metabolome could be interrogated. Thus, the development of 

analytical techniques that can interrogate metabolites in intact tissue and with high-spatial 

resolution would offer the ability to decipher metabolic processes at the cellular level. 

Laser desorption/ionization (LDI) MS and matrix-assisted laser ionization/desorption 

(MALDI) MS have not been widely used in plant metabolomics mainly because of 

difficulties in generating ions from the relatively hydrophobic species in plant tissue. 
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However, the applicability of LDI MS to imaging plant metabolites, including direct 

profiling of cuticular wax compounds 10, analysis of phosphatidylcholine 11, condensed 

tannins in bark 12, and profiling of plant carotenoids 13 has been successfully demonstrated. 

The advantage of LDI MS, over hyphenated techniques (GC-, LC-, and CE- MS) is the 

ability to sample biochemicals directly without any extraction protocol. Therefore, the spatial 

distribution of the biochemicals is retained.  

In laser desorption, the sampling resolution is governed primarily by the laser spot 

size. Consequently, the spatial resolution of imaging MS by LDI can be much smaller than 

that achievable by traditional methods such as dissecting plant materials followed by 

chemical extraction prior to MS -The effort to achieve smaller sampling size by laser 

microdissection with traditional GC-MS methods has been reported recently 14. Location-

specific sampling has made it possible for LDI to be employed as a microscope, that is, for 

“imaging MS” 15. Imaging MS collects mass spectra consecutively over the sample surface 

and reconstructs mass spectral data as an image for each specific compound. In addition to 

LDI, ion beam-induced ionization methods such as secondary ionization (SIMS) 16-21 and 

beam-induced desorption electrospray ionization (DESI) 22, 23 have also been successfully 

applied to imaging MS.  

In addition to laser spot size, factors that limit the spatial resolution of LDI imaging 

MS include sensitivity of the mass spectrometer, abundance of a metabolite, and 

homogeneity of the material added to facilitate ionization. Matrixes in MALDI MS, which 

require co-crystallization with sample components to be effective, can decrease the spatial 

resolution because of their irregular crystallization patterns. To overcome this, researchers 

have introduced alternative matrixes that can be homogeneously distributed on the sample 

surfaces. Recently, we used colloidal graphite , a sub-micron flake-like material, as an 

assisting material (GALDI MS) for imaging lipids from rat brain slices and also for imaging 

secondary metabolites such as flavonoids and organic acids from fruits 24, 25. The other 
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advantages of GALDI MS are that graphite is more hydrophobic, making it compatible with 

plant materials, and is a near-blackbody, making it suitable for irradiation with any 

wavelength of light. Hence, GALDI MS makes possible to interrogate some classes of 

compounds that are not detected by conventional MALDI. Recently, Siuzdak’s group 

introduced nanostructure-initiator mass spectrometry (NIMS) where ‘initiator’ molecules 

trapped in nanostructures help to ionize intact molecules on their surfaces 26. NIMS can 

achieve high spatial resolution because of its structure and it can accept both photon and ion 

irradiation. 

SIMS has been used for imaging studies of metal ions on plant surfaces 27-32. Recently, 

localization of phenolic compounds from wood stems has been examined by time-of-flight 

(TOF) SIMS 33, 34. However, most studies by LDI MS imaging have been done on animal 

tissue sections such as rat brain slices. Recently, MS imaging of amino acids, sugars, and 

phosphorylated metabolites on wheat seeds by using conventional MALDI matrix was 

reported 35. IR laser, instead of conventional UV laser, has been used to image several 

abundant metabolites from fruits 36. There, the ultimate spatial resolution that can be 

achieved is compromised because of the wavelength of light. 

Elongation of aliphatic fatty acids to form very long chain fatty acids (VLCFAs) is 

the first step in the biosynthesis of components of the cuticular wax layer. This layer makes 

plants resistant to external stresses such as insects, pathogens, and water 37-41. Flavonoids 

serve as epidermal shields to protect against UV light. In the case of Arabidopsis thaliana, 

the major building blocks of flavonoid are flavonols and flavonol glycosides as shown in 

Figure 1 42-44. Another major class of flavonoids is anthocyanins and proanthocyanidins, end 

product of flavonoid’s biosynthetic pathways 45-47.  

Because Arabidopsis is an important model system for plants, and as such the most 

highly understood, it is important to be able to analyze its metabolome in situ. The 

Arabidopsis plant is small and fragile; therefore its analysis is challenging for sample 
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handling and MS imaging. For the present imaging MS study, we focused on very long chain 

fatty acids (VLCFAs) and the flavonoids because we have already demonstrated the ability 

of GALDI MS to detect members of these classes of compounds 25 and because of the 

breadth of information on the effects of genetic mutants and environmental perturbations on 

these metabolites. In addition, we discuss methodological details about MS imaging of 

surfaces in small-size plants in terms of sample preparation, methods for imaging, and other 

experimental concerns. Finally, as a model system, we describe spatial probing of flavonoid 

accumulation from light-treated stem sections. 

 

Experimental Section 

Chemicals. Standards such as long-chain fatty acids, flavonoids, and histochemical 

staining reagents, diphenylboric acid 2-amino-ethyl ester (DPBA) and p-

dimethylaminocinnamaldehyde (DMACA), were purchased from Sigma-Aldrich (St. Louis, 

MO). 2-Propanol-based colloidal graphite aerosol spray (Aerodag G) was obtained from 

Acheson Colloids (Port Huron, MI).  

Plant growth conditions. Seeds of Arabidopsis thaliana Columbia-0 ecotype (Col-0) 

were surface sterilized for 1 min in 300 µl 50% ethanol, 10 min in 300 µl 50% bleach 

containing 1% Tween 20, and washed with 3 changes of 300 µl sterile water. Seeds were 

sown on MS media in Petri plates, and kept at 4 ˚C for 4 days. The plates were then moved to 

a growth room and seedlings were transferred to pots containing soil (LC1 Sunshine Mix) 

under continuous illumination (100 µmol m–2 s–1) at 23 ˚C. 

Light treatment. Plants were grown in a growth room for 40 days under continuous 

illumination (100 µmol m–2 s–1) at 23 ˚C in pots containing soil (LC1 Sunshine Mix). At the 

time of the experiment, half of the plants (control) were left in this growth room, and the 

other half were transferred into a second growth room and grown in continuous illumination 

under high light intensity (750-800 µmol m–2 s–1) at 23 ˚C. Fourteen days after transfer, stem 
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samples were harvested, frozen in liquid nitrogen, and 50-80 μm thick sections were cut on a 

cryostat (International Equipment Co., Needham Heights, MA).  

Flavonoid staining. Cryosectioned stem samples were stained for 15-20 min with 

saturated 0.25% (wt:vol) DPBA 48 with 0.02% (vol:vol) Triton X-100 and viewed with an 

epifluorescent microscope (Zeiss AxioPlan II compound fluorescent microscope using an 

AxioCam MRM camera (for MRC color) and AxioVision software, Carl Zeiss Inc., 

Thornwood, NY) with a FITC filter (excitation, 450-490 nm; suppression, long pass/515 nm) 

according to Murphy et al. (2000) and Lazar and Goodman (2006); flavonols (kaempferol 

and quercetin) stain orange, naringenin stains yellow and chlorophyll autofluorescence is red.  

DMACA staining reagent (0.1% DMACA in 6N HCl:95% ethanol, 1:1) 49 was used 

to detect flavonols (soluble phenols, soluble flavanols and proanthocyanidins) 50. After 

staining with this reagent for 5-10 min, cryosectioned stem samples were washed three times 

with distilled water and observed under the light microscope; flavonols stain blue and purple-

brown colors. 

Plant sample preparation for mass spectral profiling and imaging. For leaves or 

flowers, samples were attached to a stainless steel target plate of similar dimensions as a 

microscopic glass slide using conductive double-sided tape (3M, St. Paul, MN). Any area 

inadvertently damaged by forceps was excluded when collecting mass profiles. To attach 

samples firmly onto the target plate, air pressure from a nitrogen gas cylinder was used. After 

attachment, samples on the target plate were dried for 30 min under moderate vacuum (~50 

Torr). In some experiments, the bottom or top halves of fresh Arabidopsis leaves were dipped 

in chloroform for 30 s or 1 min to remove wax layers.  

For stem sections, relocation of compounds due to water condensation is a 

challenging issue because frozen sections must be thaw-mounted directly onto the stainless 

steel target plate. To minimize condensation, stem sections on target slides were dried in a 

semi-sealed box half-filled with desiccant by purging with a flow of dry nitrogen.  
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Colloidal graphite solution diluted 4X with 2-propanol was used for spraying 

colloidal graphite onto samples. The spraying device was an airbrush, model Aztek A470 

with a 0.30 mm nozzle from Testor (Rockford, IL). Spraying was at 20 psi, 8 cm from the 

sample plate. Optimized spraying times as determined by mass spectral qualities were 30-40 

s for leaves and 20-25 s for flowers and stem sections. Colloidal graphite dried in less than 10 

s. 

Sample preparation including drying process is a challenging task. We have tried 

using fresh samples (without drying) for whole organ samples (leaves and whole flowers). 

By comparing MS profiles from the fresh sample with those from the dried sample, we did 

not observed any significant difference between them for our targeted metabolites. However, 

for fresh samples, they shrunk during data collection under the sample chamber pressure 

(0.17 Torr) even if they were firmly attached, and the chemical images and optical images do 

not match very well. Therefore, pre-drying under the moderate vacuum pressure (~50 Torr) 

was needed to prevent this. For stem cryosections, special care was needed to prevent 

condensation-induced chemical relocation. Other experiments show that without such dry N2 

control, water droplets formed and flavonoids were seen smeared all over the cross section. 

Mass spectrometry. Mass spectra were collected with a Thermo Finnigan LTQ 

linear ion trap mass spectrometer equipped with vMALDI source (Mountain View, CA). In 

this mass spectrometer, nitrogen laser emission (337 nm, maximum energy of 280 µJ/pulse, 

and maximum frequency of 20 Hz) was guided through a 200-µm fiber optic cable. After 

passing through several optical components, 100 µm diameter laser spots were obtained at 

the sample plate surface. In contrast to high vacuum sampling environments (~10-6 Torr) of 

conventional MALDI TOF instruments, the LTQ mass spectrometer has the intermediate-

pressure (0.17 Torr) sampling environment which can lead to softer ionization by vibrational 

and collisional cooling effects. All mass spectra were collected in the negative-ion mode and 

the scanning m/z range was set from m/z 150 to m/z 1000. For unknown peaks acquired 
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directly from plant samples, peak identification were carried out by matching monoisotopic 

masses of metabolites listed in databases—TAIR (http://www.arabidopsis.org/) and internal 

GC-MS database—with observed mass values. Identities were confirmed by comparing 

product ion spectra (up to the third generation) from unknown peaks with those from 

standards or from literature data.  

Mass spectral imaging and image processing of leaves. For untreated leaves, the 

number of laser shots required was estimated by collecting mass spectra in a small area 

(usually 5 to 10 rastering points) by turning on automatic gain control (AGC, which keeps 

the ion amounts in the trap at a similar range by varying the number of laser shots) feature of 

the mass spectrometer. The optimum number of laser shots was determined and fixed based 

on the average number of laser shots when collecting mass spectra over the whole sample. 

For chloroform-dipped leaves, however, mass spectra were collected with AGC because they 

have several different surface characteristics in one sample which can lead to variations in 

ion yield. The sample was scanned with a step size which ranged from 100 µm to 150 µm.  

Chemically-selective images were processed by using the custom software from 

Thermo (ImageQuest 1.0). Chemical abundance information was presented using either 

absolute intensity values or normalized intensity values. The fractional peak intensity for the 

peak of interest compared to the total ion current (TIC) of each mass spectrum was used for 

normalized intensity. The mass window was from 0.8 Da to 1.0 Da. 

Mass spectral imaging and image processing of flowers and stem sections. 50 µm 

spacing was used for whole flower imaging and stem section imaging (oversampling). 

Because of the need of complete ablation for oversampling technique 51, two methods, 

selective spectra averaging and whole spectra averaging, were applied for MS imaging of 

Arabidopsis flowers. Images of flowers in this article were processed with whole spectra 

averaging. Experimental details of selective spectra averaging and comparison between two 

methods are described in Supporting Information, and chemically-selective images from 
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Arabidopsis flower by selective spectra averaging is shown in Supporting Information Figure 

S2. 

 Whole spectra averaging without complete ablation was designed to generate similar 

MS images to those with complete ablation. Under our experimental conditions, more than 

one order of magnitude decrease in normalized intensity of mass spectra was observed after 5 

to 8 microscans (one microscan corresponds to getting one mass spectrum from the sample). 

Therefore, a fixed number of microscans (5 for Arabidopsis flowers) was preset and data 

were collected for one x,y-coordinate. All microscans were averaged and images were 

generated by using the custom software from Thermo (ImageQuest 1.0). 

 

Results and Discussion 

Mass spectral profiling and imaging of metabolites from Arabidopsis leaves. 

VLCFAs were readily detected as deprotonated ions ([M – H]–) from the surface of 

Arabidopsis leaves (Figure 2) using GALDI in the negative-ion mode. Consistent with 

previous, traditional extraction-based analyses 39, 52, 53, our analyses showed C26, C28, and 

C30 fatty acids (FAs) as the most abundant such analytes on the surface of Arabidopsis 

leaves (Figure 2). However, ions from flavonoid compounds were not consistently detected 

from Arabidopsis leaves. After examination of the leaves used for the MS analysis, we found 

that ions from flavonoids were readily detected only from the portion of leaves that were 

damaged during handling when they were attached to the MS sample plate. In contrast, when 

leaves were attached to the plate using air pressure to avoid damage, no ions from flavonoids 

were detected (Figure 2). Because flavonoids are typically intracellular metabolites and 

VLCFAs are constituents of epicuticular waxes, these results indicate that the penetration 

depth of the laser is shallower than the thickness of the epicuticular wax layer of the leaf.  

To confirm this observation, chemically-selective images of the partially chloroform-

dipped leaf were collected using GALDI MS. Dipping the leaf in chloroform removes the 
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surface epicuticular waxes. As shown in Figure 3, ions corresponding to VLCFAs showed 

high abundance in the area of the leaf that was not dipped in chloroform, especially on the 

central vein of the leaf, whereas the abundance of these ions was very low in the area of the 

leaf that was dipped in chloroform. In contrast, ions specific for kaempferol (at m/z 285), and 

kaempferol rhamnoside (at m/z 431) were detected mostly from the chloroform-dipped area 

and from the area in which the intact leaf was grasped with forceps. Thus, minimizing 

physical stress on the sample surface is critical to avoiding artificial information about the 

spatial distribution of metabolites. 

Intense signals at m/z 226, 210, and 194 were observed in the chloroform-dipped area. 

Mass spectral profiles and chemically selective images for m/z 226 and 194 are shown in 

Supporting Information Figure S1. Images for ions at m/z 226 and 194 which are 16 Da away 

from ions at m/z 210 have the same specific pattern that is similar to the venation pattern of 

the leaf even after chloroform dipping (see Supporting Information, Figure S1). These data 

indicate that it should be possible to profile internal compounds by the chemical removal of 

the surface layer from the plant sample while preserving the subsurface spatial information. 

Such is not possible in conventional imaging MS. Further studies will be needed to verify 

this observation, since the specific solubility of the targeted compounds and the dipping time 

are expected to affect their removal and redistribution. Conceptually, depth profiling by serial 

data collection can probe deeper and deeper into the tissue but additional colloidal graphite 

sprayings are needed because of the decrease of signal intensities after serial collection. In 

addition, ablating by laser has much smaller penetration depth than chemical extraction. 

Therefore, it will take much longer time to access the same depth as that after chemical 

extraction. 

Mass spectral profiling of flavonoids from Arabidopsis flower. Similar to leaves, 

no flavonoids or only a low apparent abundance flavonols were detected from the surface of 

flower carpels or sepals. In contrast, flavonoids were easily detected from petals as highly 
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intense signals. Based on the mass spectral profile from petals and the product ion spectra for 

the major peaks in this profile, at least 14 flavonoid species could be classified and identified. 

These ions are listed in Table 1 with possible structural identities, and representative product 

ion spectra for ions at m/z 609 and 623 are shown in Figure 4. These species basically 

comprised of three different flavonols aglycones-kaempferol (K), quercetin (Q), and 

isorhamnetin (I)- and their mono-, di- and triglycosides. There are some other observed ions 

which correspond to other flavonol aglycones. However, in Table 1, we listed only three 

flavonols and their derivatives that were thoroughly investigated by our own MSn results and 

showed reproducible signals through flower by flower, or organ by organ. In GALDI MS, 

flavonoids were putatively identified as follows: First, MSn experiments were performed up 

to the third generation product ion spectra (n=4). Second, fragmentation patterns were 

comprehensively compared with those from all available standards or with literature data. 

Most product ion spectra clearly show the identity of the flavonol aglycone and the 

composition of sugar moieties. In Figure 4A, for example, fragment ions at m/z 315, which 

corresponds to the molecular ion of the flavonol isorhamnetin ([I - H]–), were generated after 

the neutral loss (NL) of 162 Da and of 146 Da which correspond to the elimination of hexose 

(Hex) residue and rhamnose (Rha) residues from parent ions at m/z 623. This series of NLs 

and fragment ions show that the composition of ions at m/z 623 is I-Rha-Hex. Unlike LC-MS 

and NMR techniques for flavonoid analyses 44, 45, 54-57, direct profiling by LDI MS does not 

include a separation step. Therefore, there is a possibility of the presence of two or more 

isobaric species at one m/z peak. In the first generation product-ion spectrum for the 

precursor ions at m/z 609 (Figure 4B), the combination of NL(i), NL(iii), and the fragment 

ion at m/z 285 corresponds to the composition K-Hex-Hex. In contrast, the combination of 

NL(iii), NL(v), and the fragment ion at m/z 301 corresponds to the composition Q-Rha-Hex. 

To overcome difficulties associated with isobaric ions, separating isobaric ions by detecting 

their different specific fragment ions by tandem MS imaging may be needed 24, 25. 
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Interestingly, mass spectral profiles generated from a single petal changed 

dramatically depending on the locations where the mass spectra were collected (Figure 5). By 

matching structural compositions in Table 1 with m/z values of the dominant species at the 

tip of the petal (Figure 5A), kaempferol and its glycosides were found to be much more 

abundant over the other two flavonols and their derivatives, while the dominant species close 

to the flower base (Figure 5C) are quercetin (Q), isorhamnetin(I), and their glycosides. The 

spatial distribution of flavonols and their glycosides are further discussed in the following 

mass spectral imaging section. 

Mass spectral imaging of flavonoids from Arabidopsis flowers. As shown in 

Figure 5, mass spectral profiles change dramatically within a single flower petal. To confirm 

this observation that flavonoid accumulation is spatially heterogeneous in petals, chemically-

selective images for ions of flavonoid species were generated. As expected, Figure 6 shows 

the difference in spatial distributions of three flavonols and their sugar moieties. It should be 

noted that local distributions of flavonols (at m/z 285, 301, and 315) shown in Figure 6 are 

not only from flavonol aglycones themselves but also from their glycosides because favonol 

glycosides also produce ions corresponding to flavonol aglycones as fragment species by the 

laser- induced fragmentation. However, the degree of this fragmentation in our sampling 

environment (0.17 Torr) is usually much lower than in high vacuum environment (~10-6 

Torr) 58, 59. In addition, the relative abundances of isobaric ions with different compositions at 

each m/z can be estimated based on the images, although the relative abundances of isomers 

with the same composition cannot be distinguished by mass spectral images. According to 

Table 1, isobaric ion species may exist at m/z 447 (Q-Rha and K-Hex), 593 (K-Rha-Hex and 

Q-Rha-Rha), and 609 (Q-Rha-Hex and K-Hex-Hex). By comparing locations with abundant 

flavonol aglycones with those of isobaric ion species in Figure 6, higher abundances of Q-

Rha at m/z 447, K-Rha-Hex at m/z 593, and Q-Rha-Hex at m/z 609 can be expected. Among 

flavonol glycosides which have the same flavonol aglycone, sub-localization of their 
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glycosides was observed in one abundant area. The ion species at m/z 755, which 

corresponds to quercetin triglycosides (Q-Rha-Rha-Hex), was observed to be highly 

localized around the boundary between kaempferol-localized area and quercetin-localized 

area. 

The heterogeneous distribution of flavonoid compounds within a single petal of an 

Arabidopsis flower has never been reported or visualized in any previous studies. 

Simultaneously probing metabolite location and chemical composition by using imaging MS 

makes it possible to expand our understanding of biological synthetic pathways of secondary 

metabolites in plants. The data presented here can be combined with a series of studies about 

flower development 60, 61 and biosynthetic pathways of flavonoids 46, 47, 62, 63. In particular, the 

spatial distribution of these flavonol compounds suggests that genetic regulation for 

expressing enzymes involved in flavonoid biosynthesis, such as flavonoid 3′-hydroxylase 

(F3′H) which converts kaempferol to quercetin by catalyzing the hydroxylation at the 3′ 

position in the B-ring of the flavonol 43, 64-68 and flavonol glycosyl transferase (FGT) which is 

responsible for transporting sugar units to the specific hydroxyl groups of the flavonol 47, 69, 

may be a time-dependant process during maturation of the Arabidopsis flower.  

The ability of GALDI MS imaging and profiling shown above can also be applied to 

rapid screening and metabolite profiling of mutants which are related to the biosynthesis of 

flavonoids such as the transparent testa mutants.43 Combining the high spatial resolution 

metabolite imaging with the mutant screening by GALDI MS has the potential to provide a 

new direction to functional genomics studies. 

Figure 7 shows chemically-selective images generated from the whole flower. Higher 

abundances of flavonols and their glycosides on the petal surface compared to other parts of 

the flower surface and consistency of the localization of flavonols through petals are clearly 

depicted. In addition to flavonoids, high abundances of C29 ketone (at m/z 421) and C30 FA 

(at m/z 451) were observed in a carpel and a flower pedicle, which is consistent with previous 
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studies 38-40, 53. We also found several unknown compounds including ions at m/z 978 that 

were highly localized on the carpel surface. Interestingly, intense signals from ion species at 

m/z 717 were observed at the stigma. This species has not been unambiguously identified, 

however, its spectra aresimilar to those of condensed tannin compounds 12, 70 based on its 

fragment ions (m/z 602, 339, 311, 309, 291, and 247).  

It should be noted that images of those ion species that were found mainly at the 

carpel and the stigma were processed with normalized intensities instead of absolute 

intensities. The reason is that the average intensities from the carpel (~104) is about 10 times 

lower than those from petals (~105) such that the spatial distribution at the carpel becomes 

difficult to distinguish from background signals of the petal area if these ions were processed 

with absolute intensities. This difference in ion yield may come from several inherent factors 

such as different shape and thickness of flower parts and different surface characteristics due 

to the different cuticular wax load of each flower part. Therefore, quantitative comparison 

among different flower organs is limited in the direct profiling of metabolites by LDI MS. 

Because total ion current is influenced directly by ion yield, normalized intensities by TIC 

were considered as a reasonable processing approach in this case. In addition, different 

classes of compounds are difficult to compare quantitatively even if their ions are generated 

from the same sample surface due to their different ionization efficiencies. In other words, 

comparing the apparent amounts of flavonoids with those of cuticular wax compounds does 

not give reliable quantitative estimates. 

Light–induced flavonoid accumulation in Arabidopsis stems. Flavonoid 

accumulation in the stem under the high fluence of photons was chosen as a model system 

for demonstrating the utility of GALDI MS imaging method. After 14 days of light treatment, 

stem sections were imaged and compared to images of stem sections from control plants 

(Figure 8 and 9). As shown in Figure 8, light-treated Arabidopsis stems accumulate 

anthocyanin pigments and become dark purple in color (Figure 8b). Here we used two 
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histochemical staining techniques (DMACA and DPBA staining) to determine flavonoid 

localization in tissue and cells in Arabidopsis stem cross-sections as revealed by bright-field 

light microscopy and epi-fluorescence microscopy (Figure 8c-8f) 48, 71. DMACA is highly 

sensitive and selective for flavonols50: a blue to purple-brown color (Figure 8d, shown with 

black arrows) is produced. The dark-blue DMACA stain showed sieve-tube elements with 

large amounts of flavanols in vacuoles (black arrows in Figure 8d). Flavonoid accumulation 

was visualized in vivo by using DPBA histochemical stain via fluorescence (white arrows in 

Figure 8e and 8f). Thus, although transmission or fluorescence microscopy provides high 

spatial information concerning the location of ‘colored’ compounds such as flavonoids, it 

lacks the ability to decipher chemical identification. On the other hand, the mass spectral 

images in Figure 9 show obvious areas where kaempferol at m/z 285 and their 

monoglycosides at m/z 431 preferentially accumulate in light-treated stem sections as 

compared to control stem sections. Another interesting observation is that the intense signals 

at m/z 749 and 765 were observed only in light-treated stem sections and their distribution is 

different from that of kaempferols. Based on fragment ion patterns (data not shown), these 

may be similar to substructures of the end product, proanthocyanidin (PA). This result 

suggests that GALDI MS profiling and imaging can simultaneously provide spatial 

distribution on plant tissue sections like microscopy and chemical identities like LC-MS. 

However, the current spatial resolution (50-100 µm) is not high enough to differentiate cell 

by cell in epidermis, and sampling areas with diameters in the low micron range must be 

developed to achieve cell-to-cell comparison similar to light microscopy techniques. 
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Appendix 

Further experimental consideration about enhancing spatial resolution in mass 

spectral imaging by ‘Oversampling’ was discussed in Appendix 3.



 

Table 1. Observed flavonoid compounds by GALDI MSn from Arabidopsis thaliana wild type (Col) flower 

m/z values 

[M–H]– 

Observed major m/z values of 

fragment ions (NLs) Compositionb Possible structural identities References 

285 151, 179, 229 Kaempferol (K) Kaempferol  

301 151, 179, 229, 285 Quercetin (Q) Quercetin  

315 151, 179, 228, 300  Isorhamnetin (I) Isorhamnetin 72 

431 285(146),  K-Rha   

447 285(162), 301(146) Q-Rha and K-Hex Quercetin-3-O –rhamnoside and  

Kaempferol-3-O – glucoside 

55 

461 315(146) I-Rha   

463 301(162) Q-Hex Quercetin-3-O – glucoside 56 

477 315(162) I-Hex   

577 285, 429, 431(146) K-Rha-Rha Kaempferol-3, 7-di-O -rhamnoside 44 

593 285, 327, 429, 431(162), 447(146) K-Rha-Hex and 

Q-Rha-Rha 

Kaempferol-3-O -glucoside-7-O-rhamnoside 

and Quercetin-di-rhamnoside 

44, 54 

609 285, 301, 429(180), 447(162), 463(146) Q-Rha-Hex and K-Hex-Hex Quercetin-glucoside-rhamnoside 54 

623 315, 461(162), 477(146) I-Rha-Hex   

739a 284, 430(309), 447, 593(146) K-Rha-Rha-Hex Kaempferol-3-O – 

rhamnoside(1→2)glucoside-7-O-rhamnoside 

55, 73 

755 301, 447, 609(146) Q-Rha-Rha-Hex Quercetin- 3-O – rhamnoside-glucoside-7-O-

rhamnoside 

57, 74 

a: Fragment ions from both 1st generation and 2nd generation (739→593→) product ion spectra were included 

b: K: Kaempferol, Q: Quercetin, I:Isorhamnetin, Rha: rhamnoside, and Hex: hexoside (galactose or glucose) 

69 
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Figure Captions 

 

Figure 1. Structures of flavonol aglycones and glycosides. Arrows indicate hydroxyl 

groups that are modified by glycosylation. 

 

Figure 2. Negative-ion mode GALDI mass spectrum taken from an Arabidopsis leaf. 

Mass spectra from 45 scanning points on the leaf central vein were averaged. 

VLCFAs which have 24 to 30 carbons were detected. C24, C26, C28, C30 

FAs correspond to tetracosanoic, hexacosanoic, octacosanoic, and 

triacontanoic fatty acids.  

 

Figure 3. An optical image of chloroform-dipped leaf (upper center) and chemically-

selective images of major compounds. Dimension of the image is 7600 µm 

high × 14100 µm wide. The step size for data collection was set to 150 µm for 

both x and y directions. C26 and C30 fatty acids showed high abundance on 

untreated area (right column) while kaempferol and its monoglycoside 

showed high abundance in forcep-grasped area and chloroform-dipped area 

(left column). Ion species at m/z 210 showed very high abundances in the 

dipped area (lower center). Mass spectral profile of the dipped area is shown 

in Supporting Information Figure S1. All mass spectral images shown here 

were presented as normalized intensities and maximum scale values for 

kaempfeol, kaempferol rhamnoside, ions at m/z 210, C26 fatty acid, and C30 

fatty acid were set to 2.5%, 3%, 10%, 5%, and 3% of total ion current (TIC) 

value, respectively. All images were smoothed linearly. 
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Figure 4. First generation product ion spectra of ions detected at (A) m/z 623 and 

(B) m/z 609 from the negative-ion mode GALDI mass spectrum of 

Arabidopsis petal. The neutral loss of 146 Da (NL 146) corresponds to the 

elimination of a rhamnose moiety and NL 162 corresponds to the elimination 

of a hexose moiety. The loss of 163 Da corresponds to the elimination of the 

radical C6H11O5°. NL 180 corresponds to subsequent water loss after NL 162. 

Fragment ions at m/z 315 and m/z 285 correspond to deprotonated ions of 

isorhamnetin(I) ([I – H]-) and kaempferol(K) ([K-H]-), respectively. Chemical 

compositions corresponding to ions (A) m/z 623 and (B) m/z 609 are listed in 

Table 1.  

 

Figure 5. Mass spectral profiles from three locations in an Arabidopsis petal. The 

optical image on the left side is the image of the whole flower which was 

attached to the sample plate. The image was taken inside the mass 

spectrometer before spraying colloidal graphite onto the flower. The image on 

the right side is the magnified view of the petal. Dimensions are 4900 µm high 

× 5200 µm wide for the whole flower image and 2822 µm high × 2445 µm 

wide for the petal image. Three areas annotated with (A), (B), and (C) indicate 

where the mass spectra were collected. Each area contained 50 rastering 

points and the plots were the averaged mass spectra of 50 rastering points 

from each area.  Symbol K, Q, and I correspond to the three flavonol 

aglycones listed in Table 1 and numbers above the major peaks depict 

nominal m/z values listed in Table 1. 

 

Figure 6. Chemically selective images of Arabidopsis petals. Petals in these images are 

the same as in Figure 5. The step size for data collection was set to 50 µm for 
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both x and y directions. Dimension of the images is 2822 µm high × 2445 µm 

wide. The nominal value in each image corresponds to the nominal m/z value 

of the corresponding ions. Chemical compositions of corresponding m/z 

values are listed in Table 1. All images were processed with absolute intensity 

values and intensity scales were adjusted individually for the best presentation. 

The images were not smoothed.  

 

Figure 7. Chemically selective images of Arabidopsis flower. The step size for data 

collection was set to 50 µm for both x and y directions. Dimension of the 

images is 4740 µm high × 4600 µm wide. The nominal value in each image 

corresponds to the nominal m/z value of the corresponding ions. Chemical 

compositions of corresponding m/z values were listed in Table 1 except m/z 

421(C29 ketone), 451(C30 fatty acid), 978(unknown), and 717(unknown). 

Four mass images (421,451, 978, and 717) on the first row were processed 

with normalized intensities and the maximum scale values were shown as a 

percentage of the total ion current. The other images were processed with 

absolute intensity values and the maximum scale value was given for each 

image. All images were smoothed linearly. 

 

Figure 8. Effect of light on flavonoid and anthocyanin content and distribution in the 

inflorescence stem of Arabidopsis. Left column, grown under normal-light 

regime; and right column, grown under high-light regime. (a) and (b), 

Stereomicroscopic images of the inflorescence stem. Anthocyanin 

accumulation in (b) is shown with stars. Bars: 500 µm. (c) and (d), Bright-

field light microscopic view of inflorescence stem cross-sections using 

DMACA staining to show localization of total soluble phenols, soluble 
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flavanols and and proanthocyanidins (PAs): the black arrows show blue- 

brown-purple colored sieve-tube elements of phloem cells. Bars: 20 µm. (e) 

and (f), DPBA staining viewed by fluorescence microscopy: fluorescence 

shows mostly selected flavonoid localization in the collenchyma under the 

epidermis as patchy areas. Orange fluorescence (kaempferol and quercetin); 

bright-yellow fluorescence (naringenin-chalcone); and chlorophylls red 

autofluorescence (shown with white arrows). Ph, Phloem; col, collenchyma 

cells; and Xy, Xylem. Bars: 40 µm.  

 

Figure 9. Chemically selective images of Arabidopsis stems grown under normal-light 

regime as control (top row) and grown under high-light regime (bottom row). 

Step spacing was set to 50 µm for both x and y directions. Sizes of both stem 

sections were 1100 ~ 1200 µm in diameter. All images were processed with 

normalized intensities and maximum scale values were shown as a percentage 

of the total ion current. The accumulation of kaemperols (m/z 285) and its 

glycosides (m/z 431) in light-treated stem section is obvious compared to 

control stem section. The accumulation of the unknowns at m/z 749 and 765 

shows a different local distribution from kaempferols. All images were 

smoothed linearly. 
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Figure 8. 
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CHAPTER 4. DIRECT PROFILING AND IMAGING OF 

EPICUTICULAR WAXES ON ARABIDOPSIS THALIANA BY LASER 

DESORPTION/IONIZATION MASS SPECTROMETRY USING 

SILVER COLLOID AS A MATRIX 
 

Part of this chapter submitted to The Plant Journal* 

Sangwon Cha, Zhihong Song, Wenxu Zhou, Basil J. Nikolau and Edward S. Yeung 

 

Abstract 

Colloidal-silver laser desorption/ionization (LDI) mass spectrometry (MS) was 

employed to profile and image epicuticular wax metabolites in Arabidopsis leaves and 

flowers. Mass spectral profiles of wax compounds were recorded directly from various plant 

surfaces. Major wax compounds, very long chain fatty acids and their derivatives including 

alkanes, primary alcohols, and ketones were successfully detected as silver adduct ions. With 

the ability of small-area sampling and the excellent sensitivity, surface species of each flower 

part, carpels, petals, and sepals, were profiled for the first time. In addition, mass spectral 

profiles and images collected from wild-type and mutants were used for investigating 

variations of wax products by normalizing the ion intensities to a reference peak, [107Ag + 
109Ag]+. Differences in profiles between wild-type (Ler) and cer mutant (cer2) by LDI MS 

were compared with those from GC-MS. We propose that the cer2 gene product may be 

involved in either C30 fatty acid to C30 aldehyde reduction or C30 aldehyde to C29 alkane 

decarbonylation in the wax biosynthesis pathway. It may also have a location specific 

regulatory function.  

Introduction 

As a barrier to the abiotic environment, plants produce the cuticle which protects 

them from external stresses, such as water, insects, and pathogens. The cuticle is composed 
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of two hydrophobic components, cutin and cuticular waxes 1, 2. A fatty acid-based polyester, 

cutin serves as the structural backbone of cuticle and is covered and blended with aliphatic 

long-chain fatty acids and their derivatives, cuticular wax. Functional genomics and 

metabolomics studies on cuticular wax biosynthesis pathway and their transport mechanism 

have been carried out mainly with Arabidopsis thaliana and achievements in this field were 

thoroughly reviewed recently 3. 

Several wax-deficient mutants have been screened mainly by visually examining the 

phenotype, and the mutant loci have been identified for Arabidopsis thaliana, eceriferum 

(cer) 4. In addition to visual screening, a condensed GC method was employed to screen the 

visually identical mutant lines 5, twenty four cer loci have been identified so far. Among 

CER genes, CER2 gene has been isolated and characterized by Xia et al. 6. And they 

suggested that CER2 gene encodes a 47 kDa, nuclear localized protein 7. However,  the 

function of CER2 gene product is still unknown 3. 

The wax profiles of cer mutants have been analyzed by gas chromatography mass 

spectrometry (GC-MS) and, based on differences in the carbon-chain lengths and the 

amounts of wax constituents, the function of cer genes and their products that are involved in 

wax biosynthesis were putatively identified 5, 8-16. GC-MS methods are always concomitant 

with chemical extraction of the wax compounds by organic solvents and derivatization with 

volatile functional groups such as trimethylsilane groups. Therefore, these profiling 

procedures are labor-intensive and the sample sizes are limited by the extraction protocol and 

by the sensitivity of GC instrumentation. In addition, chemical extraction cannot be 

exclusively restricted to epicuticular waxes and the degree of extraction is also ambiguous. 

Recently, laser desorption/ionization mass spectrometry (LDI MS) has been 

employed to analyze various wax compounds and alkane oligomers 17-20. In these studies, 

silver-based matrixes yielded adduct ions for alkanes and their derivatives. The other 

advantage of silver-based matrixes over other transition metal-based matrixes is that the 
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reactivity of silver to alkanes is lower than that of any other transition metals. Therefore, 

silver mostly generates intact silver adduct ions without fragmentation 21.  Recently, direct 

LDI-MS analysis of wax compounds on Arabidopsis stems and leaves by using silver colloid 

as a matrix was successfully performed 22. The advantage of colloidal silver over other silver 

matrixes, such as ultrafine silver powder, silver nitrate, and AgTFA is that colloidal silver 

solution can be applied more easily and more homogeneously onto hydrophobic surfaces 

than other silver matrixes. Since it does not form crystals when it dries, good reproducibility 

of the mass spectral signals can be expected, making it possible to examine localization of 

the compounds of interest on the plant surface. In other words, colloidal silver is well suited 

for imaging MS. 

Here we extend the application of colloidal silver-LDI MS for the analysis of plant 

cuticular wax. By rastering over the plant material, mass spectral profiles and chemically-

selective images were successfully generated for Arabidopsis leaves and flowers. After 

normalization of the mass spectra with respect to the reference peak, reliable relative 

abundance information was obtained that can be compared with traditional GC-MS analysis. 

Compositional variations between wild-type and cer2 mutant flower parts were investigated 

for the first time by silver-LDI MS and GC-MS analysis of whole-flower wax metabolites 

was also performed whereas most of the previously reported metabolite profiling were 

focused on leaf and stem 10, 16. 

 

Experimental Section 

Chemicals. Standards such as n-alkanes, alcohols, esters, ketones, and fatty acids, 

consisting of 13–32 carbon atoms, BSTFA/TMCS (N,O-Bis(trimethylsilyl)trifluoroacetamide 

with trimethylchlorosilane), and MS media (Murashige and Skoog basal salt mixture) were 

obtained form Sigma-Aldrich (St. Louis, MO). A mixture of n-alkanes (C12–C60) was 

purchased from Supelco (Bellefonte, PA). Water-based colloidal silver (20 ppm) was 
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purchased from Purest Colloids (Westhampton, NJ). Double-deionized water was used from 

a MilliQ water purification system (Framington, MA). All other chemicals were purchased 

from Fisher Scientific (Fairlawn, NJ).  

Plant growth conditions. Arabidopsis thaliana ecotype Landsberg erecta (Ler-0) 

and its eceriferum mutant (cer2) seeds were obtained from the ABRC. Seeds were sown on 

MS media in petri dishes. The dishes were placed in the growth room for 10 days after 

keeping at 4oC for 4 days. On 15th day the plants were transferred in soil for continuous 

growth. Leaves were collected on 26th days, and flowers were collected on 34th days. 

Growth room was at 24°C with an illumination at 85 μE m-2s-1 and 100% relative humidity.  

 Plant sample preparation for LDI mass spectral profiling and imaging. After 

collecting samples from plants, plant materials were attached onto a stainless steel target 

plate of similar dimensions as a microscope glass slide using a conductive double-sided tape 

(3M, St. Paul, MN). To avoid damage to the plant sample surface, contact area by forceps 

was minimized and air pressure from a nitrogen gas cylinder was used for attaching samples 

firmly onto the sample plate. All samples were dried in moderate vacuum (approximately 

~50 Torr) for 30–60 min. As shown in Figure 1, carpels, petals, and sepals were separated 

and attached individually for metabolite profiling of flower parts. Three replicates of leaves 

and whole flowers, and five replicates of flower parts for each genetic type were prepared.  

The spraying device for colloidal silver solution was composed of a computer-

controlled syringe pump with a 500 μL syringe (Kloehm LTD., Las Vegas, NV), MicroFlow 

PFA-ST nebulizer (Elemental Scientific Inc., Omaha, NE) with a 0.25 mm i.d. sample uptake 

capillary, and a helium gas cylinder. Spraying time and speed was programmed by the 

software “WinPump®” which is provided by Kloehm. To obtain a homogeneous coverage of 

silver particles, several intervals of spraying with a small volume of colloidal silver solution 

were more desirable than one-time spraying with a large volume because silver particles tend 

to aggregate when they are dried. Therefore, the parameters for spraying were optimized as 
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100 μL/min flow rate with 12.5 μL of spraying volume, and 8 sets of spraying and air-drying 

were performed for each plant sample. The distance between the nebulizer tip and the sample 

was 12.4 cm and the area covered by colloidal silver on the sample plate was 4.5 cm2. 

Spraying onto the leaf was performed without moving the sample plate because leaf sizes are 

much smaller than the spray area. 

Plant sample preparation for gas chromatography-mass spectrometry. Twenty 

five flowers or whole leaves of a plant were collected and weighed.  An aliquot of internal 

standard hexadecane was added to the surface of the plant material. The plant material was 

completely immersed in chloroform for 60 s. The cuticular wax was extracted and dried 

under nitrogen gas. Samples were derivatized using BSTFA/TCMS (65˚C, 30 min) for 

GC/MS analysis. 3 replicates of leaves and flowers were prepared. 

 Mass spectrometry. For LDI mass spectral profiling and imaging, a Thermo 

Finnigan LTQ linear ion trap mass spectrometer equipped with vMALDI source (Mountain 

View, CA) was used. Fiber-optic guided nitrogen laser (337 nm, maximum energy of 280 

µJ/pulse, and maximum frequency of 20 Hz) was used as a laser source. The laser spot size 

was 100 µm at the target plate surface. The intermediate-pressure (0.17 Torr) sampling 

environment was kept by nitrogen gas flow control and this allows softer ionization 

compared to high vacuum environments (~10-6 Torr). All mass spectra were collected in the 

positive-ion mode and the scanning range was set to m/z 200 to m/z 1000.  

For unknown peaks acquired directly from plant samples, peak identification was 

carried out by matching monoisotopic masses with those detected from GC-MS experiment. 

For overlapped peaks due to two stable silver isotopes and similar monoisotopic masses, the 

major compounds detected were determined by comparing the first generation product ion 

spectra from unknown peaks with those from standards or from literature data.  

GC-MS analysis was performed with an Agilent 6890 GC interfaced to a 5973 mass 

spectrometer (Agilent Technologies). A HP-5ms column (30 m x 0.25 mm i.d. coated with a 
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0.25 µm film, Agilent Technologies) was used, and temperature gradient was programmed 

from 80 to 320 °C at 5°C/min with He flow rate at 2.2 mL/min. Operating parameters were 

set to 70 eV (electron ionization) for ionization voltage and 280 °C for interface temperature. 

The GC-MS data files were deconvoluted by NIST AMDIS software, and searched against 

our laboratory’s standard compounds library and the NIST compounds library.  

LDI Mass spectra collection for profiling and imaging. For leaves and flower parts, 

the number of laser shots and the laser intensity scale were examined by collecting mass 

spectra in a small area (usually 5 to 10 rastering points) by turning on the automatic gain 

control feature (AGC, which keeps the ion amounts in the trap at a similar range by varying 

the number of laser shots) of the mass spectrometer. After optimizing the laser parameters, a 

fixed number of laser shots without AGC was used for collecting mass spectra over the 

whole sample.  For whole flower imaging, however, varying numbers of laser shots that were 

controlled by AGC were applied because each flower part has different surface 

characteristics and wax loads which can affect ion yields. The sample was scanned with a 

step size which ranged from 50 µm to 100 µm.  

Mass spectral images for whole flowers were processed by using the custom software 

from Thermo (ImageQuest 1.0). The normalized intensity value which is defined as the 

fractional peak intensity compared to the total ion current (TIC) of each mass spectrum was 

used for presentation of chemical abundance information. The mass window was set to 0.8 

Da – 1.0 Da. For comparing relative abundances among samples, intensities relative to the 

peak intensity at m/z 215.8 ([107Ag + 109Ag]+) were used. 

 

Results and Discussion 

Silver-LDI mass spectral profiling of metabolites from Arabidopsis leaves. Figure 

2 shows the averaged silver-LDI mass spectrum taken from an Arabidopsis thaliana wild 

type (Ler) leaf surface. As shown in the inset of Figure 2, the Ag2
+ ion at m/z 215.8 
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corresponding to [107Ag + 109Ag]+ showed the highest intensity, and this was consistent 

through all mass spectra collected under our experimental conditions. Therefore, the relative 

intensity with respect to the peak intensity at m/z 215.8 was used as the intensity scale for 

quantification purposes in interpreting the mass spectra of wax compounds. 

 Because two stable isotopes of silver are present with similar abundances (107Ag: 

51.839 % and 109Ag: 48.161 %), each hydrocarbon compound produces a quartet of silver 

adduct peaks. This quartet pattern helped to distinguish sample peaks from noise, but the 

multiple peaks induced spectral complexity due to the overlap of compounds different by 2 

Da in molecular weight. As shown in Figure 2, peaks with odd nominal masses were the 

major peaks for the cuticular wax compounds because intensities of the two other isotopic 

peaks (due to either 13C or 2H) were much smaller in the mass range where cuticular wax 

compounds were detected. Therefore, only peaks with odd nominal masses will be discussed 

in this article to simplify the interpretation of the mass spectra. From the mass spectra 

collected from Arabidopsis plants, it was hard to identify individual quartet peaks directly 

due to overlap, but the m/z ranges which have signals from cuticular wax compounds were 

easily grouped as shown in Table 1.  

In Table 1, it is obvious that wax load amounts from parallel GC-MS analysis and the 

sum of relative intensities from silver-LDI mass spectra according to m/z ranges have a 

similar tendency but are not in direct proportion. There are several reasons for this 

phenomenon. One of the main reason is the sampling depth by LDI is shallower than that by 

the current chemical extraction protocol for GC-MS analysis. Therefore, the silver-LDI mass 

spectral profile directly from cuticular wax surfaces does not represent all the cuticular wax 

compounds. The shallower sampling depth by LDI may bear the possibility of serial profiling 

of cuticular wax compounds according to the depth of the wax layer. For example, plant 

sterols and triterpenoids were extracted and constituted about 6 % (~1.5 µmol/g per fresh 

weight) of the total wax load. With colloidal silver, plant sterol standards were detected with 



95 
 

a very low detection limit, ~200 amol/10000 µm2 (sampling area of the laser). However, 

there was no sterol species detected in the LDI mass profiles obtained directly from leaf 

surfaces. This indicates that there may be no plant sterols at the outermost epicuticular wax 

surface. In addition, as previously reported 22, there are differences in ionization efficiencies 

of the wax compounds depending on their functional groups. Therefore, it is difficult to relate 

observed intensities directly to actual amounts of wax compounds. In silver-LDI MS, wax 

standards which have 18 - 32 carbons showed good peak reproducibility in terms of 

intensities but compounds which have smaller carbon number, such as C16 fatty acid, showed 

relative intensity variations depending on laser intensities and concentrations. Similar to the 

previous report 22, alkanes showed the smallest ionization yields and fatty acids showed the 

highest ionization yields for the same molar amount. This observation seems to be consistent 

in the wax compound profile. In Table 1, the relative amounts were higher in LDI than those 

in GC for m/z regions which contain fatty acid species such as m/z 475 - 477, 503 - 505 and 

557 - 561, and the relative abundances were much lower in LDI than those in GC for m/z 

regions where major alkanes are present, such as m/z 515-519 and 543-547. Finally, the 

relative extraction efficiencies for the different classes of compounds in the GC-MS protocol 

are not constant. 

Despite overlaps due to silver isotopes and similar molecular weights, many of the 

wax compounds in Table 1 can be recognized independently by focusing on one of two silver 

isotope adduct ion peaks. In the m/z range of 571-575, for example, C33 alkane and C32 

alcohol ion species overlapped each other at m/z 573 as [C33 alkane  + 109Ag]+ and [C32 

alcohol + 107Ag]+, but each was uniquely detected at m/z 571 as [C33 alkane  + 107Ag]+ and at 

m/z 575 as [C32 alcohol + 109Ag]+, respectively. However, isobaric ions such as C29 alkane 

and C28 aldehyde cannot be distinguished under the current experimental conditions and the 

major compounds found in LDI MS among isobaric ions need to be identified putatively by 

examining fragmentation patterns in their first generation product ion mass spectra. There, 
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for ion species which contain long chain fatty acids such as m/z 503, 559 and 587 or 589, 

losses of water (18 Da) and formic acid (46 Da) were always observed predominantly with 

very similar ratios to those observed from fatty acid standards. This may be because of the 

high ionization efficiency of fatty acids, but it may also suggest that fatty acids are localized 

at the outer cuticular wax layer. For the ion species at m/z 515 and 543 which contain major 

alkanes, the fragmentation patterns matched well with those of alkane standards. In spite of 

the low ionization efficiency of alkanes, they can be easily detected because the molar 

amounts of alkanes in the GC-MS analysis are about 20 to 30 fold higher than isobaric 

aldehydes. However, the inability to detect aldehydes separately under the current 

experimental conditions (because the reduction steps from fatty acids to aldehydes cannot be 

traced by this method) is the main limitation of the silver-LDI MS method. Accurate mass 

measurement with high mass resolution could be the solution for this problem. Also, as 

indicated in Table 1, unidentified contaminants showed peaks at m/z 533-537. Therefore, 

abundance information of C28 fatty acid could not be extracted unambiguously from silver-

LDI mass spectra.  

Finally, there were several unknown wax compounds detected in m/z 585 – 673. Two 

groups of unknown ion species were found in this m/z range (annotated as ‘Unk-A’ and 

‘Unk-B’ in Table 1). Unk-A was detected at m/z 585, 613, 641, and 669 as 107Ag adduct ions 

and Unk-B was detected at m/z 597, 625, and 653. Ions in each group are 28 Da away from 

each other and this difference corresponds to a C2H4 group. For Unk-B, losses of multiples of 

42 Da, which could correspond to propene, were observed and either single loss or quadruple 

loss of 42 Da was found as a major fragment ion. For Unk-A, the product ion spectra were 

very complicated due to overlap with minor unknown ions.  

Comparison of leaf cuticular waxes between wild-type (Ler) and cer2 mutant.  

Based on parallel GC-MS cuticular wax results and putative identification of the major 

contributing compounds within overlapped isobaric species by tandem MS experiments, wax 
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metabolites that were detected with confidence were summarized in Table 2.  For wild-type 

(Ler) and cer2 mutant, the relative intensities by silver-LDI MS and the amounts quantified 

by GC-MS for corresponding wax metabolites were also shown in Table 2. Ratios of the wax 

metabolites were calculated and presented as log2(cer2/Ler) values in Figure 3. From Table 2 

and Figure 3, several observations could be summarized. First, all alkanes were detected with 

significantly lower intensities or lower amounts from cer2 mutant leaves by both methods. 

Second, differences in the amounts of primary alcohols between wild-type and cer2 mutant 

were less significant than among other classes of compounds in both methods. Third, from 

the silver-LDI MS results, C24 and C26 fatty acids showed significantly smaller intensities in 

cer2 than in wild-type, but longer chain length fatty acids, C30 and C32 fatty acids, were 

found as more abundant in cer2 than wild-type leaves. In GC-MS analysis, however, all fatty 

acids showed a small increase in cer2 mutant. This may also suggest the possibility of 

differential integration of fatty acids according to the depth of the cuticular wax layer. 

Discussions about the function of the cer2 gene product are given in the last section by 

combining the observations above with the results from flower parts. 

 Silver-LDI mass spectral imaging of Arabidopsis whole flower. For 

demonstrating mass spectral imaging as a rapid metabolite profiling tool, a flower was 

chosen among Arabidopsis plant organs because flowers are composed of several sub-parts 

that have small dimensions, such as carpel, petal, sepal, and stamen. Mass spectral images of 

wild-type (Ler) flowers are shown in Figure 4. Because different flower organs have different 

surface characteristics and wax loads, the total ion current (TIC), which is directly affected 

by ion yields, varies among the flower organs. Therefore, all chemically-selective images for 

whole flowers were processed as a normalized intensity defined as the fractional peak 

intensity compared to the TIC of each mass spectrum. In Figure 4, the ion species at m/z 529, 

which mainly corresponds to [C29 ketone + 107Ag]+, was found as highly localized at the 

flower stem and the carpel. Major alkane species, such as [C29 alkane + 107Ag]+ and [C31 
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alkane  + 107Ag]+ at m/z 515 and 543, respectively, were found at all three organs as the 

major species but they showed relatively low abundances in the tips of petals. Two major 

wax compounds, C31 alkane and C30 alcohol, contribute to mass signals in the m/z range 543 

– 547. Both wax compounds contributed the intensity at m/z 545 as [C31 alkane + 109Ag]+ and 

[C30 alcohol + 107Ag]+. This overlapped image was clearly separated into two images by 

choosing different silver isotope ions, i.e. [C31 alkane + 107Ag]+ at m/z 543 and [C30 alcohol + 
109Ag]+ at m/z 547, as shown in Figure 4. From the images for m/z 543 and 547, it is clear that 

the intensity at the petals and at the center part of the sepals for m/z 545 is mainly from C31 

alkane, not C30 alcohol. At the tips of petals, fatty acids ([C18:3 fatty acid + 107Ag]+ and [C26 

fatty acid  + 107Ag]+ at m/z 385 and 503, respectively) were found at higher amounts than 

other wax compounds.  

For comparing wax compositions between wild-type (Ler) and cer2 mutant, serial 

mass spectral images were generated with a 0.8 Da mass window and a 2.0 Da step size for 

the m/z ranges where wax compounds were detected, and chemically selective images for 

four m/z values that showed distinct differences between wild-type (Ler) and cer2 mutant 

were shown in Figure 5(A).  In figure 5(A), it is obvious that C29 alkane and C29 ketone ([C29 

alkane + 107Ag]+ and [C29 ketone  + 107Ag]+ at m/z 515 and 529, respectively) showed much 

lower abundances in cer2 mutant than in wild-type. In contrast, C30 and C32 fatty acids ([C30 

fatty acid + 107Ag]+ and [C32 fatty acid  + 109Ag]+ at m/z 559 and 589, respectively) showed 

higher abundances in cer2 mutant than in wild-type. Interestingly, as clearly visualized in 

Figure 5(B), both fatty acids showed high abundances at the tip of the petal, while in the 

carpel only C30 fatty acid was found in high abundance. 

Silver-LDI mass spectral profiling of Arabidopsis flower parts. Imaging whole 

flowers can provide information about wax load variations between wild-type and mutants 

with localization information in a very short time, but there are also limitations. Even if 

whole flowers are flattened and attached onto the mass spectrometer sample plate with extra 
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care, overlaps among flower organs cannot be avoided. In addition, the degree of wax 

variation between wild-type and mutants was hard to recognize accurately by processing 

images with normalized intensities. Therefore, profiling wax compounds with individual 

flower parts and comparing their mass profiles based on relative intensities to the reference 

peak at m/z 215.8 ([107Ag + 109Ag]+) were more desirable. Three major parts of Arabidopsis 

flowers, carpels, petals, and sepals were prepared separately and mass spectra were collected 

serially from these parts with a 50 µm step movement. The averaged mass spectra for three 

flower parts of wild-type (Ler) and its cer2 mutant are shown in Figure 6 and more detailed 

peak identifications with abundances for these flower parts are listed in Table 3. In contrast 

to leaf wax profiling, peak identification was more straightforward because fewer silver 

adduct ion peaks were observed per flower part. Also, the major silver adduct ion peak 

pattern was a quartet which corresponds to only one wax compound. As discussed previously, 

the relative intensities for each class of compounds are different. In particular, intensities 

corresponding to fatty acids were significantly higher. Therefore, to assess the total wax 

loads between wild-type and mutants, comparing the sum of intensities from C27 or higher 

alkanes, that are known to be the most abundant wax metabolites 3, is more appropriate than 

comparing the total intensities from all classes of wax metabolites. As shown in Table 3, the 

sum of intensities from C27, C29, and C31 alkanes was higher in wild-type than in cer2 mutant 

throughout all three flower parts. Therefore, it is obvious that a global reduction of wax loads 

in cer2 mutant exists. However, for carpels and petals, C31 alkane showed a higher 

abundance in cer2 mutant than in wild-type.  

In the carpel (Figure 6(A) and Table 3(A)), C29 alkane at m/z 515 and C29 ketone at 

m/z 529 were detected as the major wax metabolites in wild-type (Ler), as expected from the 

whole flower imaging results. However, in cer2 mutant, the relative intensities for these 

metabolites were lower by about 5.5 fold. In contrast, the relative intensity for C30 fatty acid 

at m/z 559 was higher by about 4.0 fold in cer2 mutant. In the petal (Figure 6(B) and Table 
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3(B)), peaks corresponding to C18:3, C24, C26 fatty acids (at m/z 385, 475, and 503, 

respectively) and C29 alkane at m/z 515 showed high abundances in wild-type (Ler). However, 

in cer2 mutant, the relative intensities for all major peaks in wild-type (Ler) were lower by 

more than 2.6 fold. In contrast, the longer fatty acids, C30 and C32 at m/z 559 and 589, 

showed about 4.8 fold higher intensities for cer2 mutant. In the sepal, (Figure 6(C) and Table 

3(C)), C29 and C31 alkanes and C28 and C30 alcohol were detected as major peaks in wild-type 

(Ler) and the wax metabolite profile was similar to that from the leaf. In the cer2 sepal, the 

major differences from the wild-type sepal were lower intensities for C29 alkane (~ 6.5 fold), 

C29 ketone (~ 3.5 fold), and C26 fatty acid (~ 5.7 fold). However, C30 fatty acid and alcohol 

showed increases in the cer2 sepal.  Interestingly, unknown wax metabolites were detected 

for both wild-type and mutant at the sepal and showed lower abundances in the cer2 mutant. 

GC-MS wax metabolite profiling for the whole flower were performed and results are shown 

in Figure 7. The major difference from GC-MS wax metabolite profile for leaves was that no 

aldehydes were detected in whole flower analysis.  

It should be noted that at least 75 whole flowers (25 flowers per sample and 3 

replicates) were needed to get reproducible wax metabolite profiles from GC-MS, whereas, 

in silver-LDI MS profiling, only 5 flowers were used for collecting the wax metabolite 

profiles of each kind of flower part.  

To compare the variations of each wax metabolite, ratios of metabolites in wild-

type(Ler) and cer2 mutant flower parts were presented in Figure 8. Several features from 

silver-LDI MS could be summarized and compared with GC-MS results. First, C30 and C32 

fatty acids showed higher abundances in cer2 mutant than in wild-type for all flower parts. 

The increase in C30 fatty acid was most pronounced in the petal in terms of both intensities 

and ratios. This increase was also observed in whole-flower analysis by GC-MS. However, 

similar to the results from leaf analysis, C24 and C26 fatty acids were lower in amounts from 

silver-LDI MS for all cer2 mutant flower parts whereas they were at about the same level or 
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even higher amounts from GC-MS of cer2 mutant flowers. Second, C29 ketone was obviously 

lower in all cer2 mutant flower parts and the decrease was the largest at the carpel in terms of 

both intensities and ratios. The decrease in C29 ketone was also seen in GC-MS results. Third, 

for primary alcohols, their changes were less obvious than the other classes of wax 

compounds for flower parts. This was also consistent with GC-MS results. Fourth, C27 and 

C29 alkanes were significantly lower in cer2 mutant flowers. However, C31 alkane showed 

the smallest decrease in ratio at cer2 sepals and even increased in cer2 carpels and petals. In 

GC-MS results, C31 alkane showed the smallest change in ratio among alkane species. It 

should be emphasized that GC-MS results are from whole flower waxes and not from a 

single organ. Therefore, differential wax load changes from flower part to flower part cannot 

be recognized by GC-MS experiments.  

Prediction of regulation of wax synthesis by cer2 gene product. By combining the 

observations from leaves and flower parts with known cuticular wax biosynthetic pathways 

for Arabidopsis thaliana, we propose that cer2 mutation may be involved either in the C30 

fatty acid to C30 aldehyde reduction pathway, as had previously suggested for cer13 by 

Rashotte et al. 16, or in the C30 aldehyde to C29 alkane decarbonylation pathway.  Because 

aldehydes were not readily detected from flower parts, deciding between the two pathways 

mentioned above was not possible based only on silver LDI MS profiling. Similar to wax 

load changes of cer13 mutant stems (16, levels of C29 products, C29 alkane and C29 ketone, 

were lower and levels of C30 primary alcohol are higher in cer2 mutant for all flower parts 

and leaves. This is also consistent with GC-MS results. . In addition, accumulation of C32 

fatty acid was observed in petals which may be caused by further elongation of the 

accumulated C30 fatty acid. However, increases of C31 alkane amounts were only observed in 

carpels and petals but not in sepals and leaves. The degrees of increases for C30 fatty acid in 

cer2 mutants were much larger in carpels (~4 fold) and petals (~4.8 fold) than in leaves (~1.2 

fold) and sepals (~1.4 fold), so lower amounts of subsequent elongation from C30 to C32 fatty 
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acid can be expected in sepals and leaves. Therefore, the relatively smaller amounts of C30 

fatty acid in cer2 sepals and leaves may not compensate for the general wax load reduction in 

cer2 mutants and cause decreases in C31 alkanes in cer2 sepals and leaves. However, there is 

also the possibility of differential regulation of elongation from C30 to C32 fatty acid by cer2 

gene product according to flower parts and leaves that is similar to differential regulation 

between the stem and the leaf 10. 

 

Conclusions 

Wax metabolite profiling by LDI MS with colloidal silver as a matrix has several 

advantages over GC- MS approaches. First, sample preparation is much simpler because it 

does not require any extraction and derivatization steps. Second, the amounts of samples 

required are about 20 to 25 times smaller than those in GC-MS. Third, localization 

information of cuticular waxes can be preserved because of the direct sampling capability. 

With the use of homogeneous colloidal silver coating on plant surfaces, wax metabolite 

distributions on each flower part was successfully profiled for the first time. However, there 

are still challenging issues in this method. Overlap due to isobaric ions, especially alkanes 

and aldehydes, needs to be resolved to provide more accurate measurements of changes in 

wax profiles. It may be solved by employing exact mass measurements with high mass 

resolution. In addition, different ionization efficiencies for different class compounds make it 

difficult to compare actual abundances between two different classes of wax metabolites 

directly from the mass spectra. This may be resolved by systematic studies on response 

factors as a function of metabolite classes and sizes. Last, because a mass spectral database 

of metabolites for silver LDI-MS does not exist currently, identification of wax compounds is 

less certain than GC-MS. 

By performing reproducible spraying of colloidal silver solution onto the plant 

sample surface by the finely-controllable spraying device, homogeneous and constant surface 
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coverage of colloidal silver particles was achieved. This made it possible to use the intensity 

of silver dimer ions as a reference to normalize all mass spectra. In this way, comparison of 

the relative wax abundances between wild-type and mutants was successfully made. Wild-

type/mutant wax profile comparisons based on silver-LDI MS results generally showed good 

agreement with those based on GC-MS results. However, major variance was present 

between the two methods, especially for C26 and smaller fatty acids. It may be because of 

sampling depth differences and further investigation is needed to identify this bias. 

Lastly, a data processing scheme for the rapid comparison between wild-type and 

mutant can be proposed as shown in Figure 9. The basic idea involves two general rules. First, 

the two largest peaks in a quartet pattern have about the same intensities because of the 

similar natural abundances of the two silver isotopes. Second, changes in the two adjacent 

peaks should be similar if only one metabolite is associated with this change. Figure 9 shows 

the potential of the silver-LDI MS method as a high-throughput mutant screening tool. Future 

work would involve verification of this scheme with a larger data set. 
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Table 1. Possible wax compounds in Arabidopsis thaliana wild type (Ler) leaves according 

to mass-to-charge ratio ranges where wax compounds were detected by silver-LDI MS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m/z range Possible ion species a Wax loadc 
(nmol/g fresh weight) 

LDI Relative 
Intensity (%)e 

361-365 
C16:1 fatty acid (361)  
C16:0 fatty acid (363) 
Unknown contaminant (363)   

245.83 ± 39.88 
455.39 ± 108.81 

dn.a.  
f4.45 ± 0.53 

385-393 
C18:3 fatty acid  (385)  
C18:2 fatty acid  (387) 
C18:1 fatty acid  (389) 
C18:0 fatty acid  (391) 

dn.d. 
87.74 ± 18.10 

571.67 ± 102.37 
119.34 ± 41.54 

14.18 ± 0.36 

475-477 C24 fatty acid  (475) 28.74 ± 3.64 9.85 ± 1.09 

487-491 
C27 alkane (487) 
C26 aldehyde (487) 
C26 alcohol (489) 

1141.48 ± 46.00 
33.13 ± 2.37 

171.47 ± 27.50 
15.63 ± 1.41 

503-505 C26 fatty acid (503) 
C27 iso-alcohol (503) 

92.45 ± 19.20 
18.88 ± 2.50 20.33 ± 2.19 

515-519 
C29 alkane (515) 
C28 aldehyde (515) 
C28 alcohol (517) 

8242.73 ± 148.85 
403.24 ± 13.63 
412.27 ± 47.53 

35.97 ± 1.37 

529-535 
C29 ketone (529)  
C28 fatty Acid (531) 
C29 iso-alcohol (531) 
Unknown contaminant (533)     

19.95 ± 1.69 
260.95 ± 18.01 

11.53 ± 0.58 
n.a. 

f8.38 ± 0.18 

543-547 
C31 alkane (543) 
C30 aldehyde (543) 
C30 alcohol (545) 

9014.37 ± 378.82 
313.13 ± 21.62 
118.37 ± 22.01 

32.79 ± 1.56 

559-561 C30 fatty acid (559) 
C31 iso-alcohol (559) 

12.41 ± 2.52 
17.76 ± 1.48 6.07 ± 0.29 

571-575 
C33 alkane (571) 
C32 aldehyde (571) 
C32 alcohol (573) 

3420.03 ± 170.57 
132.80 ± 13.35 

59.83 ± 6.86 
20.50 ± 1.33 

585-589 Unk-A1(585) 
C32 fatty acid (587) 6.63 ± 1.02 6.28 ± 0.23 

597-603 
Unk-B1(597)b 
C35 alkane (599) 
C34 alcohol (601)  

n.a. 
123.05 ± 17.23 

3.79 ± 0.43 
14.13 ± 0.77 

613-617 Unk-A2 (613) 
C34 fatty acid (615) 

n.a. 
4.38 ± 0.41 4.56 ± 0.29  

625-629 Unk-B2 (625) n.a. 12.00 ± 1.14 

641-645 Unk-A3 (641) n.a. 5.74 ± 0.01 

653-657 Unk-B3 (653) n.a. 6.14 ± 0.47 

669-673 Unk-A4 (669) n.a. 4.70 ± 0.87 

a. Cuticular wax compounds (nominal m/z values of 107Ag adduct ions) listed are from identified compounds in parallel 
GC-MS analysis.  

b. Unk: Unknown ion species. Unknown species were grouped by fragmentation patterns in their first generation product 
ion spectra. 

c. Wax load values are from GC-MS for three replicates with ± standard error 
d. n.a. : not applicable, n.d.: not detected 
e. Relative intensity (%) is defined as the fractional intensity of the intensity at m/z 215.8 which corresponds to [107Ag + 

109Ag]+, and the values are listed with ± standard error.  
f. Due to the overlap with unknown contaminants, only the relative intensity at m/z 361 was used for m/z 361-365 and 

only relative intensities at m/z 529 and 531 were included for m/z 529-535. 
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Table 2. Major cuticular wax compounds with their abundances in Arabidopsis thaliana 

leaves of wild-type (Ler) and cer2 mutant  

   

 

 

 

 

 

 

 

 

Class [M + Ag]+ Major ion species 
Silver LDI (R.I., %)a GC (nmol/g fresh weight)b 

Ler cer2 Ler cer2 

        
Alkane C27 487.3 [C27 alkane  + 107Ag]+ 6.38 ± 0.69 2.17 ± 0.23 1141.48 ± 46.00 364.72 ± 23.42 

 C29 515.4 [C29 alkane  + 107Ag]+ 10.63 ± 0.39 3.48 ± 0.33 8242.73 ± 148.85 1011.67 ± 53.85 

 C31 543.4 [C31 alkane  + 107Ag]+ 12.65 ± 0.99 7.00 ± 0.28 9014.37 ± 378.82 2202.02 ± 95.96 

 C33 571.4 [C33 alkane  + 107Ag]+ 7.37 ± 0.66 3.71 ± 0.12 3420.03 ± 170.57 132.70 ± 8.32 

 C35 599.4 [C35 alkane  + 107Ag]+ 5.47 ± 0.51 3.33 ± 0.02 123.05 ± 17.23 11.10 ± 0.59 

Alcohol C26 491.3 [C26 alcohol  + 109Ag]+ 2.63 ± 0.43 2.97 ± 0.60 171.47 ± 27.50 242.22 ± 20.44 

 C28 519.4 [C28 alcohol  + 109Ag]+ 9.01 ± 1.08 7.24 ± 0.64 412.27 ± 47.53 268.81 ± 46.16 

 C30 547.4 [C30 alcohol  + 109Ag]+ 5.25 ± 0.33 9.04 ± 0.95 118.37 ± 22.01 132.73 ± 20.22 

 C32 575.4 [C32 alcohol  + 109Ag]+ 4.01 ± 0.49 5.31 ± 0.44 59.83 ± 6.86 15.69 ± 1.72 

 C34 603.4 [C34 alcohol  + 109Ag]+ 1.26 ± 0.14 2.39 ± 0.09 3.79 ± 0.43 5.33 ± 0.66 

Fatty acid C24 475.3 [C24 fatty acid  + 107Ag]+ 5.35 ± 0.80 2.74 ± 0.16 28.74 ± 3.64 48.11 ± 6.96 

 C26 503.3 [C26 fatty acid  + 107Ag]+ 10.95 ± 1.62 3.48 ± 0.33 92.45 ± 19.20 223.87 ± 20.64 

 C30 559.4 [C30 fatty acid  + 107Ag]+ 3.71 ± 0.23 4.67 ± 0.10 12.41 ± 2.52 18.80 ± 2.07 

 C32 589.4 [C32 fatty acid  + 109Ag]+ 1.16 ± 0.13 2.50 ± 0.10 6.63 ± 1.02 11.04 ± 1.50 

Ketone C29 529.4 [C29 ketone  + 107Ag]+ 2.64 ± 0.13 1.42 ± 0.07 19.95 ± 1.69 20.12 ± 2.01 

a. Relative intensity (R.I.) (%) is defined as the fractional intensity of the intensity at m/z 215.8 which corresponds to [107Ag + 109Ag]+ and the values 
are listed with ± standard error  for three replicates. 

b. Wax load values are from GC-MS with ± standard error for three replicates 
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Table 3. Major cuticular wax metabolites detected for each flower part by silver-LDI MS for 

Arabidopsis thaliana wild-type (Ler) and cer2 mutant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3(A) Carpel 

Class [M + Ag]+ ion species R. I.(Ler) (%) R. I.(cer2) (%) Log2(cer2/Ler) 

       
Alkane C29 515.4 [C29 alkane  + 107Ag]+ 16.20 ± 0.31 2.93  ± 0.18 -2.47  ± 0.08 

 C31 543.4 [C31 alkane  + 107Ag]+ 3.64  ± 0.09 5.84  ± 0.84 0.68  ± 0.18 

Alcohol C28 519.4 [C28 alcohol  + 109Ag]+ 3.60 ± 0.17 2.03 ± 0.05 -0.83 ± 0.06 

 C30 547.4 [C30 alcohol  + 109Ag]+ 2.85  ± 0.17 3.04  ± 0.43 0.09  ± 0.19 

 C32 575.4 [C32 alcohol  + 109Ag]+ 2.52  ± 0.36 2.19  ± 0.82 -0.20  ± 0.48 

Fatty acid C18:3 385.3 [C18:3 fatty acid  + 107Ag]+ 3.24 ± 0.18 3.01 ± 0.70 -0.11 ± 0.29 

 C24 475.3 [C24 fatty acid  + 107Ag]+ 2.60  ± 0.09 1.24  ± 0.12 -1.06  ± 0.12 

 C30 559.4 [C30 fatty acid  + 107Ag]+ 1.86  ± 0.19 7.37  ± 1.09  1.99  ± 0.22 

Ketone C29 529.4 [C29 ketone  + 107Ag]+ 21.48  ± 0.98 4.22  ± 0.67 -2.35  ± 0.20 
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Table 3(B) Petal 

Class [M + Ag]+ ion species R. I.(Ler) (%) R. I.(cer2) (%) Log2(cer2/Ler) 

       
Alkane C27 487.3 [C27 alkane  + 107Ag]+ 2.91 ± 0.20 2.07 ± 0.14 -0.48 ± 0.12 

 C29 515.4 [C29 alkane  + 107Ag]+ 15.87 ± 1.03 6.10 ± 0.89 -1.38 ± 0.18 

 C31 543.4 [C31 alkane  + 107Ag]+ 6.63 ± 0.37 8.97 ± 0.73 0.44 ± 0.12 

Alcohol C26 491.3 [C26 alcohol  + 109Ag]+ 2.24 ± 0.06 3.07 ± 0.40 0.45 ± 0.16 

 C28 519.4 [C28 alcohol  + 109Ag]+ 4.88 ± 0.17 3.48 ± 0.26 -0.49 ± 0.10 

 C30 547.4 [C30 alcohol  + 109Ag]+ 2.56 ± 0.39 3.32 ± 0.13 0.38 ± 0.19 

 C32 575.4 [C32 alcohol  + 109Ag]+ 1.93 ± 0.36 2.77 ± 0.34 0.52 ±0.26 

Fatty acid C18:3 385.3 [C18:3 fatty acid  + 107Ag]+ 30.04 ± 2.24 5.40 ± 0.80 -2.48 ± 0.20 

 C24 475.3 [C24 fatty acid  + 107Ag]+ 8.45 ± 0.58 2.99 ± 0.24 -1.50 ± 0.13 

 C26 503.3 [C26 fatty acid  + 107Ag]+ 15.63 ± 1.03 4.17 ± 0.48 -1.91 ± 0.16 

 C30 559.4 [C30 fatty acid  + 107Ag]+ 3.87 ± 0.22 18.68 ± 2.41 2.27 ± 0.17 

 C32 589.4 [C32 fatty acid  + 109Ag]+ 0.80 ± 0.10 4.25 ± 0.68 2.41 ± 0.24 

Ketone C29 529.4 [C29 ketone  + 107Ag]+ 3.38 ± 0.26 2.22 ± 0.05 -0.60 ± 0.10 

Unknown  625.5 [Unk-B2  + 107Ag]+ 6.42 ± 0.39 3.64 ± 0.79 -0.81 ± 0.27 

  669.5 [Unk-A4  + 107Ag]+ 3.33 ± 0.29 2.14 ± 0.43 -0.64 ± 0.26 
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Table 3(C) Sepal 

Class [M + Ag]+ ion species R. I.(Ler) (%) R. I.(cer2) (%) Log2(cer2/Ler) 

       
Alkane C27 487.3 [C27 alkane  + 107Ag]+ 1.99 ± 0.16 0.74 ± 0.03 -1.42 ± 0.11 

 C29 515.4 [C29 alkane  + 107Ag]+ 19.28 ± 1.65 2.98 ± 0.17 -2.69 ± 0.12 

 C31 543.4 [C31 alkane  + 107Ag]+ 11.25 ± 1.60 6.91 ± 0.14 -0.70 ± 0.17 

Alcohol C26 491.3 [C26 alcohol  + 109Ag]+ 1.78 ± 0.13 2.34 ± 0.14 0.39 ± 0.12 

 C28 519.4 [C28 alcohol  + 109Ag]+ 7.64 ± 0.72 5.82 ± 0.27 -0.39 ± 0.12 

 C30 547.4 [C30 alcohol  + 109Ag]+ 6.85 ± 0.74 11.93 ± 1.22 0.80 ± 0.18 

Fatty acid C18:3 385.3 [C18:3 fatty acid  + 107Ag]+ 5.77 ± 2.00  2.45 ± 0.52 -1.23 ± 0.49 

 C24 475.3 [C24 fatty acid  + 107Ag]+ 2.95 ± 0.56 1.31 ± 0.13 -1.17 ± 0.26 

 C26 503.3 [C26 fatty acid  + 107Ag]+ 4.39 ± 0.91 0.76 ± 0.05 -2.53 ± 0.26 

 C30 559.4 [C30 fatty acid  + 107Ag]+ 4.13 ± 0.33 6.54 ± 0.88 0.66 ± 0.19 

Ketone C29 529.4 [C29 ketone  + 107Ag]+ 5.07 ± 0.76 1.43 ± 0.29 -1.82 ± 0.30 

Unknown  625.5 [Unk-B2  + 107Ag]+ 4.60 ± 0.96 1.61 ± 0.29 -1.52 ± 0.33 

  669.5 [Unk-A4  + 107Ag]+ 2.21 ± 0.71 0.59 ± 0.13 -1.90 ± 0.47 
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Figure Captions 

Figure 1. Arabidopsis flower samples prepared on a LDI target plate for silver-LDI 

mass spectral profiling and imaging. 

 

Figure 2. Positive-ion mode silver-LDI mass spectrum taken from an Arabidopsis 

thaliana wild-type (Ler) leaf. Mass spectra from 12674 scanning points on the 

leaf were averaged. The inset is the expanded m/z range view which includes 

the groups of Ag2
+ peaks (triplet around m/z 215.8) and Ag3

+ peaks (quartet 

around m/z 322.8). The peak at m/z 215.8 which corresponds to the ion [107Ag 

+ 109Ag]+ is always the predominant peak through all mass spectra collected 

under our experimental conditions. 

 

Figure 3. Ratios of targeted cuticular wax metabolites in Arabidopsis thaliana wild-type 

(Ler) and eceriferum mutant (cer2) leaves. Ratios from silver-LDI MS (left) 

and GC-MS (right) analyses were scaled as log2 values. Data points in each 

colored box correspond to the compound class indicated in a box. The number 

of carbons is indicated for each data point. Detailed ion species assignments 

and their relative intensities from silver-LDI MS and amounts from GC-MS 

are listed in Table 2. Each silver-LDI MS and GC-MS analysis has 3 

replicates and error bars correspond to standard errors are shown.  

 

Figure 4. Chemically selective images of Arabidopsis thaliana wild-type (Ler) whole 

flowers. The step size for data collection was set to 50 µm for both x and y 

directions. Dimension of the image is 5550 µm high × 4960 µm wide. The 

value in each image corresponds to the nominal m/z value of the 

corresponding ions. All images were processed as normalized intensities and 
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shown as a percentage of the total ion current. All images were smoothed 

linearly. Major ions detected at m/z 529 correspond to [C29 ketone + 107Ag]+. 

Ions detected at m/z 515, 543 are mainly silver adduct ions of C29 and C31 

alkanes. Ions at m/z 547 are from C30 alcohol, and the image for the peak at 

m/z 545 corresponds to the overlapped image of C31 alkane and C30 alcohol as 

[C31 alkane + 109Ag]+ and [C30 alcohol  + 107Ag]+. Images for silver adduct 

ions of C18:3 (at m/z 385), C26 fatty acids (at m/z 503), and an unknown 

compound (at m/z 625) are also shown.  

 

Figure 5. (A) Chemically selective images of Arabidopsis thaliana wild-type (Ler) and 

cer2 mutant flowers. The step size for data collection was set to 50 µm for 

both x and y directions. Dimensions of the images for Ler and cer2 are 5550 

µm high × 4960 µm wide and 4100 µm high × 4770 µm wide, respectively. 

C29 alkane (at m/z 515 as [C29 alkane + 107Ag]+) showed higher abundances 

mainly at sepals and carpels in the wild-type than in the cer2 mutant. The 

localization of C29 ketone (at m/z 529 as [C29 ketone + 107Ag]+) at the carpel 

was easily recognized in the wild-type but not in the cer2 mutant. Higher 

abundances of very long chain fatty acids such as C30 and C32 fatty acids (at 

m/z 559 as [C30 fatty acid + 107Ag]+ and at m/z 589 as [C32 fatty acid + 109Ag]+) 

were found in the cer2 mutant. (B) 3D presentations of the normalized 

intensities of chemically selective images of C30 and C32 fatty acids (at m/z 

559 and at m/z 589). The yellow arrows in (A) and (B) are for aligning the 

viewing angle. Both fatty acids showed high abundances in the tips of petals. 

C30 fatty acid showed high abundance in the carpel but C32 fatty acid did not. 
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Figure 6. Positive-ion mode silver-LDI mass spectrum taken from Arabidopsis thaliana 

wild-type (Ler) and cer2 mutant flower parts, (A) carpel, (B) petal, and (C) 

sepal (right). Each mass spectrum is the average of each flower part. The peak 

intensities were normalized to the reference peak (m/z 215.8 which 

corresponds to the ion [107Ag + 109Ag]+ ). 

 

Figure 7. Whole flower cuticular wax profiles of Arabidopsis thaliana wild-type (Ler) 

and eceriferum mutant (cer2) by GC-MS. Each bar corresponds to the amount 

of a specific cuticular wax and the carbon numbers are indicated on x-axis. All 

values are scaled as nmol/g fresh weight with ± standard error. Because of the 

relatively high amounts of C29 alkane and ketone, they were scaled by a factor 

of 0.2 and 0.1, respectively. For values that exceed the y-axis range, the actual 

y-values are indicated adjacent to the corresponding bars.     

 

Figure 8. Ratios of targeted cuticular wax metabolites in Arabidopsis thaliana wild-type 

(Ler) and eceriferum mutant (cer2) flower parts (carpel, petal, and sepal) by 

silver-LDI MS and whole flowers by GC-MS. Ratios were scaled as log2 

values. Data points in each colored box correspond to the compound class 

indicated in the box. The number of carbons is indicated for each data point. 

Detailed ion species assignments and their relative intensities for the three 

flower parts were listed in Table 3. Each flower part has 5 replicates and error 

bars correspond to standard errors. Whole flower analysis by GC-MS has 3 

replicates and the error bars correspond to standard errors. 

 

Figure 9. Proposed data processing scheme of silver-LDI MS data for fast, high-

throughput mutant screening. Sample plots shown were processed with 
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cuticular wax mass profiles from Arabidopsis thaliana wild-type (Ler) and 

eceriferum mutant (cer2) carpels. 
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CHAPTER 5. COLLOIDAL SILVER LASER 

DESORPTION/IONIZATION MASS SPETROMETRY OF STEROLS 

AND DIRECT PROBING OF CHOLESTEROL ON ASTROCYTE CELL 

MONOLAYER 

 

A paper prepared for submission to Rapid Communications in Mass Spectrometry 

Sangwon Cha, Ksenija Jeftinija, Srdija Jeftinija, and Edward S. Yeung 

 

 

 

 

Abstract 

By using colloidal silver as a matrix, laser desorption/ionization mass spectrometric 

analysis of sterols was performed. Cholesterol and phytosterols were sensitively detected as 

silver adduct ions with little or no fragmentation. In-source dehydration difference depending 

on hydroxyl group orientation was observed. By spraying colloidal silver homogeneously 

onto the cell monolayer, cholesterol levels were probed directly from the cell monolayer 

surface. Protocol for assaying relative cholesterol abundances was developed. Based on the 

protocol, mass spectrometric assay of free cholesterol abundances depending on methyl beta-

cyclodextrin(MβCD) treatment time was performed and their results were compared with 

results by traditional fluorometric cholesterol assay method. LDI MS protocol had simpler 

sample preparation and assay steps than the traditional method. Both methods showed the 

same trend of decreases in cholesterol level according to MβCD treatment time, but observed 

ratios of decreases were higher in silver-LDI protocol than in enzymatic fluorometry. 
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Introduction 

Cholesterol is one of major components in cell membrane and is highly localized at 

lipid rafts in cell membrane. Cholesterol- and sphingolipids- rich lipid raft microdomains on 

cell membrane have numerous functions including organization of neurotransmitter 

signaling.1 To explore their function and associated proteins, monitoring changes of 

neurotransmitters after disruption of lipid rafts is the common approach.2 Disruption of lipid 

raft domain was mainly performed by inhibition of cholesterol synthesis or chemical removal 

of cholesterol.2 Therefore, cholesterol level on cell membrane is a very important factor to 

understand signal transduction mechanism.  For chemical removal of cholesterol, 

cyclodextrins which are cyclic oligosaccahrides having a lipophilic central cavity were used 

for capturing cholesterol molecules.3, 4 Among those, methyl-ß-cyclodextrin (MβCD) has 

known to be the most effective capturing agent for cholesterol.5 In addition, unusual 

cholesterol level in diseases such as Alzheimer’s disease6 and atherosclerosis7 were found. 

Therefore, probing cholesterol level on cell membrane is also important to understand 

diseases. 

Free cholesterol and cholesteryl esters from cultured cells are traditionally quantified 

by enzymatic fluorometry.8-11 However, this fluorometric assay lacks an internal standard 

which could cause miscalculation of cholesterol content.12 In addition, recovery of 

cholesterol after extracting and redissolving cellular lipids in various solvents was 

incomplete and the ratio of recovery also varied according to solvent compositions used.13 

Chromatographic separation techniques, such as thin layer chromatography (TLC)14, gas 

chromatography(GC)  and high performance liquid chromatography (HPLC)15-19, have been 

also utilized for measuring cholesterol amounts from cell cultures or human serum. 

By combining chromatographic separation techniques with a variety of mass 

spectrometric methodologies, identification as well as quantification of sterols has become 

more straightforward. In addition, tandem MS have made it possible to elucidate structures of 
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sterols. GC coupled with electron impact ionization MS has been used for typical analysis of 

sterols. GC-MS is sensitive and selective but chemical modification due to high temperature 

analysis condition and laborious derivatization steps are disadvantageous. HPLC were 

coupled with several ionization techniques. Among those, HPLC with atmospheric pressure 

chemical ionization (APCI) MS is the most popular method20-22 whereas standard 

electrospray ionization (ESI) method is not efficient ionization methods for sterols23.  

Therefore, derivatization of sterols before spraying24 and silver ion coordinated spraying25 

were demonstrated for effective ion generation through ESI in analysis of sterols and their 

esters.  

Differently from ionization techniques mentioned above, beam-induced ionization 

techniques such as matrix-assisted laser desorption/ionization MS (MALDI MS) and 

seconday ion mass spectrometry (SIMS) have been used off-line for extract analysis. 

However, sensitivity of sterols in conventional MALDI MS was poor and most of sterols 

were detected as dehydrated molecules which could cause losses of structural information.26 

Recently, sterols were derivatized with Girad P hydrazine to Girad P hydrazones, and they 

were readily detected by conventional MALDI using α-cyano-4-hydroxycinammic acid as a 

matrix.27 Time-of-flight (TOF)- SIMS was also used for identification of cholesteryl ester 

from HPLC lipid fractions.12 Because sample was deposited on pre-etched silver target, 

cholesteryl esters were detected as silver adduct ions.12  

However, beam-based techniques also have a capability of direct sampling from 

intact cells or tissues.  Cholesterol in animal tissues or cells was directly detected by TOF-

SIMS or MALDI MS28-31. In TOF-SIMS, surface metallization (metal enhanced-SIMS) by 

silver or gold enhanced secondary ion yields and metal adduct ions of cholesterol was 

predominantly detected in case of silver coating on sample surface.28, 32 By scanning through 

cell or animal tissue surfaces, localization information of cholesterol was also obtained by 
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TOF-SIMS.28-30 Recently, relative quantification of cholesterol for individual cells was 

successfully demonstrated by combining TOF-SIMS with in situ fluorescence microscopy.33 

Recently, we first introduced aqueous silver colloidal solution as a matrix for LDI MS 

of various wax compounds.34 Here we extend the use of colloidal silver matrix for analysis of 

sterols inspired by silver metallization in TOF SIMS and Ag+ coordination ionspray MS. By 

using a colloidal silver matrix, mass spectral profiles for sterols were obtained and in-source 

dehydration patterns of them were investigated. In addition, direct probing free cholesterol 

level on Astrocyte cell monolayer was performed. Free cholesterol level on cell surfaces was 

manipulated by treating cell cultures with methyl-ß-cyclodextrin (MβCD). Relative 

cholesterol peak intensities to the reference peak ([107Ag + 109Ag]+) were used for estimating 

relative abundance of cholesterol on Astrocyte cell monolayer and results from LDI MS were 

compared with those from traditional enzymatic fluorometry.   

 

Experimental Section 

Materials and chemicals. Sterol standards were purchased from Steraloids Inc. 

(Newport, RI) and plant sterol mixture was obtained from Mattrya LLC (Pleasant Gap, PA). 

Colloidal suspension of silver (20 ppm) was purchased from Purest Colloids (Westhampton, 

NJ). The Amplex Red Cholesterol Assay Kit was from Molecular Probes (Eugene, OR). 

Earle’s Balanced Salt Solution (EBSS), Dulbecco’s Modified Eagle Medium (DMEM) high 

glucose, fetal bovine serum (FBS), and trypsin (0.25%) were purchased from Invitrogen 

(Carlsbad, CA). Papain was obtained from Sigma-Aldrich (St. Louis, MO). All other 

chemicals were obtained from Fisher Scientific (Fairlawn, NJ). 

Mass spectrometer.  A Thermo Finnigan LTQ linear ion trap mass spectrometer 

equipped with vMALDI source (Mountain View, CA) was used for mass spectral analysis. 

nitrogen laser pulses (337 nm, maximum energy of 280 µJ/pulse, and maximum frequency of 

20 Hz) were introduced through the fiber optic cable with 200µm in diameter. The laser spot 
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size on the sample plate surface was about 100 µm in diameter. The pressure of the sampling 

chamber was kept at 0.17 Torr by nitrogen gas flow. All mass spectra were collected in the 

positive-ion mode.  

Cell culture. Mix neuron-glia cultures from neonatal rat cerebral cortex were 

established as described. Cortexes from 3 newborn pups (1-3 days old) were freshly dissected 

and tissues were enzymatically treated in 2 mL of papain solution (1.54 mg/mL in EBSS) for 

40 min at 37 °C. After washing tissues with EBSS, tissues were treated with trypsin inhibitor 

and mechanically dissociated in the DMEM medium (DMEM high glucose : heat-inactivated 

FBS : penicillin/streptomycin = 89 : 10 : 1 by volume) using pipettes. Cells were plated in 

the DMEM medium in culture flasks and maintained at 37 °C in a humidified 5% CO2/95% 

air atmosphere. The cells were maintained by changing the medium every 2-3 days. The 

cultures were then shaken overnight (12 hours)at 260 rpm at 37 °C. Cultures enriched in type 

I astroglia were obtained by trypsinizing the attachedcells for 3 min. Trypsin was inactivated 

by adding 3 mL of the DMEM medium. Astrocytes were plated on poly-L-lysine (100 g/mL; 

MW 100,000)-coated glass coverslips or stainless steel plates. All experiments were 

performed on cells that have been in culture for 1 – 3 days after re-planting. 

In vitro fluorometric assay of cholesterol. Astrocyte cells were seeded in a 96-well 

microplate at a density of 5 × 104 cells per well. Seeded cells were incubated in the DMEM 

medium for 24 hours. The cells were treated with 100 µL of 10mM MβCD solution with 

various time periods (0 to 60 minutes). After treatment, cells were washed with KPBS buffer 

and cellular lipids were extracted from the cells by adding 100 µL of hexane:2-propanol (3:2, 

v/v) solution. First extracts were transferred to the new 96-well microplate. The cellular 

lipids were re-extracted with an additional 50 µL of hexane:2-propanol (3:2, v/v) solution 

and these second extracts were transferred and merged to the first extracts. Solvents in 

extracts were evaporated under vacuum and cellular lipids were resuspended in 150 µL of 

phosphate buffer containing 0.1M potassium phosphate, pH 7.4, 50 mM NaCl, 5mM cholic 
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acid, and 0.1% Triton X-100 for 12 hours with shaking. Cellular free cholesterol content was 

quantified by using an Amplex Red Cholesterol Assay kit (Molecular Probes, Eugene, OR) 

without cholesterol esterase. Briefly, cholesterol in the cellular lipid extracts is oxidized by 

cholesterol oxidase to produce H2O2. In the presence of horseradish peroxidase, 10-acetyl-

3,7-dihydoxyphenoxazine (Amplex Red) reacts with H2O2 and this reaction generates 

fluorescent resorufin quantitatively. If cholesterol esterase is present, cholesterol esters can 

be hydrolyzed to cholesterol. Fluorescence was measured with the fluorescence microplate 

reader (Spectra Max Gemini XS, Molecular Devices, Sunnyvale, CA) using excitation at 538 

nm and emission at 590 nm. Cell residues were used for cellular protein quantification by the 

micro BCA protein assay kit (Pierce, Rockford, IL). The amount of cholesterol was 

normalized by the amount of cellular protein. 

LDI mass spectrometric assay of cholesterol. Astrocyte cells were planted on a 

poly-L-lysine-coated stainless steel plate. Four spots of cell monolayer were formed on a 

stainless steel plate (25 mm × 75 mm). Each spot of cell monolayer had about 5 × 104 cells in 

an area of about 1.5 cm2. After planting, cells were incubated in the DMEM medium for 24 

hours. The cells then were treated with MβCD solution with various time periods (0 to 60 

minutes). Immediately after MβCD treatment, all cell monolayers were fixed with 4% of 

paraformaldehyde solution for 30 min and transferred to KPBS buffer solution. Before 

spraying colloidal silver, cell monolayers were dried under moderate vacuum (~50 Torr).  

Spraying of colloidal silver solution were performed by the home-built spraying 

device which is the combination of a computer-controlled syringe pump with a 500 μL 

syringe (Kloehm LTD., Las Vegas, NV), MicroFlow PFA-ST nebulizer (Elemental Scientific 

Inc., Omaha, NE) with a 0.25 mm i.d. sample uptake capillary, and a helium gas cylinder. 

Spraying action was controlled by the supplied software “WinPump®” by Kloehm. Six sets 

of spraying-drying processes were performed for each spot of cell monolayer with 100 

μL/min flow rate and 12.5 μL of colloidal silver solution per spraying. Because the area 
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covered by colloidal silver on the sample plate was about 4.5 cm2 which was larger than the 

spot of cell monolayer (~1.5 cm2), spraying action was performed without moving the 

sample plate.  

Based on optical images of cell monolayer spots which were acquired in the mass 

spectrometer, rastering areas were selected and scanned with a 100 μm movement. Five laser 

shots were used to obtain the mass spectrum for one scanning point. For one spot of cell 

monolayer, 485 mass spectra from different scanning points were collected and then 

averaged. From averaged mass spectra, intensity values of cholesterol silver adduct ion peaks 

(at m/z 493.5 and 495.5) were extracted and normalized as relative intensities to the reference 

peak at m/z 215.8 ([107Ag + 109Ag]+). These relative intensities were used for calculating 

abundances of free cholesterol in cell monolayer. Four replicas of cell monolayers were used 

for each MβCD treatment. 

 

Results and Discussion 

Silver-LDI mass spectral profiles of sterols. In silver-LDI MS, cholesterol (5-

cholesten-3β-ol) was mostly detected as silver adduct ions at m/z 493-496 and showed a 

quartet of peaks with two major peaks because of the two silver isotopes ([M + 107Ag]+ at m/z 

493 and [M + 109Ag]+ at m/z 495). Detection limit for cholesterol was ~ 50 pg per sample 

spot. However, for high concentration of cholesterol standards (> ~50 ng/sample spot), 

dehydrated cholesterol silver adduct ions ([M – H2O + Ag]+) were also detected at m/z 475-

478 with a constant laser fluence (Figure 1(a)). In Figure 1, one interesting observation was 

that dehydration ions were not found in the mass spectrum of its isomer, 5-cholesten-3α-ol 

(Figure 1(b)). In addition, with high laser fluence, dehydroxylated silver adduct ions ([M – 

OH + Ag]+) were observed for 5-cholesten-3β-ol but not for 5-cholesten-3α-ol. This 

difference could not be recognized in conventional MALDI MS because only dehydrated 

ions were observed for both alpha- and beta- hydroxyl group positions. The explanation for 
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this difference in dehydroxylation or dehydration has not been reported. As shown in Figure 

3, an efficient orbital overlap between beta-hydroxy and adjacent alkene group may have 

stabilizing effects of the intermediates in either dehydroxyation or dehydration (Figure 2). In 

addition, the other possible explanation is that beta-hydroxy and adjacent alkene group are 

geometrically aligned well with the hydrogen orbital group at the allylic position and 

therefore this may facilitate syn elimination of water (Figure 2).  

Figure 3 shows silver-LDI mass spectrum of major phytosterol mixture. As shown in 

Figure 3, sterols which are 2 Da different in molecular weight were overlapped due to two 

stable silver isotopes. In other words, the peak at m/z 507 was from both [Brassicasterol + 
109Ag]+ and [Campesterol + 107Ag]+. Similarly, [Stigmasterol + 109Ag]+ and [β-Sitosterol + 
107Ag]+ are associated to the peak at m/z 521. However, their intensities could be individually 

measured by choosing the other silver isotope adduct ion (Figure 3).  

LDI mass spectrometric assay of cholesterol on cell monolayer. With colloidal 

silver spraying on cell monolayer, surface cholesterol was directly probed. Silver-LDI mass 

spectrum directly taken from an Astrocyte cell monolayer spot was shown in Figure 4. As 

shown in Figure 4, silver adduct ions of cholesterol and dehydrated cholesterol were readily 

detected at m/z 493 - 496 and at m/z 475 – 478 directly from an Astrocyte cell monolayer spot. 

For obtaining mass spectral profiles directly from the cell monolayer on poly-L-lysine coated 

stainless steel surface, about 20 % ~ 30 % higher laser intensity was needed compared to that 

needed for standard sterol or sterol extract analysis. This may cause higher ratio of 

dehydrated cholesterol ions. The peak corresponding to the silver dimer ion at m/z 215.8 

([107Ag + 109Ag]+) was predominant under our silver spraying condition and this was 

consistent through mass spectra from all individual scanning points on both control and 

MβCD-treated cell monolayers. In addition, the relative intensities of cholesterol on one cell 

monolayer with respect to the peak intensity at m/z 215.8 were consistent with a less than 

10 % of relative standard deviation. Therefore, the fractional peak intensities for peaks at m/z 
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475, 477, 493, and 495 to the peak intensity at m/z 215.8 were extracted from the averaged 

mass spectrum and summed for comparing relative abundances of cholesterol among cell 

monolayer spots.  

It should be noted that mass spectra from all scanning points showed a variation in 

terms of total ion current if cell monolayer was prepared on the poly-L-lysine coated cover 

slip glass. In addition, intensities from cholesterol were also about one order of magnitude 

lower than those from the cell monolayer on the stainless steel plate even if 50% higher laser 

intensity was used. Therefore, all cell monolayer spots were prepared on poly-L-lysine 

coated stainless steel plates for obtaining relative abundance information.  

Figure 5 shows relative cholesterol levels of control and MβCD-treated cell 

monolayer spots which were assayed by both enzymatic fluorometry and silver-LDI MS. 

From Figure 5, several features from silver-LDI MS could be summarized and compared 

with enzymatic fluorometry results. First, the silver-LDI MS method successfully probed 

decreased cholesterol levels on MβCD treated cell monolayer spots by estimating cholesterol 

abundances with relative peak intensities. In addition, relative peak intensities of cholesterol 

from four equally-treated cell monolayer spots showed less than 8 % of intensity variations. 

Second, degrees of decreased cholesterol levels by MβCD treatment were found to be 

consistent in independently cultured cell batch A and B by both assay methods. Third, the 

silver-LDI MS method showed the larger decreases of cholesterol levels than the enzymatic 

fluorometry method in the same treatment. It may be because sampling region by silver-LDI 

MS is mostly limited to cell surfaces where were affected by MβCD treatment whereas 

enzymatic fluorometry method probe cholesterol level from total cellular lipid extracts. This 

observation may suggest that the effect of MβCD treatment on cell monolayer could be 

underestimated by enzymatic fluorometry method. 
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Conclusions 

LDI MS of sterols using colloidal silver as a matrix were performed and cholesterol 

levels on cell monolayer spots were demonstrated. With low detection limit, cholesterol and 

phytosterol standards were mainly detected as intact silver adduct ions, and a difference in 

in-source dehydration between cholesterol and its isomer was observed which could not be 

recognized when using conventional MALDI matrixes. By performing homogeneous and 

reproducible spraying of colloidal silver solution with the micronebulizer-based spraying 

device, consistent mass spectral profiles could be obtained through surfaces of Astrocyte cell 

monolayer spots. Sample preparation and assay procedure of the silver-LDI MS method was 

much simpler and faster than the traditional enzymatic fluorometry method because it didn’t 

need any lipid extraction and enzymatic reaction step. Sampling depth by LDI-MS is thought 

to be limited to the outer cell membrane surface but is still ambiguous. Further investigations 

on sampling depth according to laser fluence, cell population, and planting surface 

characteristics are needed. 
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Figure Captions 

Figure 1. Colloidal silver-LDI mass spectra of cholesterol (5-cholesten-3β-ol) and 5-

cholesten-3α-ol. Sample loading was 100 ng/spot for both compounds. With 

the same laser intensity, dehydrated peak [M – H2O +Ag]+ was observed for 

5-cholesten-3β-ol but not for 5-cholesten-3α-ol. 

 

Figure 2. Possible explanation for the difference in in-source dehydration of 5-

cholesten-3β-ol and 5-cholesten-3α-ol.  

 

Figure 3. Colloidal silver-LDI mass spectrum of plant sterol mixture solution. Sample 

loading was 10 ng of total plant sterols/spot. Four sterol compounds were not 

in equal amount in the mixture. The inset is the enlarged view of the region 

m/z 500-530 where plant sterols were detected with their structures. Peaks 

with the asterisk are from unknown sample plate contaminants. 

 

 

Figure 4. Colloidal silver-LDI mass spectral profile directly taken from the Astrocyte 

cell monolayer spot. Silver adduct ions for cholesterol and dehydrated 

cholesterol were detected at m/z 493 - 496 and at m/z 475 – 478.  Peaks in the 

m/z 220 – 600 were magnified with factor of two. Peaks with the asterisk are 

from unknown sample plate contaminants. 

 

Figure 5. Effect of MβCD treatment on Astrocyte cells which was assayed by both 

silver- LDI MS and enzymatic fluorometry method. Cholesterol levels in 

silver-LDI MS were based on sum of relative intensities of peaks from 

cholesterol and its fragment. Cholesterol levels in enzymatic fluorometry were 
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based on the cholesterol content which was normalized by protein content in 

cells. Silver- LDI MS had 4 replicas for each treatment and enzymatic 

fluorometry had 8 replicas for each treatment. Cholesterol levels were 

indicated as relative abundances to the cholesterol level of control (without 

MβCD treatment). Cholesterol assay were performed on two independently 

cultured batches A and B. Error bars correspond to ± relative standard 

deviation values. 
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CHAPTER 6. GENERAL CONCLUSIONS 

 

In this dissertation, laser desorption/ionization (LDI) mass spectrometry (MS) and 

imaging mass spectrometry of small molecules was investigated with various interesting 

biological systems. With use of alternative matrixes such as colloidal graphite and colloidal 

silver solution, small molecules which were not detected very well with conventional 

MALDI method were successfully detected.  

With colloidal graphite as a matrix, cerebrosides were readily detected and imaged 

from rat brain tissues whereas this class of compounds was usually suppressed in 

conventional MALDI MS spectra of lipid mixture by the signals from phosphatidylcholine 

species. For isobaric ions present in lipid mass spectral profiles, imaging tandem mass 

spectrometry was performed and overlapped localization information was successfully 

separated. In addition, GALDI MS was applied to plant materials such as fruit samples and 

Arabidopsis thaliana plants which is one of the most important plant models. Various classes 

of secondary metabolites such as small organic acids, oligosaccharides, long chain fatty acids, 

and flavonoids were detected with high sensitivity. Especially, by imaging of Arabidopsis 

flower petals, the heterogeneous distribution of flavonoid species in a single flower organ 

was discovered for the first time by GALDI imaging MS. This discovery has a possibility of 

expanding understandings of functional genomics studies of the flavonoid biosynthetic 

pathway. 

With colloidal silver matrix, cuticular wax compounds were directly profiled and 

imaged from Arabidopsis thaliana flower surfaces. This wax metabolite profiling of flower 

parts has never been studied by the traditional GC-MS protocol. Reproducible mass profiles 

from both wild-type and mutants were obtained by using the homogeneous colloidal silver 

spraying technique. Comparison of relative abundances of wax compounds through wild-

type and mutants by silver LDI MS provided the idea of mutant gene product functions in 
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wax biosynthesis pathway and showed good agreement with traditional GC-MS results.  In 

addition, cholesterol levels were directly probed from Asctrocyte cell monolayers by using 

silver LDI MS. 

Overall, alternative matrix-based direct profiling techniques have much simpler 

sample preparation steps and shorter analysis time than extraction- and separation – based 

traditional methods. Much smaller sample amount required for the analysis is also the big 

advantage of direct profiling LDI MS. In addition, compared to organic acid-based MALDI 

matrixes, alternative matrixes produce generally cleaner background in the low mass region 

and more homogeneous sample surfaces can be generated which is suitable for imaging MS 

applications. However, identification of small molecules from complete biosystems by LDI 

MS is still hard to achieve for some cases and there is a high possibility of isobaric ion 

overlaps in low mass region profiles. In addition, the sampling depth by LDI MS is thought 

to be limited to very outer surface but still ambiguous. Therefore, further systematic studies 

on separating isobaric ions based on tandem MS or high mass resolution MS or ion mobility 

MS are needed, and investigation of the sampling depth according to matrix application, laser 

properties, and sample materials is must. 
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APPENDIX 1. SUPPORTING FIGURES FOR CHAPTER 2 

 

This supporting information is published online at http://pubs.acs.org* 

Sangwon Cha and Edward S. Yeung 

 

 

 

Figure Captions 

Figure S-1.  High-vacuum (HV)-MALDI and HV-GALDI mass spectra of standard lipid 

mixtures of Batch 1. Solutions of Batch 1 are composed of a constant 

concentration of total glucosylceramides (GlcCers) (0.5 mg/ml) and various 

concentrations of phosphatidylcholine 32:0 (PC 32:0) (from 0.005 mg/ml to 

0.25 mg/ml). Ratios on the right side of the figure represent weight ratios of 

PC 32:0 to total GlcCers in each mixture. Relative abundances for the major 

mass peaks are listed in Table 2. 

 

Figure S-2.  HV-MALDI and HV-GALDI mass spectra of standard lipid mixtures of Batch 

2. Solutions of Batch 2 are composed of a constant concentration of PC 32:0 

(0.5 mg/ml) and various concentrations of total GlcCers (from 0.005 mg/ml to 

0.25 mg/ml). Ratios on the right side of the figure represent weight ratios of 

 

___________________________________________________________________________ 

* http://pubs3.acs.org/acs/journals/supporting_information.page?in_manuscript=ac062251h 

Copyright © 2007 American Chemical Society 
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PC 32:0 and total GlcCers in each mixture. Relative abundances for the major 

mass peaks are listed in Table 2. 

 

Figure S-3.  Intermediate pressure (IP)-MALDI and IP-GALDI mass spectra of standard 

lipid mixtures of Batch 1. Solutions of Batch 1 are composed of a constant 

concentration of total GlcCers (0.5 mg/ml) and various concentrations of PC 

32:0 (from 0.005 mg/ml to 0.25 mg/ml). Ratios on the right side of the figure 

represent weight ratios of PC 32:0 to total GlcCers in each mixture. Relative 

abundances for the major mass peaks are listed in Table 2.  

 

Figure S-4.  IP-MALDI and IP-GALDI mass spectra of standard lipid mixtures of Batch 2. 

Solutions of Batch 2 are composed of the constant concentration of PC 32:0 

(0.5 mg/ml) and various concentrations of total GlcCers (from 0.005 mg/ml to 

0.25 mg/ml). Ratios on the right side of the figure represent weight ratios of 

PC 32:0 and total GlcCers in each mixture. Relative abundances for major 

mass peaks are listed in Table 2. 

 

Figure S-5.  Mass spectrum of rat brain tissue in the negative-ion mode. This mass 

spectrum is the average of mass spectra from all rastering points (10,817 

points) on the rat brain tissue. 

 

Figure S-6.  First generation product ion spectra of ions at m/z 844.50. NL 59, NL 124, NL 

183, and NL 256 could correspond to the loss of trimethylamine, ethyl 

phosphate, phosphocholine head group, and palmitic acid from [PC 38:6 + 

K]+, respectively. NL 43, NL 284, and NL 304 could correspond to the loss of 
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aziridine, stearic acid (18:0), and arachidonic acid (20:4) from [PE 38:4 + 2K 

– H]+, respectively. 
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Figure S- 1. 
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Figure S- 2. 

 

 

 

 

 

 

 



151 
 

680 700 720 740 760 780 800 820 840 860 880 900
m/z

0

20

40

60

80

100
0

20

40

60

80

100
0

20

40

60

80

100

R
e

la
ti

v
e

A
b

u
n

d
a

n
c
e

0

20

40

60

80

100
734.50

756.50

699.08 806.66 820.66722.66 834.75792.66780.58 874.83766.50682.50 750.66712.91 848.75 861.00 896.00
734.50

756.41

699.08
806.66

820.66722.58 834.66
780.50 792.66766.50 874.83682.50 709.25 752.50 847.16 861.00 889.16

699.08 734.41

720.08
806.66

820.66722.58 756.41
834.75766.50 780.58 874.83682.41 792.66778.66

712.91 752.50685.25
847.25 860.91 897.00888.91

734.41
699.08

806.66

820.66722.58 756.41

766.50 834.75780.58
682.50 792.58778.66 874.83

752.50709.33691.25 847.25
889.08857.08

680 700 720 740 760 780 800 820 840 860 880 900
m/z

0

20

40

60

80

100
0

20

40

60

80

100
0

20

40

60

80

100

R
e

la
ti

v
e

A
b

u
n

d
a

n
c
e

0

20

40

60

80

100
806.66

820.66

722.58 756.50
834.66

792.66697.41
778.66

750.58734.50 848.66694.58 708.58 772.50 863.50 892.50880.41
806.66

820.66

722.66
834.66

792.66756.50
778.66

697.50
750.66

848.66734.50694.58 708.66 761.41 863.50 891.41880.41
806.66

820.66

722.66

834.66

792.66
778.66

750.66
848.66733.50697.50 708.66 761.50 863.50689.50 891.41879.41

806.66

820.66

722.66
834.66

792.66
778.66

750.66 848.66733.41708.66694.58 761.50 863.50 891.50879.50

IP-MALDI IP-GALDI PC: GlcCers

1:2

1:4

1:20

1:100

 
Figure S- 3. 
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Figure S- 4. 
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Figure S- 5. 
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Figure S- 6. 
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APPENDIX 2. DIRECT PROFILING AND MS IMAGING OF SMALL 

METABOLITES FROM FRUITES BY COLLOIDAL GRAPHITE-

ASSISTED LASER DESORPTION/IONIZATION MASS 

SPECTROMETRY 

 

A paper published in Analytical Chemistry* 

Hui Zhang, Sangwon Cha, Edward S. Yeung 

 

 

Abstract 

Due to a high background in the low mass region, conventional MALDI is not as 

useful for detecting small molecules (molecular weights < 500 Da) as it is for large ones. 

Also, spatial inhomogeneity that is inherent to crystalline matrixes can degrade resolution in 

imaging mass spectrometry (IMS). In this study, colloidal graphite was investigated as an 

alternative matrix for laser desorption/ionization (GALDI) in IMS. We demonstrate its 

advantages over conventional MALDI in the detection of small molecules such as organic 

acids, flavonoids and oligosaccharides. GALDI provides good sensitivity for such small 

molecules. The detection limit of fatty acids and flavonoids in negative ion mode are in low 

femtomoles range. Molecules were detected directly and identified by comparing the MS and 

MS/MS spectra with those of standards. Various fruits were chosen to evaluate the practical 

utility of GALDI since many types of small molecules are present in them. Distribution of 

these small molecules in the fruit was investigated by using IMS and IMS/MS. 

___________________________________________________________________________ 

* Reprint with permission from Analytical Chemistry 2007, 79(17), 6575-6584. 

Copyright © 2007 American Chemical Society 
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Introduction 

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been 

extensively used for the analysis of large molecules such as proteins1 and synthetic 

polymers.2 The key feature of MALDI MS are its soft ionization characteristic and simplified 

spectra as mostly singly charged species are generated. Compared to electrospray ionization 

(ESI) MS, MALDI bears other advantages such as better tolerance to interference from salts 

and buffers and simpler sample preparation. MALDI has also proven to be very useful for the 

analysis of medium-size molecules (500-10 kDa) such as peptides,3 oligonucleotides,4 and 

oligo-saccharides.5 However, the analysis of small molecules (< 500 Da) by conventional 

MALDI MS is far less successful than that of larger molecules because the analyte ions are 

strongly interfered with or are suppressed by the matrix-related ions that are predominant at 

the low m/z range. 

Different approaches have been employed in MALDI MS to minimize the 

background in the low mass range. Reports includes derivatization of the analyte molecules 

to a higher molecular weight6 or using a matrix with higher molecular weight such as 

porphyrin (MW 974.6).7 Extra sample preparation was then needed, thereby limiting the 

classes of analytes that can be detected. It has been observed that matrix ions can be 

suppressed dramatically and sometimes complete suppression can be achieved under well 

controlled conditions.8, 9 For example, surfactant additives such as cetyltrimethylammonium 

bromide (CTAB) have been reported to substantially suppress the background from α-cyano-

4-hydroxycinnamic acid (CHCA).10 Laser intensity and the relative molar ratio of matrix to 

analyte are the major parameters to adjust. However a suitable molar ratio is not always 

achievable especially for native biological samples.  

Many inorganic materials have been tested as matrixes for surface-assisted laser 

desorption/ionization (SALDI), including different metal powders and metal oxide 

nanoparticles such as Ag, Au, Co, Al, Mn, Mo, Zn, Sn, W, Fe3O4, SnO2, TiO2, WO3, ZnO, 
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etc.11-15 Generally, those SALDI MS can provide a cleaner background than conventional 

MALDI MS as no interference peaks from fragment ions of the organic matrixes were 

present. Another matrix-free approach for laser desorption/ionization on porous silicon 

(DIOS) was extensively studied since 1999.16, 17 Porous silicon surfaces were etched from 

crystalline silicon chips with hydrofluoric acid and functionalized as the laser 

desorption/ionization matrix as well as trapping agents for analyte molecules. Small 

molecules including pharmaceuticals, nucleic acids, carbohydrates, and steroids were 

successfully detected.18-20 In a more recent work, commercially available silicon 

nanoparticles were utilized as an LDI matrix and the silicon powder preparation was 

optimized for the analysis of small molecules.21 Different kinds of carbon materials, 

including graphite particles,22 graphite plates,23, 24 graphite suspension in different solvents,25-

27 graphite trapped in silicone polymer,28 activated carbon powders,29 functionalized carbon 

nanotubes30-33 and fullerenes,34 and more recently pencil lead,35-37 have been suggested as 

alternative matrixes for LDI MS. Many kinds of analyte molecules over a wide mass range 

(100-6000 Da) have been detected, such as peptides,20, 26-29, 31, 33-36 phospholipids,25 

oligosaccharides,30-33, 35 fatty acids,24, 36 synthetic polymers7, 23, 26, 31, 32, 35, 37 and other various 

organic compounds.7, 15, 22-29, 31, 33-37 A more detailed description of graphite-LDI can be 

found in our previous paper.38 Recent reviews about small molecules MALDI MS39 and 

matrix-free LDI MS can be found elsewhere.40 

Imaging mass spectrometry (IMS) has proven to be a powerful technology for direct 

profiling and imaging of elements and biomolecules in tissue sections. Secondary ion mass 

spectrometry (SIMS),41, 42 MALDI43-47 and direct electrospray ionization (DESI)48 have been 

applied as desorption/ionization techniques for the IMS of molecules such as metal elements, 

peptides, proteins, lipids and other metabolites. SIMS has the best spatial resolution among 

the three and DESI requires the least sample preparation and allows true in situ measurement 

with the simplest instrumentation.48 The spatial resolution of MALDI IMS is in between 
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SIMS and DESI IMS, usually ranging from 80-200 µm in diameter. The diverse choices of 

lasers and matrixes make MALDI MS suitable for fast, simultaneous and high-throughput 

analyses of metabolites from tissue samples. MALDI equipped with UV laser has been 

successfully demonstrated for the imaging of peptides, proteins and lipids.43-47 Due to the 

high background problem as discussed earlier there is limited application of UV-MALDI for 

imaging of small molecules (< 500 Da). Infrared (IR) MALDI was introduced recently as a 

technique for imaging small metabolites from fruit samples.49 Water is used as the natural 

matrix for IR MALDI, but it is inevitable that the sample may dry out during the process of 

IR irradiation. Different locations will thus give different sensitivities due to inhomogeneous 

water content. So far, molecules that can be detected by IR MALDI are quite limited, either 

because of the low desorption/ionization efficiency or low detection sensitivity. Furthermore, 

the spatial resolution of IR-IMS is inherently worse than that of UV-IMS.  

Previously we demonstrated that colloidal graphite was a good LDI matrix for the 

analysis of molecules in 500-1000 Da range, such as different lipid species.38 This matrix 

contains fine particles and is spatially homogeneous, making it suitable for quantitative 

imaging. The colloidal property also allows it to be easily sprayed to form a layer on top of 

tissue samples and thus simplifies imaging experiments. In this study, we investigated the 

applicability of colloidal graphite as an alternative LDI matrix for the analysis of even 

smaller metabolite molecules. Fruits contain many kinds of small molecules such as long-

chain fatty acids, small oligosaccharides, and flavonoids; so they serve as good systems to 

test the performance. GALDI MS and tandem MS were used to identify the ionized species, 

while IMS and IMS/MS were utilized to map the distribution of those molecules in fruit 

slices.  
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Experimental Section 

Standards such as long-chain fatty acids, oligosaccharides and flavonoids were 

purchased from Sigma-Aldrich (St. Louis, MO). Dihydroxybenzoic acid (DHB) from Bruker 

Daltonics (Billerica, MA) and CHCA solution from Agilent Technologies (Palo Alto, CA) 

were used as standard MALDI matrixes. 2-Propanol-based colloidal graphite aerosol spray 

(Aerodag G) was obtained from Acheson Colloids (Port Huron, MI). Pure water was 

obtained from a MilliQ water purification system (Billerica, MA). All other chemicals were 

purchased from Fisher Scientific (Fairlawn, NJ).  

Apple and strawberry fruits were purchased from a local grocery store. Apple skin 

was peeled off by a sharp razor blade and attached to the stainless steel plate by double-sided 

tape. Apple juice was collected from crushed flesh onto a glass slide, dried and used directly. 

A cryostat from International Equipment Co. (Needham Heights, MA) was used for 

cryosectioning. Fruit chunks were dipped in liquid N2 before they were cryosectioned into 

about 15-µm thick specimens and stored at –20 °C before mass spectrometric analysis. No 

optimum cutting temperature (OCT) compounds were used to embed the fruit samples as the 

interference to mass spectra from OCT compounds is known.50 Sectioned fruit slices were 

directly transferred and mounted onto the stainless-steel plate. Before applying colloidal 

graphite solution, the slices were dried under moderate vacuum (~50 Torr) at room 

temperature for half an hour. 

Long-chain fatty acid standards were prepared by dissolving stearic acid (C18, MW 

284.48), pentacosanoic acid (C25, MW 382.66), hexacosanoic acid (C26, MW 396.69), 

octacosanoic acid(C28, MW 424.74), and melissic acid (C30, MW 452.80) in chloroform to 

a final concentration of 200 pmole/µl each. For flavonoid standards, quercetin (MW 302.24), 

kaempferol (MW 286.23), phloretin (MW 274.27), and apigenin (MW 270.24) were 

dissolved individually in DMSO to give concentration of 5mg/ml of each; then the four 

standard solution were mixed and further diluted to a final concentration of 200 pmole/µl 
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each in water/acetonitrile/trifluoroacetic acid (49.95/49.95/0.1). Oligosaccharide standards 

were prepared by dissolving ribose (MW 150.13), glucose (MW 180.16), sucrose (MW 

342.30), N-acetyl-D-lactosamine (LacNAc) (MW 383.35), maltotriose (MW 504.44), and 

maltotetraose (MW 666.58) in water/acetonitrile/trifluoroacetic acid (49.95/49.95/0.1) to a 

final concentration of 100 ng/µl each. 20 mg/mL DHB solution in 70% methanol and 30% 

water (containing a 0.1% trifluoroacetic acid) was prepared. Commercial Agilent CHCA 

solution at 6 mg/ml in 36/56/8 methanol/acetonitrile/water was purchased and used directly. 

Four times dilution of colloidal graphite solution with 2-propanol was used for GALDI MS 

and IMS.  

For all mass spectrometric analysis and IMS, an LTQ linear ion trap mass 

spectrometer equipped with vMALDI source (Thermo Electron, Mountain View, CA) was 

used. The N2 laser (337 nm) is guided to the source by a fiber-optic cable and has a 

maximum output of 280 µJ/pulse (before entering the optical fiber cable). The measured 

laser spot size is ~100 µm in diameter on the sample plate surface. A more detailed 

description of the LTQ with vMALDI source has been reported elsewhere.46  

For conventional MALDI MS, 1 µL of DHB or CHCA matrix solution was applied 

onto the stainless-steel sample plate and let to dry in air, followed by 1 µL of sample solution 

on top of the matrix crystals. For GALDI MS of standards, 0.5 µL of diluted colloidal 

graphite solution was applied onto the stainless-steel sample plate by a micropipette and let 

to dry in air. Then 1 µL of standard solution was applied on top of the graphite spot. To 

obtain mass spectra from apple juice with GALDI, 1 µl of fresh apple juice was applied onto 

a dried (0.5 µl) graphite spot. For apple peels and fruit slices, diluted colloidal graphite 

solution was applied by a double-action airbrush (Aztek A470 with a 0.30 mm nozzle from 

Testor, Rockford, IL). The whole fruit slice was covered with colloidal graphite 

homogeneously by spraying with 20 psi air pressure and 15 cm away from the sample plate 
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for 30 s. Peak identification was made by comparing both mass and tandem mass spectra 

with those of standards. 

Optical images of fruit slices were taken inside the vMALDI source before IMS. 

Serial optical images were taken every 1 mm movement of the sample stage in either x- or y-

direction. Each segment of the images has a size of 140 pixels by 170 pixels. These segments 

of optical images were reconstructed as one optical image for one fruit slice. To collect mass 

spectra, the same sample plate was rastered with 100 µm steps. For each raster point, a mass 

spectrum was recorded for desorbed ions and integrated over 3-5 laser shots. In the cases of 

IMS/MS, target precursor ions (m/z 191 or m/z 301) were first selected based on the mass 

spectral profiles of strawberry. Then the first-generation product-ion spectra of the selected 

precursor ion were collected from all rastering points on the strawberry slice. More laser 

shots were required for MS2 experiments and so 9 laser shots were averaged for each raster 

point.  

Custom software “vMALDI data browser” (Version 1.0) was used to extract mass 

spectra from specific locations and generate chemically selective images. This software was 

provided by the instrument vendor (Thermo Electron, Mountain View, CA ). The mass 

window for generating images was 0.5 Da. Intensities of the selected ion were normalized by 

dividing the total ion current of each mass spectrum. Then, chemically selective images were 

plotted as 3-D maps with the 3rd dimension being the normalized intensity.  

 

Results and Discussion 

MALDI and GALDI MS of Standard Mixtures of Fatty Acids, Flavonoids and 

Oligosaccharides. Different classes of compounds were selected to compare the 

performance of conventional MALDI and GALDI. Long-chain fatty acids (C18-C30) were 

selected as one group of standards because of their important roles in many metabolic 
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pathways of living organisms.51 Fatty acids can be detected by GC-MS with proper 

derivatization such as esteritication to reduce the polarity and increase volatility.52 HPLC-ESI 

MS can detect native fatty acids in the negative-ion mode through deprotonization.53 

However, the basic pH condition which is required to produce such negative ions is not 

compatible with most reverse-phase C18 columns that typically require acidic mobile phases. 

To overcome this problem, judicious derivatization was needed.54 MALDI MS can eliminate 

the separation step but conventional MALDI matrixes do not work well for detection due to a 

high background and ion suppression in that mass region. This is underscored by the fact that 

none of the selected standard fatty acids were detected with DHB or CHCA in either 

positive-ion mode or negative-ion mode (data not shown). With GALDI, all five fatty acids 

(100 ng each) were detected as deprotonated peaks ([M – H]–), as shown in Figure 1. It is 

noteworthy that the background in the negative-ion mode of GALDI is very clean up to at 

least m/z 1000 without any pretreatment. In fact, there are only a few low number carbon 

cluster ions, such as C12
–-C14

–; and the intensity of such peaks are much lower than those for 

the analytes. GALDI is very sensitive to detect those fatty acids in negative ion mode. Fig. 2 

shows the spectrum of the fatty acid mixture with sample loading of 100fmole of each on a 

3mm-in-diameter spot. Such fatty acids can also be detected as potassium adduct ions ([M + 

K]+) in positive ion mode (data not shown), though the detection sensitivity (detection limit: 

50pmole/spot) is not as good as in negative ion mode . 

Another group of standards tested were natural phenolic molecules, the flavonoids. It 

was estimated that 2% of all carbon photosynthesized by plants is converted into flavonoids 

or related compounds.55 They have been reported to have antioxidant, antiatherosclerotic and 

anti-neurodegenerative properties, and are also known to be beneficial for the prevention of 

chronic diseases like cancer and heart diseases.56, 57 In the positive-ion mode, quercetin, 

kaempferol and apigenin were detected as [M + H]+ in both MALDI and GALDI 

experiments (Fig. 3a-c). [M + Na]+ and [M + 2Na-H]+
 ions for these three flavonoids can also 
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be detected with GALDI. Phloretin was not detected with any of the three matrixes. This 

suggests that the center ring in the other three flavonoids plays an important role for 

protonation. However, it was possible to detect phloretin with GALDI in the negative-ion 

mode (Fig. 3f). Several peaks in the region of m/z 150-200 in the spectra were identified as 

in-source-fragments for the flavonoids by using tandem MS. For example, m/z 167 was 

identified as a fragment of phloretin while m/z 151 and m/z 179 were fragments of quercetin. 

Unlike GALDI, which has a clean background, with DHB and CHCA, matrix peaks are 

predominant and none of the four flavonoid standards were detected in the negative-ion 

mode (Fig. 3d-e).With GALDI, negative ion mode provides better sensitivity for detection of 

those flavonoid standards than positive ion mode does, and the detection limit are 50 fmole 

and 200 fmole/3mm-in-diameter spot, respectively. 

The third group of standards selected were oligosaccharides. Due to the lack of acidic 

or basic groups, they are difficult to be ionized with conventional MALDI. DHB can be used 

to detect large oligosaccharides (> 1000 Da)58 but smaller oligosaccharides are strongly 

interfered with by matrix ions. We tested oligosaccharides between 150-700 Da with DHB 

(Fig. 4a), CHCA (Fig. 4b), and graphite matrixes (Fig. 5). With CHCA, only larger 

molecules like LacNAc, maltotriose and maltotetraose can be detected as [M + Na]+ but not 

the smaller ones such as ribose, glucose and sucrose. DHB works slightly better than CHCA 

in that the small oligosaccharides such as glucose and sucrose can be detected. However, the 

intensity of the small saccharide peaks was very low. For example [ribose + Na]+ and 

[glucose + Na]+ peaks are strongly suppressed as they are very close to matrix peaks [DHB + 

Na]+ and [DHB + 2Na – H]+ respectively. LacNAc has the highest detection sensitivity 

among all the oligosaccharides. This may suggest that the N-acetyl group has more affinity 

for sodium ions than the other moieties of oligosaccharides. In both the CHCA and DHB 

MALDI mass spectra (Fig. 4a-b), the matrix peaks were predominant and oligosaccharides 

peaks were strongly interfered with. With GALDI, all six oligosaccharides were detected as 
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[M + Na]+ with decent signal-to-noise ratios, as shown in Fig. 5. [M + Na -18]+ peaks were 

also observed for all five oligosaccharides as water loss (Fig. 5). Neutral loss (NL) of 60 are 

known to result from the major cross-ring cleavage fragments of oligosaccharides with 1,4 

linkages.59 Here, m/z 629 and m/z 467 were observed as such fragments of maltotetraose and 

maltotriose respectively. The peak at m/z 305 corresponds to the major fragment of LacNAc. 

All of the above fragments were verified by tandem MS (data not shown). All cross-ring 

cleavage fragments were marked with asterisks in Fig. 5. That the positive-ion mode of 

GALDI gave a noisier background compared to the negative-ion mode did not prevent the 

successful detection of small oligosaccharides. Small oligosaccharides such as hexose 

(glucose or fructose) and sucrose can also be detected as [M – H]– under the negative-ion 

mode peaks, vide infra. The detection sensitivity of oligosaccharides with GALDI under 

positive ion mode is better than with GALDI under negative ion mode. For instance, the 

detection limit of sucrose is 20pmole and 100pmole/3mm-in-diameter spot, respectively. 

This can be understood as oligosaccharides have neither carboxyl group as fatty acids, or 

aromatic rings as flavonoids which can stabilize the deprotonated phenol group. 

Direct Detection of Small Metabolite Molecules from Fruit Samples. Because of 

the sensitivity and background issues, GALDI in the positive-ion mode was used to detect 

oligosaccharides and the negative-ion mode was used to detect other metabolite molecules 

from fruit samples. Unlike experiments with the standards, colloidal graphite solution was 

applied on top of the sample, otherwise the graphite particles may not be accessed by laser 

irradiation. For imaging purposes, homogeneous coverage over the sample area is a must. 

The application methodology has been optimized for IMS of mouse brain tissues in our 

previous work38 and was used in this study without modification. 

A list of small molecules detected directly from apple and strawberry samples were 

summarized in Table I, with concentration data wherever available.60-65 All identifications 

were made by comparing the MS spectra with those of standards. MS/MS data were also 
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compared with those of standards except those at too low a concentration to give meaningful 

MS/MS data, as marked with asterisks. Tandem MS data is indispensable to identify isobaric 

ions, such as m/z 191, which were observed from both apple and strawberry. Tandem mass 

data of m/z 191 from apple and strawberry flesh are shown in Fig. 6. Notably, citric acid gave 

a predominant product ion at m/z 111 while quinic acid has specific product ions at m/z 85, 

93 and 127, as reported previously.66 By tandem MS it was confirmed that the peaks at m/z 

191 were from quinic acid in apple while such peak came from citric acid in strawberry.  

Fig. 7 shows typical mass spectra taken from different parts of the apple. Fruits in 

supermarkets were always coated with a thin layer of wax for preservation and for better 

appearance. Fatty acids are one major class of components of wax and many of those up to 

C28 fatty acids were detected from apple peel, as shown in Fig. 7a. Other compounds such as 

sugars or flavonoids were absent from the mass spectrum. The reason may be that such 

compounds were covered by the wax layer and were not accessible. Fatty acids may be 

naturally present on the apple peels as well; however, those cannot be discriminated from the 

species in the artificial wax layer.  

As shown in Fig. 7b, fresh apple juice gave malic acid, quinic acid, palmitic acid, and 

linolenic acid in the negative-ion mode. Hexose (glucose or fructose) and sucrose were 

detected as deprotonated ions as m/z 179 and m/z 341, respectively. Quercetin is one of the 

major flavonoids contained in apple and it was also detected. Fig. 7c shows the spectrum in 

the positive-ion mode. Sodium adduct ions of hexose and sucrose were detected, as well as 

potassium adduct ions. According to the USDA nutrient database, fruits usually contain 

much higher amounts of potassium than sodium (90 mg vs. 0 mg/100 g for apple and 292 mg 

vs. 37 mg/100 g for strawberry).64 

Fig. 7d is the representative spectrum taken from the apple core (endocarp). Here, 

organic acids such as malic acid and quinic acid were still observed, but the relative 

intensities were not as high as those from juice. On the other hand, higher amounts of 
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flavonoids such as phloretin and quercetin accumulated in the endocarp region. Apple peel 

also contains a lot of flavonoids and quercetin was the predominant one found on the inside 

of apple peel (data not shown).  

Fig. 8a and 8b are representative mass spectra taken from strawberry. As reported 

previously with IR-MALDI,49 strawberry contains a lot of citric acid. In our study, citric acid 

(m/z 191) was always the most intense peak in the negative-ion mode. GALDI can also detect 

those compounds which were too low in concentration to be detected by IR-MALDI, such as 

ascorbic acid and ellagic acid. Quercetin and kaempferol was also detected in the red part of 

strawberry (more details in IMS data below). Other deprotonated ions include palmitic acid, 

oleic acid, apigenin, hexose, and sucrose, as marked in Fig. 8a. Similar to the previous 

report,49 citric acid and sucrose were barely detected in the seed region, as shown in Fig. 8b. 

Instead, C16 and unsaturated C18 fatty acids were the major components.  

IMS of Metabolites from Apple and Strawberry. IMS in the negative-ion mode 

was performed to show the detailed distributions of different metabolite molecules on apple 

and strawberry slices, as Fig. 9 and Fig. 10 respectively. Small molecules such as malic acid, 

quinic acid, and sucrose distributed relatively evenly over the apple flesh part, as shown in 

Fig. 9b, c, and e. Long-chain fatty acid such as linoleic acid was detected all over the slice 

but more accumulated along the core line and bundles, as shown in Fig. 9d. Flavonoids also 

accumulated more in the core region but not in the flesh, as shown in Fig. 9f-i. Unlike 

linoleic acid, they seem to be only enriched in the bundles (both sepal and pedal), but not 

along the core line. Another interesting feature is that flavonoids were found in the ventral 

carpellary bundle (center of the apple slice) except for quercetin. 

The images shown in Fig. 10 were scanned from a pie-shaped strawberry slice, with 

the red skin on the right-hand side and one seed in the middle-right part. Citric acid, apigenin, 

hexose and sucrose were distributed all over the flesh, while fatty acids such as linolenic and 

linoleic acids accumulated on the seed. The peak at m/z 301.2 was detected all over the 
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strawberry with a relatively constant concentration in the flesh, but showed higher local 

intensity on the outside (red part) and the seed areas. The candidates were quercetin (MW 

302.24) and ellagic acid (MW 302.20) and the two species could be distinguished in tandem 

MS. Fig. 11a and 6b show the MS/MS spectra of ellagic acid and quercetin standards. m/z 

151 and m/z 179 were specific fragments of quercetin due to the cleavage of the center ring, 

as reported previously;56, 67 while ellagic acid is more rigid and only small fragments such as 

NL 28 and NL 44 were observed. MS/MS product ion spectra from strawberry flesh were 

similar to those from ellagic acid (Fig. 11c), while those at m/z 301.2 on the edge gave 

quercetin-like fragments (Fig. 11d). The chemically selective ion image at m/z 179 with 

precursor ions at m/z 301.2 is shown in Fig. 11e. The ambiguity in Fig. 10i is thus resolved.  

Similarly, both citric acid (MW 192.13) and quinic acid (MW 192.17) were detected 

as m/z 191 with GALDI in the negative-ion mode. IMS/MS (data not shown) with precursor 

ions at m/z 191.2 showed that product ions at m/z 111.3 were detected all over the strawberry 

slice, while no specific fragments of quinic acid (m/z 85 or m/z 93) were observed. This 

suggests that all m/z 191 ions from strawberry were from citric acid (Fig. 10c).  
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Table I. List of compounds detected directly from apple and strawberry and their average 

concentrations from the literature. All species have been checked by m/z against standards, 

and all but those with marked with asterisks have been checked by tandem MS.  

 Apple Strawberry 

m/z Peaks assigned Concentrations 
g/Kg 

m/z Peaks assigned Concentrations 
g/Kg 

Organic  
acids 

 

 

133 [M-H]– Malic Acid 4.9 *10-3 60 175 [M-H]– Ascorbic Acid* 0.59 

191 [M-H]– Quinic Acid 0.76 *10-3 60 191 [M-H]– Citric Acid 6.9-12.6 62 

255 [M-H]– Palmitic Acid 0.24 255 [M-H]– Palmitic Acid 0.12 

277 [M-H]– Linolenic Acid 0.09 277 [M-H]– Linolenic Acid 0.65 

279 [M-H]– Linoleic Acid 0.43 279 [M-H]– Linoleic Acid 0.90 

281 [M-H]– Oleic Acid 0.07 281 [M-H]– Oleic Acid 0.42 

Phenolics 

 

 

273 [M-H]– Phloretin 4.7 *10-3 60 269 [M-H]– Apigenin 0.00-0.01 

289 [M-H]– Epicatechin 47.1 *10-3 285 [M-H]– Kaempferol 4.6 *10-3 

301 [M-H]– Quercetin 45.7 *10-3 301 [M-H]– Ellagic Acid 0.06-0.5 63 

435 [M-H]– Phloridzin* 55.9 *10-3 61 301 [M-H]– Quercetin 11.4 *10-3 

447 [M-H]– Quercetin  
Glucosides* 

0.13 61 431 [M-H]– Apigenin  
Glucosides* 

 

Oligo- 
saccharides 

179 [M-H]– 

203 [M+Na]+ 

219 [M+K]+ 

Glucose/ 
Fructose* 

83.3 179 [M-H]– 

203 [M+Na]+ 
219 [M+K]+ 

Glucose/ 
Fructose* 

44.3 

 

341 [M-H]– 

365 [M+Na]+ 

381 [M+K]+ 

Sucrose 20.7 341 [M-H]– 

365 [M+Na]+ 
381 [M+K]+ 

Sucrose 

 

4.7 

Except noted, all other concentration data come from (1) See the USDA National Nutrient 

Database at http://www.nal.usda.gov/fnic/foodcomp/search/, and (2) See the USDA National 

Nutrient Database at http://www.nal.usda.gov/fnic/foodcomp/Data/Flav/flav.pdf 
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Figure Captions 

Figure 1.   Mass spectrum of fatty acid standards (C18-C30 fatty acids) with GALDI in 

the negative-ion mode. Sample loading: 200 pmole of each. 

 

Figure 2.   Mass spectrum and detection limit of fatty acid standards (C18-C30 fatty 

acids) with GALDI in the negative-ion mode. Sample loading: 100 fmole of 

each.  

Figure 3.  Comparison of MALDI and GALDI spectra of flavonoid standards: quercetin 

(MW 302.24), kaempferol (MW 286.23), phloretin (MW 274.27) and 

apigenin (MW 270.24); Sample loading: 200 pmole of each. Apigenin, 

kaempferol and quercetin were observed as [M + H]+ with DHB (a) and 

CHCA (b) in the positive ion mode. With GALDI in the positive-ion mode (c), 

apigenin, kaempferol and quercetin are detected as [M + H] + (m/z 271, m/z 

286, and m/z 303, respectively), [M+Na] + (m/z 293, m/z 309, and m/z 325, 

respectively), and [M + 2Na - H] + (m/z 315, m/z 331, and m/z 347, 

respectively). Phloretin was not observed either. None of the four flavonoids 

can be detected with DHB (d) or CHCA (e) in the negative ion mode; 

However, all the four flavonoids are detected as [M - H]- ions with GALDI in 

the negative-ion mode (f). Fragment from phloretin (m/z 167) and fragments 

from quercetin (m/z 151 and m/z 179) are observed in the lower mass range as 

well.   

Figure 4.   Mass spectrum of oligosaccharide standards with DHB (a) and CHCA (b) in 

the positive-ion mode. Sample loading: 100 ng of each. 

 



175 
 

Figure 5.  Mass spectrum of oligosaccharide standards with GALDI in the positive-ion 

mode. Sample loading: 100 ng of each. Peaks with ●: water loss fragments; 

peaks with *: major ring-cleavage fragments. 

 

Figure 6.  Product ion spectra of m/z 191 from (a) quinic acid standard; (b) apple flesh; 

(c) citric acid standard; and (d) strawberry flesh. All spectra were collected in 

the negative-ion mode. 

 

Figure 7.  Representative GALDI-MS spectra from different parts of apple. (a) fatty 

acids composition on the outside of apple peel, negative-ion mode; (b) fresh 

apple juice, negative-ion mode; (c) hexose and sucrose from fresh apple juice, 

positive-ion mode; and (d) apple core, negative-ion mode. See Table I for 

peak identification in (b) and (d). 

  

Figure 8.  Representative GALDI-MS spectra (negative-ion mode) from strawberry (a) 

flesh; and (b) seed. 

 

Figure 9.  Chemically selective images of major ionic species identified from apple 

endocarp region with GALDI in the negative-ion mode. (a) optical image 

taken with reversed color; (b) malic acid; (c) quinic acid; (d) linoleic acid; (e) 

sucrose; (f) phloretin; (g). epicatechin; (h) quercetin; and (i) phloridzin. All 

peak intensities were normalized by dividing by the total ion current (TIC) of 

each spectrum. 

 

Figure 10.  Chemically selective images of the major ionic species identified from 

strawberry with GALDI in the negative-ion mode. (a) optical image taken 
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with reversed color. One seed was present as the darkest dot on the right-hand 

side; (b) ascorbic acid; (c) citric acid; (d) linoleic acid; (e) hexose; (f) sucrose; 

(g) apigenin; (h) kaempferol; and (i) m/z 301-301.5 ellagic acid + quercetin. 

All peak intensities were normalized by dividing by the total ion current of 

each spectrum. 

 

Figure 11.  Product ion spectra of m/z 301 from (a) ellagic acid standard; (b) strawberry 

flesh; (c) quercetin standard; (d) edge of strawberry; and (e) chemically 

selective image for product ion at m/z 179 (precursor ion m/z 301) of 

strawberry slice with GALDI. All spectra were collected in the negative-ion 

mode. The proposed fragment pathways are shown as inserts.67 
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APPENDIX 3. SUPPORTING INFORMATION FOR CHAPTER 3 

 

Sangwon Cha, Hui Zhang, Hilal I. Ilarslan, Eve Syrkin Wurtele, Libuse Brachova, 

Basil J. Nikolau and Edward S. Yeung 

 

 

 

 

Enhancing Spatial Resolution in Mass Spectral Imaging by ‘Oversampling’ 

Because 100 µm or 150 µm step size was too big to distinguish flower components—

carpels, petals, sepals and so on—and to recognize the boundaries of the flower components, 

50 µm spacing was used for flower scanning. Scanning with a spacing which is smaller than 

laser spot size is called oversampling. This oversampling can enhance the spatial resolution 

of the chemical selective image without optical adjustments if complete ablation occurs in 

each scanning spot (Jurchen et al., 2005). If complete ablation is not achieved, oversampling 

just increases the number of pixels of the processed image but could not provide real 

spatially-resolved chemical distribution information. The number of laser shots needed for 

complete ablation was investigated experimentally by counting to when mass spectrum 

started showing no or negligible signal. However, as Jurchen and coworkers pointed out 

(Jurchen et al., 2005), the qualities of mass spectra collected near complete ablation point 

were poor and this leads to poor sensitivities if all mass spectra collected at one point were 

averaged. 

To overcome this issue, ‘selective spectra averaging’ method with complete ablation 

for one scanning point and ‘whole spectra averaging’ method without complete ablation for 

one scanning point were performed. In selective spectra averaging, a series of mass spectra 

were collected for the small area (9-16 rastering points on the sample) at one x, y coordinate 
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on the sample with a fixed number of laser shots per mass spectrum (10 laser shots in this 

case) until no signal or negligible signal was observed. With an averaged number of 

microscans (one microscan corresponds to getting one mass spectrum from the sample) until 

complete ablation, data were collected over the sample surface. Intensity information with x, 

y-coordinates for interesting m/z ranges were extracted by using the custom software from 

Thermo (vMALDI Data Extract). This data were then separated to individual microscan 

spectra. Under our experimental condition, 7 to 8 microscans were needed to achieve 

complete ablation in most cases. For Arabidopsis flowers, averaged intensity values from the 

first three to five microscans were used to generate chemically-selective images of flavonoids 

and less than three microscans were averaged for the other classes of compounds. Images 

from selective spectra averaging were generated by using in-house written Matlab 

(Mathworks, Natick, MA, USA) program. 

By using these two methods, there was no significant difference in terms of qualities 

of chemical images for flavonoids but the two methods have advantages and disadvantages 

over each other. Because of the need for complete ablation of graphite materials, ‘selective 

spectra averaging’ method usually requires 1.3 to 2 times longer collection time compared to 

‘whole spectra averaging’ method. ‘Whole spectra averaging’ method can reduce the data 

collection time but there is a possibility of resulting in poor image quality if the sample 

contains many different surface properties that can lead to different ion yields, or if 

interesting molecules have very different ionization characteristics or different abundances. 

These possible problems can be resolved in ‘selective spectra averaging’ method by varying 

number of microscans to be averaged according to different ion species. For example, the ion 

species at m/z 717 on stigma depleted much quicker than flavonoid species. Therefore, if the 

number of microscans averaged for ions at m/z 717 are the same as the number of those for 

flavonoid species, chemical distribution information of m/z 717 becomes indistinguishable 

from the background. Figure S2 shows chemically-selective images from Arabidopsis 
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thaliana flower by using ‘selective spectra averaging’ method. When comparing chemically 

selective images for ions at m/z 717 (Figure 7 and Figure S2), it is obvious that clearer 

background was generated by selective spectra averaging method. 

 

Jurchen, J.C., Rubakhin, S.S. and Sweedler, J.V. (2005) MALDI-MS Imaging of Features 

Smaller than the Size of the Laser Beam. Journal of the American Society for Mass 

Spectrometry, 16, 1654-1659. 
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Figure Captions 

Figure S-1. Chemically selective images of ions at m/z 194, 210, and 226 and GALDI 

mass spectrum of chloroform-dipped area. The mass spectrum was averaged 

from 10 scanning points.  

 

Figure S-2. Chemically-selective images of Arabidopsis flowers. Data were collected by 

‘selective averaging’ method described in experimental procedure section. 

The step size for data collection was set to 50 µm for both x and y directions. 

Dimension of the images is 4700 µm high × 6700 µm wide. Chemical 

compositions of corresponding m/z values were listed in Table 1. All images 

were processed with absolute intensity values except the three mass images 

for m/z 421, 451, and 978, which were processed with normalized intensities. 

The maximum intensity value is listed under each image. For the image of 

ions at m/z 717, the first two microscans were averaged for image presentation. 

For the rest of the images, the first five microscans were averaged.  
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