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ABSTRACT

Robotic workspace optimization is a central element of robot
system design. To formulate the optimization problem, the complex
relationships between design variables, tuning parameters, and
performance indices need to be accurately and efficiently
represented. The nature of the relationships suggests that
metamodels, or models of the models, should be used to derive
suitable objective functions. A comparis on of two metamodeling
techniques for robotic workspace optimization problems for several
trial cases suggests that non-uniform rational B-spline models,
derived from computer graphics and computer-aided design
techniques, are as suitable as response surface models to solve
planar 3R workspace optimization problems. Promising nonlinear
modeling results with B-spline models suggest future work is
justified and performance gains can be realized.

INTRODUCTION

During the process of design, engineers are ultimately
confronted with the challenge of determining how to modify
design variables in order to achieve or exceed desired
performance criteria. For simple systems, or for experienced
engineers, an Edisonian, or experiential approach to design is
often used in lieu of a formal design methodology. However,
this approach may fail if the engineer lacks sufficient
experience to be able to make appropriate decisions, or if the
complexity of the system exceeds the experience of the
engineer. This limitation is common for many design problems
of current interest where high performance and limited design
experience exists. In such problems, the number of
performance criteria, typically highly non-linear functions
(perhaps unknown in closed form) of a large number of design
variables, that must be considered simultaneously far exceeds
the number that a human engineer can comfortably
contemplate.

While the complexity of many current design problems
surpasses the experience and capacity of many engineers, the

development of complimentary computational capabilities that
can be applied to the benefit of the designer seems to be ever
more feasible. Very sophisticated, commercially available
software systems are used to predict the performance of
proposed designs. Computers are able to process far more data,
at a far greater speed than any engineer can, but adequate tools
to combine the predictions of multiple performance simulations
for informed decisions making are unavailable or problematic.
This data, often from disparate sources, must be combined into
a single coordinated representation for effective analysis and
visualization. This is accomplished through a family of
techniques known as metamodeling. Metamodeling uses
experiments and models as the basis for a higher-level model of
models, known as a metamodel.

The most popular metamodeling technique, Response
Surface Models (RSM) uses quadratic approximations [14] and
is difficult to implement for more than 10 variables. [13,26]
Real problems are often inadequately modeled with quadratic
representations and have many more than 10 variables (dozens
or hundreds are common). For complex, nonlinear problems,
these limitations can lead to ineffective metamodels.

Metamodels based on spline theory, B-Spline Models
(BSM) may be able to overcome these limitations. The focus
of this work is a preliminary study of the performance of BSMs
compared to RSMs. For this study, a robotic workspace design
problem was selected. This design problem can be formulated
with a limited number of design variables, making it
computational tractable for a preliminary study, and yet this
system can exhibit highly nonlinear behaviors.

Robotic system design is inherently concerned with the
definition of robot workspaces. All robotic workspaces are
subsets of the Reachable Workspace of a robot, or the set of
points that the robot can reach with its tooling. An
appropriately designed robot will ensure that the task manifold
is contained within the reachable workspace [18]. General-
purpose robot designs maximize the reachable workspace with
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respect to geometric constraints that describe the robot’s
operating region while maintaining a dexterous workspace [29].
This is the basis for workspace optimization.

While most robots are spatial mechanisms, planar 3R
mechanisms, such as that shown in Figure 1, (comprised of
three rotary joints operating in a plane) are an important group
of mechanisms that can be used to represent the limbs of many
biological and mechanical mechanisms [8]. Despite their
significance, previous research has addressed few of the
kinematic serial planar manipulator workspace optimization
issues [3].

AY

Figure 1. 3R Serial Planar Configuration and reachable
workspace (in red) used to compare RSM and BSM
performance.

Like many complex design problems, analytical tools
supporting workspace optimization are limited [20]. Due to the
introduction of trigonometric functions to describe the position
of the rotary joints, the resulting systems models exhibit
nonlinear behaviors. Therefore, the use of a metamodel, or a
simplified model of the original model can be used to identify
optimal solutions for complex problems [30]. Metamodels are
commonly used in nonlinear, complex, and multidisciplinary
optimization problems. A simplified computationally beneficial
metamodel is derived for the optimization problem objective
function.

Two metamodeling approaches are compared in this paper.
Response Surface Models (RSMs) are based on polynomials
derived from Design of Experiments Methodologies. A second
approach uses Non-Uniform Rational BSplines (NURBs), a
general piecewise polynomial representation derived from
spline theory and employed in computer graphics, to produce a
B-Spline Model (BSM).

The remainder of this paper reviews metamodeling
literature and develops a set of metamodel criteria to compare

the suitability of these two techniques as solutions to planar 3R
workspace optimization problems. Using successively more
complex formulations and metamodel selection criteria,
metamodel performance estimates support the conclusion that
BSMs are promising and at least as suitable as RSMs to solve
planar 3R workspace optimization problems. Supporting
software, and further work is needed.

1. METAMODELING

Metamodels are generally employed in three cases. The
first case is when accurate analytical models are not available
and a metamodel must be derived from experimental data. The
second case is when analytical models are available, but require
more computational effort to use than is feasible. The third
case combines multiple analytical and/or experimental models
into a single metamodel often for multidisciplinary
optimization (MDO) efforts. The relationship between the
actual system, direct models and metamodels is shown in
Figure 2.
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Figure 2. System, Model and Metamodel Relationships.

The most common form of a metamodel uses Design of
Experiments techniques to formulate an RSM, which is an
implicit polynomial representation of the relationship between
design variables and performance indices [27]. This approach
can be contrasted with the BSM parametric polynomial form.

1.1. RESPONSE SURFACE MODELS

RSMs use an implicit polynomial formulation, denoted as
P(x,y) in R? space, where x and y are design variables, and P is
a performance index. The polynomials used in RSMs typically
are either linear or quadratic polynomials [26,27,30]. Equation
1 shows the form of a single variable RSM, while Equation 2
shows the form of a dual variable RSM [27].
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Where P represents the coefficients of each term, and n
defines the order of the polynomials used to define the RSM
[27]. RSMs can be used to model curves in R’ space as well as
surfaces in R™? space. These formulations may be extended to
cases with additional variables, although ten variables are
generally considered the practical limit [13,26]. RSMs are
usually derived as linear models, which are replaced with
quadratic models at the end of the application for model
confirmation [14]. This RSM formulation is generalized in
Equation 3.

P(DV): {B}{NP (Dv )}T ©)

Where {N(D,)} is a vector of the terms resulting from a
power series expansion of the design variables, D, that serves
as the basis for the RSM. The RSM is “fit” to the data using
single or multivariate least-squares regression techniques [4].
As a result, RSMs can provide predictive capabilities [14]. The
RSM properties are determined by its implicit form and by the
techniques used to “fit” the model to the available data, so
implicit form properties are discussed next.

1.2. IMPLICIT REPRESENTATIONS

Implicit geometric representations are well known, and are
often the first surface representation introduced to students.
The point set satisfying Equation 4 defines an implicit curve,
while the point set satisfying Equation 5 defines an implicit
surface [5].

fx,y)=0 @)
fxy,2)=0 Q)

Implicit forms have certain advantages. They are unique
formulations with respect to a multiplicative constant [22].
Implicit representations readily represent unbounded curves
and surfaces, and provide easy determination of the
membership of a point in the point set defining an object [22].
Implicit surfaces can be readily extended to R spaces by
increasing the dimensionality of the independent variables.
From the perspective of an analyst, the coefficients of an RSM
provide considerable information about the relative significance
of D,’s within the RSM.

However, implicit forms also have disadvantages. They are
dependent upon the choice of coordinate system, which may
lead to numerical instabilities in their evaluation and difficulties
in their use, affecting their ability to match segmented RSMs at
their boundaries [24]. Furthermore, implicit objects are more
difficult to evaluate at equal intervals over the representation,
an important step for meshing and data visualization [24].
Implicit formulations include planar and spatial curves, as well
as hyperdimensional surfaces.

The polynomial representations produced from implicit
RSMs have been successfully used as the basis for defining the
objective function for multiple optimization algorithms [14],
including gradient [19], simulated annealing [31], and genetic
algorithm type methods [32]. Derivatives of polynomials are
easily calculated for gradient methods.

Difficulties with implicit representations have led to a
significant body of work surrounding parametric
representations for computer graphics and computer-aided
design.

1.3. PARAMETRIC REPRESENTATIONS

Parametric representations use explicit relationships
between the coordinate system and one or more independent
parameters. A parametric curve is described with a single
independent parameter, while a parametric surface utilizes two
independent parameters. Higher order parametric objects can
be constructed with additional parameters. The resulting object
is described by a vector valued function such as P(u,v) shown
in Equation 6 for a surface in R space [24].

fx(u,v), y(u,v), z(u,v)) = P(u,v)

6
fora<u,v<b ©

Compared with implicit representations, parametric
formulations have advantages. Low order parametric
formulations are readily extensible to higher order spaces, and
higher order object representations can be derived. The
parameterization of these objects makes the form of the object
coordinate system independent [22]. Parameter bounds make
these representations ideal for the modeling and segment
blending [22]. The role of the parameter makes these forms
more useful for interpolation than for prediction [14].
Parametric forms are amenable to generating uniform meshes,
enabling easy computer representations [22].

Unlike implicit forms, parametric forms do not have
unique solutions [22]. Parametric objects generally require the
storage of more information than an implicit representation’s
polynomial coefficients, and the coefficients of a parametric
representation do not necessarily convey the same information
about the relative importance of individual terms, as is the case
with implicit formulations. Parametric formulations also can
generate incorrect features, such as loops and folds in the
representation [22].

It is often possible to convert implicit representations into
parametric forms, and vice versa [16]. Before rendering,
implicit representations are often converted to a generalized
type of parametric representation, known as a Non Uniform
Rational B-Splines or NURBs. NURBs are the de facto
standard for geometric descriptions in computer graphics and
computer-aided design applications [22].

A polynomial can be represented as a NURB, and so, given
a NURB, an appropriate polynomial expression can be derived.
NURB derivatives are also explicitly defined [22,23,24].
Therefore, as equivalent polynomial representations, NURBs
also can be used as the basis for many optimization algorithms.
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1.4. B-SPLINE MODELS
The BSMs developed for this work are based on NURBsS,
which are defined for a curve by Equation 7 [24].

Y BwN,, (u)
P(u) =+

Y WN, )

Where {B} is a vector defining the location of the defining
nc control points in R*' space, w defines the weight of a
particular control point, and Njx(u) is the B-spline basis
function in terms of the parameter u, as defined by Equations 8
and 9 [24].

fora<u<b @)

u-—2Xx.
Nyw)=|——— N, (u)+
KXisk—t =%
3)
X, —U
- g (1)
Xivk —Xin

1 if x, <u<x,

N, (u) ={ ©)

0 otherwise

Where {x} is the knot vector, a sequence of values
defining the region of control point influence within the NURB.
Equations 8 and 9 are subject to the conditions given by

Equation 10 [24].
0/ —
A =0
n+l1

ZNi,k (u)=1 ¥kandu, and
i=1 (10)

1 if x, <u<x,
ifx,u,] =1’ N[- l(u) — i . i+l
’ 0 otherwise

Higher order objects, such as surfaces, are produced with a
tensor product, resulting in a grid of control points, and the
multiplication of Equation 7 by additional basis functions
associated with the additional parameters. Control points,
associated weights, and one or more parameters and knot
vectors define a NURB. Each of these parameters lends
additional flexibility to NURBs, producing a universal curve
definition [10].

The BSMs used for this comparison have all weights set to
1, a typical approach [22,24], and utilize spline-fitting
techniques developed by Legault [17] and Turner [28] that
iteratively reduce the maximum error in a spline model. This
approach to fitting BSMs to data is distinctly different from
traditional BSM metamodel approaches that match control
points to data points in a one-to-one relationship [27].

The increased complexity of BSMs is a disadvantage,
requiring the storage of control points locations and knot
vectors, and because the additional flexibility of NURBs results

in an under constrained system of equations that can result in
poor results [21]. A literature review found few references on
BSM representations, apparently due to the difficulties in BSM
implementation [1,2,27]. Most work was conducted in the early
to mid 1990s and no references specific to BSMs using NURBs
were found.

Potential BSM advantages are recognized. Practical studies
have indicated that in complex, nonlinear, multidisciplinary
design environment, additional metamodel flexibility is
beneficial [25]. In particular, NURBs have been found to be
numerically robust, capable of accurately representing many
geometric forms, and have a broad set of supporting algorithms
[21]. Like a polynomial, the BSM order determines its
computational complexity. BSMs also benefit from the use of
specialized graphics acceleration hardware for rapid NURBs
computation [10]. BSMs also allow for local data changes
without requiring global model recalculations [22].

1.5. METAMODELING CRITERIA

Three features distinguish RSMs and BSMs. BSMs use
low order polynomials valid over small regions of a global data
set, while the RSM polynomials are global. BSMs use B-spline
basis functions, while RSMs use power basis functions. Finally,
BSMs define their shape with control points while RSMs use
their polynomial coefficients.

In order to compare the suitability of these two
metamodeling techniques, a set of criteria are needed.
Optimization algorithms did not provide suitable criteria, as
both techniques can be used by a variety of optimization
algorithms. The central issue between RSMs and BSMs in
optimization is the model accuracy and computational
complexity. In essence, how good is the model?

Hussein, et al, [12] recently proposed a set of eight criteria
to select appropriate metamodels. Two of these criteria are
concerned with data acquisition issues, which is beyond the
scope of this work. The remaining six criteria: 1)
Computational Complexity, 2) Model Accuracy, 3) Model
Visualization, 4) Model Flexibility, 5) Stability with respect to
New Data, and 6) Commercial Software Availability were
adopted to compare RSMs and BSMs [12].

The first two criteria are concerned with the model’s
computational complexity and accuracy. A model that does not
produce accurate results, or that requires excessive resources to
calculate is a poor metamodel [12,25]. The third criterion is
concerned with the subsequent ability to visualize the model
and thus, provide insight to the analyst.

Criterion 4, model flexibility is mportant for optimization.
The chief challenge when using metamodels for optimization is
achieving a suitably accurate and smooth representation of an
arbitrary data set [12].

The fifth criterion is considered when the metamodel is
provided with new data and must incorporate this new
information [12]. The sixth criterion is commercial software
availability. While this criterion is biased towards popular,
traditional and existing techniques, it is a reasonable basis to
judge metamodels in a non-research setting [12].
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2. ROBOTIC WORKSPACE OPTIMIZATION

Little work has been conducted on 3R serial planar
mechanism kinematic optimization [3], and most focuses on
dynamic properties. A few kinematic criteria have been
considered including reachable workspace volume (RWVC),
Jacobian condition number (JCNC), and joint range availability
(JRAC) [6,8,29].

Of these criteria, both RWVC and JRAC have closed form
expressions. JRAC and the JCNC are local criteria, and thus are
functions of the manipulator joint angles, while RWVC is a
global property of the manipulator. Since RWVC is a
fundamental robot design element, it is used extensively in
section 4. JCNC was also selected due to more interesting
criterion properties. Both criteria are functions of the link
lengths.

JCNC is a particularly valuable and challenging criterion,
derived from the Jacobian matrix of a manipulator [11]. JCNC
measures the proximity of a manipulator to singularities [15].
As a robot approaches a singularity, its controllability is
reduced [15], the manipulator’s ability to exert or react forces is
altered [33], and the dexterity of the robot is limited [11].
Further, JCNC is related to JRAC [15]. Several JCNC
forms have been proposed and used [15]. A condition number
based on the infinity norm of the Jacobian matrix is used in
section 4.

Metamodel results used to represent RWVC and JCNC for
the robotic system described in section 3 are shown in section
4. Closed form expressions for JCNC gradients are not
available, complicating optimization with JCNC and requiring
metamodels [15].

2.1. PROBLEM DESCRIPTION

The 3R serial planar robot configuration used for this work
was previously shown in Figure 1. The position of the end
effector, as a function of the joint angles can be derived from
the system geometry. This model can be differentiated with
respect to the joint angles to define the Jacobian matrix, a
standard element in the formulation of most robotic system
models. The system model is subject to the assumptions
described by Equations 11 and 12.

p/| <% fori=123 an
and €3 =0.1 (12)

Equation 11 reduces the effect of singularities on the
system. Two singular cases remain, when 6,=0, and a boundary
singularity condition due to the reachable workspace boundary.
Both cases are denoted by the inability of the manipulator to
simultaneously specify x, y, and ¢ [7]. Equation 12 also was
applied to set minimum link lengths for links 1 and 2.

The metamodel goal is to reveal and define relationships
between design variables, D,, tuning parameters, T,, and
performance indices, B. These variables comprise the system
design space shown in Figure 3. Metamodels are used to define
functional relationships in the form of Equation 13.

p=f({p, 1.} (13)

Based on the system shown in Figure 1, and the
assumptions made in section 3.1, the system design variables,
tuning parameters, and performance indices are defined in
Table 1. Additional terms such as those for dynamic
characteristics also exist, but were not considered. The
variables used to compare metamodels are shown in Table 1 in
red.

Table 1. 3R Serial Planar Manipulator Design Space Axes.

DV: |_1,|2,|3, B, Xpases Ybase, T, T2, T3, ...

Tp: | 61,62, 63, @, @, @, 04, O, O3, ...

Pi: [ RWVC, JCNC, JRAC, Payload, ...

These variables define five trial cases, two of which are
P;’s that are functions of a single active variable (2D cases), and
three of which are P;’s that are functions of two active variables
(3D cases). The remaining terms were artificially held constant.
Sections 3.2 and 3.3 describe these cases.

hPl

Figure 3. The Design Space.

2.2. 2D FORMULATIONS

Two cases were examined where a performance index was
written as a function of a single design variable, resulting in a
2D metamodel. The first case defines the lengths of link 1 and 2
as a function of a single parameter, [, according to Equations
14 and 15. The objective is to maximize the reachable
workspace for a unit manipulator length. This can be
considered to be a normalized, nondimensional length design
problem.

¢,=0.1+0.78 (14)
0,=0.1+0.70-B) (15)

The performance index of interest is the RWVC, a global
criterion that is a function of the link lengths, or in this case, a

function of solely .
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The second case considers the JCNC for a fixed set of link
lengths (0.5,0.4,0.1). To simplify this problem to 2D, the link
lengths were fixed, and the tool orientation was set at ¢=30° by
fixing 6,=30°, and 6;=-03. As a result JCNC is a function of
only 0.

As a local criterion, the objective of JCNC is to minimize
the JCNC value throughout the reachable workspace. To be
compatible with RWVC, the P, is defined as the negative sum
of the 2norm over the reachable workspace space volume,
shown in Equation 16.

P= —\/ (RN (16)

2.3. 3D FORMULATIONS

Three cases were examined where the P is a function of
two active variables. The first case is an extension of the initial
2D case where the requirement for a manipulator of unit length
has been removed. This is a dimensioned manipulator design
problem. Thus, the RWVC is now a function of the link lengths
1 and 2.

A more complicated case occurs if the size of a
manipulator is constrained by a geometric boundary. While the
initial 2D case addresses the design problem associated with a
no collision condition, allowing for collisions with the
boundary may enhance the overall manipulator workspace
volume. This case calculates the ratio of the reachable
workspace to the potential workspace volume within a 2-unit
square centered on the robot base.

The third 3D case considered is for the JCNC where the
link lengths remained fixed at (0.5,0.4,0.1) and 6,=30°. Without
a condition on, ¢, JCNC becomes a function of 6; and 03.

2.4. IMPLEMENTATION

Data for these trials was obtained via simulations created
within the program MathCad™ for a 900MHz PC computer.
All subsequent calculations to derive and evaluate RSMs and
BSMs were performed within this same environment.
Algorithms defining RSMs available within MathCad™ were
used for RSM generation, while algorithms defined by Legault
[17] and Turner [28] where simulated within this environment.
No dedicated supporting software algorithms were created due
to time constraints imposed upon this research. The preliminary
use of these algorithms via MathCad™ allowed for preliminary
results to be obtained without the development of optimized
supporting programs. This limited the size of the problems that
could be solved to levels that are far less than those solved with
dedicated software by both Legault [17] and Turner [28].

3. MODEL COMPARISONS

Using the five cases presented in sections 3.2 and 3.3, and
the criteria from section 2.5, RSM and BSM metamodels for
each case were derived and their accuracy was compared. Since
RSMs are typically limited to quadratic models [14], quadratic
RSMs are used as the basis for comparison with quadratic
BSMs. Thus the metamodels generally have equivalent
computational complexities.

3.1. 2D RSM VERSUS SPLINE MODELS

The first 2D case fits RSM and BSM metamodels to data
representing the RWVC versus the link ratio, B. The data is
well fit by both the RSM and BSM metamodels, with
comparable errors, and correlations exceeding 99% as
calculated from Pearson’s correlation coefficient [4]. Figure 4
shows the model results. The 2-segment BSM accuracy in this
trial is equivalent to the quadratic RSM used.

1.6

o

Reachable Workspace, wmis’

0 .15 0.5 0.7% 1
Link Ratio Parameter, beta

D00 Expenmental Data

===- (uadratic R5M

= {madratic {2-Segment) B5M

Figure 4. Case 1: Metamodel Accuracy.

The case 2 data is considerably more complex and
nonlinear. A quadratic RSM results in a poor fit, with large
errors and a correlation of <50%. A 5-segment quadratic BSM
produces a model with smaller errors and a correlation of more
than 90%. Results are shown in Figure 5.

Condibion Mumber

1] 0.2 0.4 0.6 08 |
MNommalized Theta | Axis

Q00 Onginal Data

===+ madratic E5M

= Cuadratic { 5-Segment) B3M

Figure 5. Case 2: Metamodel Accuracy.
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3.2. 3D RSM VERSUS SPLINE MODELS

The third case is a 3D metamodel, where RWVC is a
function of link length 1 and 2. Both the RSM and BSM models
fit the resulting data with very little error and more than a 99%
correlation. Notably, while the BSM is quadratic along one
axis, it is linear along the second axis. The metamodel
performance is comparable, but the BSM actually has slightly
less computational complexity. Results are shown in Figure 6.

Data

RWvE -

=

0%

0l o

Figure 6. Case 3: Metamodel Accuracy.

The fourth case considered was the RWVC under the
presence of a geometric boundary. The workspace volume no
longer grows with increasing link lengths, but begins to shrink
as the robot workspace extends past the boundary. For this
application, the RWVC was formulated as a ratio of the robot
workspace volume within the geometric boundary with respect
to the 2unit square volume that defines the boundary. The
metamodel results are shown in Figure 7.

Without developing supporting software, iterations were
limited to the generation of a 25 control point mesh,
representing a 3x3 mesh of quadratic patches. At this point, the
correlations and maximum errors produced by the two
metamodels were equivalent. However, while the narrow
“ridgeline” that is apparent in the data is better represented by
the BSM, the “3-peak” representation is misleading, and thus
the RSM has apparently better visualization properties.
Subsequent iterations would probably improve the BSM
representation.

The final case considered was for the JCNC, as a function
of 0; and 03, for fixed link lengths of (0.5, 0.4, 0.1) and 6,=30°.
Like case 2, this is a highly nonlinear function. Figure 8 shows
the results.

The BSM used for case 5 was also limited to 25 control
point mesh, representing a 3x3 mesh of quadratic patches. Both
correlations remain low, 56% for the BSM and 41% for the
RSM, and significant errors remain. However, the BSM
resembles the data more closely than the RSM. Based on the

results from case 2, a mesh of 49 control points could achieve
an estimated 90% fit. Additional work is needed to facilitate the

calculation of larger control point meshes.

Data

= RWVC

[

k1

0

0.5

0l LS R

Figure 7. Case 4: Metamodel Accuracy.

Qi

Figure 8. Case 5: Metamodel accuracy.

3.3. MODEL PERFORMANCE

Based on the relative performance of the BSM with respect
to the RSM in each of the five cases defined in sections 4.1 and
4.2, and the six criteria identified in section 2.5, the Decision
Matrix shown in Table 2 was developed. Each trial was rated
as successively more difficult and each of the 6 criteria was
weighted according to their importance. The BSM was rated in
comparison to the RSM baseline.
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Table 2. Decision Matrix comparing RSMs with BSMs for 6 criteria and 5 trial cases.

Demo Trial #1: 2D Trial #2: 2D Trial #3: 3D Trial #4: Bounded Trial #5: 3D Summ
Relative Workspace Area | Condition Number | Workspace Area 3D Workspace Condition Number ary
Weights RSM BSM RSM BSM RSM BSM RSM BSM RSM BSM |RSM|BSM
Criteria 0.10 0.10 0.15 0.15 0.20 0.20 0.25 0.25 0.30 0.30 100 | 1.00
Criteria #1: Computational 50 50 a0 50 50 70 50 50 50 50
" 0.20 10 | 1
Complexity 1.00 1.00 150 1.50 2.00 2.80 2.50 2.50 3.00 3.00
Criteria #2: Model Accuracy| 030 | 0 o al 0 50 il o o an i 15 | 19
1.50 1.50 2.5 4.05 3.00 3.00 3.75 3.75 4.50 6.30
Criteria #3: Model Insight & 0.10 50 50 50 90 50 50 50 40 50 i0 5 6
Visualization 0.50 0.50 0.75 1.35 1.00 1.00 1.25 1.00 1.50 2.10
Criteria #4:Model Flexibiliy| 015 | 0 8 50 80 50 80 50 80 50 80 8 | 12
0.75 1.20 1.13 1.80 1.50 2.40 1.88 3.00 2.25 3.60
Criteria #5: New Data 015 | 9 70 50 70 50 70 50 70 50 70 8 "
Incorporation 0.75 1.05 1.13 1.58 1.50 2.10 1.88 263 2.25 3.15
Criteria #6: Commercial 50 0 50 0 50 0 50 0 50 0
Availabili ML 2 C
allabiity 0.50 0.00 0.75 0.00 | 1.00 0.00 1.25 0.00 | 1.50 0.00
QOverall Rating 1.00 5.0 53 7.5 10.3 10.0 1.3 12.5 129 15.0 18.2 50 | a8

Because of the complexity of the Decision Matrix, a
simplified Pugh chart shown in Table 3 was developed from the
Decision Matrix. Five relative performance levels performance
were identified, significant improvement (++), improvement
(+), equivalent (X), degradation (-), and significant degradation
(--), and the BSM was rated using the RSM as a baseline.

Table 3. Pugh Chart comparing RSMs with BSMs for 6
criteria and 5 trial cases.

Criteria Case Total
1 2 3 4 5
1 X + X X +1
2 X | ++ X X + +3
3 X X - + +1
4 + + + + +5
S + + + + +5
(3 -- -- -- -- -- -10
Total | O +3 +1 -1 +2 +5
Criterion 1, computational complexity, suggests the

techniques are essentially equivalent, based upon Gopi and
Manohar’s demonstration that a B-spline’s computational
complexity is determined by its order just as is the case for a
polynomial [10]. The case 3 results give a slight edge to BSMs,
since their model is equivalent, but is not fully quadratic.
Criterion 2, model accuracy, strongly favors BSMs for case
2, and based on the progress of the mesh in case 5, suggests that
some benefit also exists for this trial. This criterion was
calculated based on the how well the metamodel fit the data, as
does not evaluate the data quality. The accuracy of each trial is
shown in Table 4. The development of appropriate software
facilitating mesh generation would greatly enhance the ability
to examine this concept for problems of realistic complexities.
Criterion 3, model visualization favors BSM in large part
because they more accurately represent the data for cases 2 and
5, while favoring the case 4 RSM representation due to the
misleading “3-peak” BSM representation. The rating of this

criterion is somewhat subjective, but is based on a visual
comparison of the actual data to the resulting model in an
attempt to penalize a model that may produce an exceptionally
accurate fit by inducing more variations than probably actually
exist.

Table 4. Metamodel Accuracy for each trial case.
(100% is a perfect fit)

Case
Model 1 2 3 4 5
RSM | 99.5% | 42.9% | ~100% | 96.2% | 40.9%
BSM | 99.5% | 95.9% | ~100% | 96.9% | 59.5%

Criterion 4, model flexibility, favors the more flexible
geometric BSM representation based on reviews in the
literature [10,25]. Criterion 5 favors the local BSM behavior
with respect to new data, also based on the literature survey
[22]. In this situation, B-Spline basis functions are also more
stable than the power basis functions used in RSMs [1].
Criterion 6 strongly favors the present commercial availability
of RSM supporting software. In a commercial design setting,
this criterion is particularly valid, although in a research setting,
it can be argued that it should not be considered.

Overall, BSMs are slightly favored, (more definitively so if
criterion 6 is resolved with the development of supporting
software), particularly for the nonlinear cases 2 and 5. For the
remaining cases, BSMs appear to perform approximately as
well as RSMs. This is not surprising since BSMs are a
generalization of RSMs. The BSM advantage lies with highly
nonlinear applications.

4. CONCLUSIONS AND FUTURE WORK

This comparison does not support a definitive conclusion
that BSMs are more suitable than RSMs to solve robot
workspace optimization problems. Both techniques are suitable
for simple test problems, although BSMs appear to have an
edge in representing more complex nonlinearities. One can
conclude that BSMs are as suitable as RSMs, and possibly
more suitable for nonlinear cases. As this is a preliminary
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study, these results are sufficiently encouraging to suggest
additional work is warranted.

Unfortunately, many algorithms succeed with simple cases
only to fail when applied to complex “real” problems [9].
Therefore, additional work examining BSM performance for
complex and nonlinear “real” optimization problems is needed.
Software tools to support this research also address the primary
BSM disadvantage, the current lack of available BSM software.
Development of supporting software could verify this apparent
performance advantage. Initial results, while promising, require
additional research.

This research is a preliminary investigation to
determine if a metamodeling method based on spline theory
would be competitive with existing approaches such as RSMs.
The results are sufficiently promising to justify further research
into the potential of BSMs to represent the design space of
complex systems. The ultimate goal of this research is the
development of a method, based on spline theory that can
represent the complex relationships between design variables
and performance indices that can be used to enhance the
effectiveness of the engineering design process.
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