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ABSTRACT 
 Robotic workspace optimization is a central element of robot 

system design. To formulate the optimization problem, the complex 

relationships between design variables, tuning parameters, and 

performance indices need to be accurately and efficiently 

represented.  The nature of the relationships suggests that 

metamodels, or models of the models, should be used to derive 

suitable objective functions. A comparis on of two metamodeling 

techniques for robotic workspace optimization problems for several 

trial cases suggests that non-uniform rational B-spline models, 

derived from computer graphics and computer-aided design 

techniques, are as suitable as response surface models to solve 

planar 3R workspace optimization problems. Promising nonlinear 

modeling results with B-spline models suggest future work is 

justified and performance gains can be realized. 

 

INTRODUCTION 
During the process of design, engineers are ultimately 

confronted with the challenge of determining how to modify 

design variables in order to achieve or exceed desired 

performance criteria. For simple systems, or for experienced 

engineers, an Edisonian, or experiential approach to design is 

often used in lieu of a formal design methodology. However, 

this approach may fail if the engineer lacks sufficient 

experience to be able to make appropriate decisions, or if the 

complexity of the system exceeds the experience of the 

engineer. This limitation is common for many design problems 

of current interest where high performance and limited design 

experience exists. In such problems, the number of 

performance criteria, typically highly non-linear functions 

(perhaps unknown in closed form) of a large number of design 

variables, that must be considered simultaneously far exceeds 

the number that a human engineer can comfortably 

contemplate. 

 While the complexity of many current design problems 

surpasses the experience and capacity of many engineers, the 

development of complimentary computational capabilities that 

can be applied to the benefit of the designer seems to be ever 

more feasible. Very sophisticated, commercially available 

software systems are used to predict the performance of 

proposed designs. Computers are able to process far more data, 

at a far greater speed than any engineer can, but adequate tools 

to combine the predictions of multiple performance simulations 

for informed decisions making are unavailable or problematic. 

This data, often from disparate sources, must be combined into 

a single coordinated representation for effective analysis and 

visualization. This is accomplished through a family of 

techniques known as metamodeling. Metamodeling uses 

experiments and models as the basis for a higher-level model of 

models, known as a metamodel. 

 The most popular metamodeling technique, Response 

Surface Models (RSM) uses quadratic approximations [14] and 

is difficult to implement for more than 10 variables. [13,26] 

Real problems are often inadequately modeled with quadratic 

representations and have many more than 10 variables (dozens 

or hundreds are common). For complex, nonlinear problems, 

these limitations can lead to ineffective metamodels. 

 Metamodels based on spline theory, B-Spline Models 

(BSM) may be able to overcome these limitations.  The focus 

of this work is a preliminary study of the performance of BSMs 

compared to RSMs. For this study, a robotic workspace design 

problem was selected.  This design problem can be formulated 

with a limited number of design variables, making it 

computational tractable for a preliminary study, and yet this 

system can exhibit highly nonlinear behaviors. 

 Robotic system design is inherently concerned with the 

definition of robot workspaces. All robotic workspaces are 

subsets of the Reachable Workspace of a robot, or the set of 

points that the robot can reach with its tooling. An 

appropriately designed robot will ensure that the task manifold 

is contained within the reachable workspace [18]. General-

purpose robot designs maximize the reachable workspace with 
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respect to geometric constraints that describe the robot’s 

operating region while maintaining a dexterous workspace [29]. 

This is the basis for workspace optimization.  

 While most robots are spatial mechanisms, planar 3R 

mechanisms, such as that shown in Figure 1, (comprised of 

three rotary joints operating in a plane) are an important group 

of mechanisms that can be used to represent the limbs of many 

biological and mechanical mechanisms [8]. Despite their 

significance, previous research has addressed few of the 

kinematic serial planar manipulator workspace optimization 

issues [3]. 
 

 
Figure 1. 3R Serial Planar Configuration and reachable 

workspace (in red) used to compare RSM and BSM 

performance. 
 

 Like many complex design problems, analytical tools 

supporting workspace optimization are limited [20]. Due to the 

introduction of trigonometric functions to describe the position 

of the rotary joints, the resulting systems models exhibit 

nonlinear behaviors. Therefore, the use of a metamodel, or a 

simplified model of the original model can be used to identify 

optimal solutions for complex problems [30]. Metamodels are 

commonly used in nonlinear, complex, and multidisciplinary 

optimization problems. A simplified computationally beneficial 

metamodel is derived for the optimization problem objective 

function.  

 Two metamodeling approaches are compared in this paper. 

Response Surface Models (RSMs) are based on polynomials 

derived from Design of Experiments Methodologies. A second 

approach uses Non-Uniform Rational B-Splines (NURBs), a 

general piecewise polynomial representation derived from 

spline theory and employed in computer graphics, to produce a 

B-Spline Model (BSM). 

 The remainder of this paper reviews metamodeling 

literature and develops a set of metamodel criteria to compare 

the suitability of these two techniques as solutions to planar 3R 

workspace optimization problems. Using successively more 

complex formulations and metamodel selection criteria, 

metamodel performance estimates support the conclusion that 

BSMs are promising and at least as suitable as RSMs to solve 

planar 3R workspace optimization problems. Supporting 

software, and further work is needed. 

1. METAMODELING 

 Metamodels are generally employed in three cases. The 

first case is when accurate analytical models are not available 

and a metamodel must be derived from experimental data.  The 

second case is when analytical models are available, but require 

more computational effort to use than is feasible.  The third 

case combines multiple analytical and/or experimental models 

into a single metamodel often for multidisciplinary 

optimization (MDO) efforts. The relationship between the 

actual system, direct models and metamodels is shown in 

Figure 2. 

 
Figure 2. System, Model and Metamodel Relationships. 

 

 The most common form of a metamodel uses Design of 

Experiments techniques to formulate an RSM, which is an 

implicit polynomial representation of the relationship between 

design variables and performance indices [27]. This approach 

can be contrasted with the BSM parametric polynomial form. 

1.1. RESPONSE SURFACE MODELS 

 RSMs use an implicit polynomial formulation, denoted as 

P(x,y) in R
2
 space, where x and y are design variables, and P is 

a performance index.  The polynomials used in RSMs typically 

are either linear or quadratic polynomials [26,27,30]. Equation 

1 shows the form of a single variable RSM, while Equation 2 

shows the form of a dual variable RSM [27].  
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 Where β represents the coefficients of each term, and n 

defines the order of the polynomials used to define the RSM 

[27]. RSMs can be used to model curves in R
2
 space as well as 

surfaces in R
n>2

 space. These formulations may be extended to 

cases with additional variables, although ten variables are 

generally considered the practical limit [13,26]. RSMs are 

usually derived as linear models, which are replaced with 

quadratic models at the end of the application for model 

confirmation [14]. This RSM formulation is generalized in 

Equation 3. 

( ) { } ( ){ }T

VPV DNDP β=  (3) 

 Where {Np(Dv)} is a vector of the terms resulting from a 

power series expansion of the design variables, Dv, that serves 

as the basis for the RSM. The RSM is “fit” to the data using 

single or multivariate least-squares regression techniques [4]. 

As a result, RSMs can provide predictive capabilities [14]. The 

RSM properties are determined by its implicit form and by the 

techniques used to “fit” the model to the available data, so 

implicit form properties are discussed next. 

1.2. IMPLICIT REPRESENTATIONS 

 Implicit geometric representations are well known, and are 

often the first surface representation introduced to students.  

The point set satisfying Equation 4 defines an implicit curve, 

while the point set satisfying Equation 5 defines an implicit 

surface [5].  

0),( =yxf  (4) 

0),,( =zyxf  (5) 

  Implicit forms have certain advantages. They are unique 

formulations with respect to a multiplicative constant [22]. 

Implicit representations readily represent unbounded curves 

and surfaces, and provide easy determination of the 

membership of a point in the point set defining an object [22]. 

Implicit surfaces can be readily extended to R
n
 spaces by 

increasing the dimensionality of the independent variables. 

From the perspective of an analyst, the coefficients of an RSM 

provide considerable information about the relative significance 

of Dv’s within the RSM. 

 However, implicit forms also have disadvantages. They are 

dependent upon the choice of coordinate system, which may 

lead to numerical instabilities in their evaluation and difficulties 

in their use, affecting their ability to match segmented RSMs at 

their boundaries [24].  Furthermore, implicit objects are more 

difficult to evaluate at equal intervals over the representation, 

an important step for meshing and data visualization [24]. 

Implicit formulations include planar and spatial curves, as well 

as hyperdimensional surfaces. 

 The polynomial representations produced from implicit 

RSMs have been successfully used as the basis for defining the 

objective function for multiple optimization algorithms [14], 

including gradient [19], simulated annealing [31], and genetic 

algorithm type methods [32]. Derivatives of polynomials are 

easily calculated for gradient methods.  

 Difficulties with implicit representations have led to a 

significant body of work surrounding parametric 

representations for computer graphics and computer-aided 

design. 

1.3. PARAMETRIC REPRESENTATIONS 

  Parametric representations use explicit relationships 

between the coordinate system and one or more independent 

parameters.  A parametric curve is described with a single 

independent parameter, while a parametric surface utilizes two 

independent parameters.  Higher order parametric objects can 

be constructed with additional parameters. The resulting object 

is described by a vector valued function such as P(u,v) shown 

in Equation 6 for a surface in R
3
 space [24]. 

),()),(),,(),,(( vuPvuzvuyvuxf =  

for bvua ≤≤ ,  
(6) 

 Compared with implicit representations, parametric 

formulations have advantages. Low order parametric 

formulations are readily extensible to higher order spaces, and 

higher order object representations can be derived. The 

parameterization of these objects makes the form of the object 

coordinate system independent [22]. Parameter bounds make 

these representations ideal for the modeling and segment 

blending [22]. The role of the parameter makes these forms 

more useful for interpolation than for prediction [14]. 

Parametric forms are amenable to generating uniform meshes, 

enabling easy computer representations [22].  

 Unlike implicit forms, parametric forms do not have 

unique solutions [22]. Parametric objects generally require the 

storage of more information than an implicit representation’s 

polynomial coefficients, and the coefficients of a parametric 

representation do not necessarily convey the same information 

about the relative importance of individual terms, as is the case 

with implicit formulations. Parametric formulations also can 

generate incorrect features, such as loops and folds in the 

representation [22]. 

 It is often possible to convert implicit representations into 

parametric forms, and vice versa [16]. Before rendering, 

implicit representations are often converted to a generalized 

type of parametric representation, known as a Non Uniform 

Rational B-Splines or NURBs.  NURBs are the de facto 

standard for geometric descriptions in computer graphics and 

computer-aided design applications [22].  

 A polynomial can be represented as a NURB, and so, given 

a NURB, an appropriate polynomial expression can be derived. 

NURB derivatives are also explicitly defined [22,23,24]. 

Therefore, as equivalent polynomial representations, NURBs 

also can be used as the basis for many optimization algorithms. 
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1.4. B-SPLINE MODELS 

 The BSMs developed for this work are based on NURBs, 

which are defined for a curve by Equation 7 [24]. 
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 Where {B} is a vector defining the location of the defining 

nC control points in R
n+1 

space, w defines the weight of a 

particular control point, and Ni,k(u) is the B-spline basis 

function in terms of the parameter u, as defined by Equations 8 

and 9 [24]. 
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 Where {x} is the knot vector, a sequence of values 

defining the region of control point influence within the NURB.  

Equations 8 and 9 are subject to the conditions given by 

Equation 10 [24]. 
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 Higher order objects, such as surfaces, are produced with a 

tensor product, resulting in a grid of control points, and the 

multiplication of Equation 7 by additional basis functions 

associated with the additional parameters. Control points, 

associated weights, and one or more parameters and knot 

vectors define a NURB. Each of these parameters lends 

additional flexibility to NURBs, producing a universal curve 

definition [10].  

 The BSMs used for this comparison have all weights set to 

1, a typical approach [22,24], and utilize spline-fitting 

techniques developed by Legault [17] and Turner [28] that 

iteratively reduce the maximum error in a spline model. This 

approach to fitting BSMs to data is distinctly different from 

traditional BSM metamodel approaches that match control 

points to data points in a one-to-one relationship [27]. 

 The increased complexity of BSMs is a disadvantage, 

requiring the storage of control points locations and knot 

vectors, and because the additional flexibility of NURBs results 

in an under constrained system of equations that can result in 

poor results [21]. A literature review found few references on 

BSM representations, apparently due to the difficulties in BSM 

implementation [1,2,27]. Most work was conducted in the early 

to mid 1990s and no references specific to BSMs using NURBs 

were found.  

 Potential BSM advantages are recognized. Practical studies 

have indicated that in complex, nonlinear, multidisciplinary 

design environment, additional metamodel flexibility is 

beneficial [25]. In particular, NURBs have been found to be 

numerically robust, capable of accurately representing many 

geometric forms, and have a broad set of supporting algorithms 

[21]. Like a polynomial, the BSM order determines its 

computational complexity. BSMs also benefit from the use of 

specialized graphics acceleration hardware for rapid NURBs 

computation [10]. BSMs also allow for local data changes 

without requiring global model recalculations [22]. 

1.5. METAMODELING CRITERIA 

 Three features distinguish RSMs and BSMs. BSMs use 

low order polynomials valid over small regions of a global data 

set, while the RSM polynomials are global. BSMs use B-spline 

basis functions, while RSMs use power basis functions. Finally, 

BSMs define their shape with control points while RSMs use 

their polynomial coefficients. 

 In order to compare the suitability of these two 

metamodeling techniques, a set of criteria are needed. 

Optimization algorithms did not provide suitable criteria, as 

both techniques can be used by a variety of optimization 

algorithms. The central issue between RSMs and BSMs in 

optimization is the model accuracy and computational 

complexity. In essence, how good is the model? 

 Hussein, et al, [12] recently proposed a set of eight criteria 

to select appropriate metamodels. Two of these criteria are 

concerned with data acquisition issues, which is beyond the 

scope of this work. The remaining six criteria: 1) 

Computational Complexity, 2) Model Accuracy, 3) Model 

Visualization, 4) Model Flexibility, 5) Stability with respect to 

New Data, and 6) Commercial Software Availability were 

adopted to compare RSMs and BSMs [12]. 

 The first two criteria are concerned with the model’s 

computational complexity and accuracy.  A model that does not 

produce accurate results, or that requires excessive resources to 

calculate is a poor metamodel [12,25]. The third criterion is 

concerned with the subsequent ability to visualize the model 

and thus, provide insight to the analyst. 

 Criterion 4, model flexibility is important for optimization. 

The chief challenge when using metamodels for optimization is 

achieving a suitably accurate and smooth representation of an 

arbitrary data set [12].  

 The fifth criterion is considered when the metamodel is 

provided with new data and must incorporate this new 

information [12]. The sixth criterion is commercial software 

availability. While this criterion is biased towards popular, 

traditional and existing techniques, it is a reasonable basis to 

judge metamodels in a non-research setting [12]. 
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2. ROBOTIC WORKSPACE OPTIMIZATION 

 Little work has been conducted on 3R serial planar 

mechanism kinematic optimization [3], and most focuses on 

dynamic properties. A few kinematic criteria have been 

considered including reachable workspace volume (RWVC), 

Jacobian condition number (JCNC), and joint range availability 

(JRAC) [6,8,29]. 

 Of these criteria, both RWVC and JRAC have closed form 

expressions. JRAC and the JCNC are local criteria, and thus are 

functions of the manipulator joint angles, while RWVC is a 

global property of the manipulator. Since RWVC is a 

fundamental robot design element, it is used extensively in 

section 4. JCNC was also selected due to more interesting 

criterion properties. Both criteria are functions of the link 

lengths.  

 JCNC is a particularly valuable and challenging criterion, 

derived from the Jacobian matrix of a manipulator [11]. JCNC 

measures the proximity of a manipulator to singularities [15]. 

As a robot approaches a singularity, its controllability is 

reduced [15], the manipulator’s ability to exert or react forces is 

altered [33], and the dexterity of the robot is limited [11]. 

Further, JCNC is related to JRAC [15].  Several JCNC 

forms have been proposed and used [15]. A condition number 

based on the infinity norm of the Jacobian matrix is used in 

section 4. 

 Metamodel results used to represent RWVC and JCNC for 

the robotic system described in section 3 are shown in section 

4. Closed form expressions for JCNC gradients are not 

available, complicating optimization with JCNC and requiring 

metamodels [15]. 

2.1. PROBLEM DESCRIPTION 

 The 3R serial planar robot configuration used for this work 

was previously shown in Figure 1. The position of the end 

effector, as a function of the joint angles can be derived from 

the system geometry. This model can be differentiated with 

respect to the joint angles to define the Jacobian matrix, a 

standard element in the formulation of most robotic system 

models. The system model is subject to the assumptions 

described by Equations 11 and 12. 

2
πθ ≤i   for i=1,2,3  (11) 

and 1.03 =  (12) 

 Equation 11 reduces the effect of singularities on the 

system. Two singular cases remain, when θ2=0, and a boundary 

singularity condition due to the reachable workspace boundary. 

Both cases are denoted by the inability of the manipulator to 

simultaneously specify x, y, and φ  [7]. Equation 12 also was 

applied to set minimum link lengths for links 1 and 2. 

 The metamodel goal is to reveal and define relationships 

between design variables, Dv, tuning parameters, Tp, and 

performance indices, Pi. These variables comprise the system 

design space shown in Figure 3. Metamodels are used to define 

functional relationships in the form of Equation 13. 

{ } { }( )PVi TDfP ,=  (13) 

 Based on the system shown in Figure 1, and the 

assumptions made in section 3.1, the system design variables, 

tuning parameters, and performance indices are defined in 

Table 1. Additional terms such as those for dynamic 

characteristics also exist, but were not considered. The 

variables used to compare metamodels are shown in Table 1 in 

red. 

Table 1. 3R Serial Planar Manipulator Design Space Axes. 

Dv: L 1, l 2, l 3, β, xbase, ybase, τ1, τ2, τ3, … 

Tp: θ1, θ2, θ3, ω1, ω2, ω3, α1, α2, α3, … 

Pi: RWVC, JCNC, JRAC, Payload, … 
 

 These variables define five trial cases, two of which are 

Pi’s that are functions of a single active variable (2D cases), and 

three of which are Pi’s that are functions of two active variables 

(3D cases). The remaining terms were artificially held constant. 

Sections 3.2 and 3.3 describe these cases. 

 
Figure 3. The Design Space. 

2.2. 2D FORMULATIONS 

 Two cases were examined where a performance index was 

written as a function of a single design variable, resulting in a 

2D metamodel. The first case defines the lengths of link 1 and 2 

as a function of a single parameter, β, according to Equations 

14 and 15. The objective is to maximize the reachable 

workspace for a unit manipulator length. This can be 

considered to be a normalized, nondimensional length design 

problem. 

β7.01.01 +=  (14) 

)1(7.01.02 β−+=  (15) 

 The performance index of interest is the RWVC, a global 

criterion that is a function of the link lengths, or in this case, a 

function of solely β. 
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 The second case considers the JCNC for a fixed set of link 

lengths (0.5,0.4,0.1). To simplify this problem to 2D, the link 

lengths were fixed, and the tool orientation was set at φ=30
o
 by 

fixing θ2=30
o
, and θ1=-θ3. As a result JCNC is a function of 

only θ1. 

 As a local criterion, the objective of JCNC is to minimize 

the JCNC value throughout the reachable workspace. To be 

compatible with RWVC, the Pi is defined as the negative sum 

of the 2-norm over the reachable workspace space volume, 

shown in Equation 16. 

( )∫−=
V

i dVJCNCP 1θ  (16) 

2.3. 3D FORMULATIONS 

 Three cases were examined where the Pi is a function of 

two active variables. The first case is an extension of the initial 

2D case where the requirement for a manipulator of unit length 

has been removed. This is a dimensioned manipulator design 

problem. Thus, the RWVC is now a function of the link lengths 

1 and 2. 

 A more complicated case occurs if the size of a 

manipulator is constrained by a geometric boundary. While the 

initial 2D case addresses the design problem associated with a 

no collision condition, allowing for collisions with the 

boundary may enhance the overall manipulator workspace 

volume. This case calculates the ratio of the reachable 

workspace to the potential workspace volume within a 2-unit 

square centered on the robot base. 

 The third 3D case considered is for the JCNC where the 

link lengths remained fixed at (0.5,0.4,0.1) and θ2=30
o
. Without 

a condition on, φ, JCNC becomes a function of θ1 and θ3. 

2.4. IMPLEMENTATION 

 Data for these trials was obtained via simulations created 

within the program MathCad
TM

 for a 900MHz PC computer. 

All subsequent calculations to derive and evaluate RSMs and 

BSMs were performed within this same environment. 

Algorithms defining RSMs available within MathCad
TM

 were 

used for RSM generation, while algorithms defined by Legault 

[17] and Turner [28] where simulated within this environment. 

No dedicated supporting software algorithms were created due 

to time constraints imposed upon this research. The preliminary 

use of these algorithms via MathCad
TM

 allowed for preliminary 

results to be obtained without the development of optimized 

supporting programs. This limited the size of the problems that 

could be solved to levels that are far less than those solved with 

dedicated software by both Legault [17] and Turner [28]. 

3. MODEL COMPARISONS 

 Using the five cases presented in sections 3.2 and 3.3, and 

the criteria from section 2.5, RSM and BSM metamodels for 

each case were derived and their accuracy was compared. Since 

RSMs are typically limited to quadratic models [14], quadratic 

RSMs are used as the basis for comparison with quadratic 

BSMs. Thus the metamodels generally have equivalent 

computational complexities.  

3.1. 2D RSM VERSUS SPLINE MODELS 

 The first 2D case fits RSM and BSM metamodels to data 

representing the RWVC versus the link ratio, β. The data is 

well fit by both the RSM and BSM metamodels, with 

comparable errors, and correlations exceeding 99% as 

calculated from Pearson’s correlation coefficient [4]. Figure 4 

shows the model results. The 2-segment BSM accuracy in this 

trial is equivalent to the quadratic RSM used. 

 
Figure 4. Case 1: Metamodel Accuracy. 

 The case 2 data is considerably more complex and 

nonlinear. A quadratic RSM results in a poor fit, with large 

errors and a correlation of <50%. A 5-segment quadratic BSM 

produces a model with smaller errors and a correlation of more 

than 90%. Results are shown in Figure 5. 

 
Figure 5. Case 2: Metamodel Accuracy. 



 7 Copyright © 2002 by ASME 

3.2. 3D RSM VERSUS SPLINE MODELS 

 The third case is a 3D metamodel, where RWVC is a 

function of link length 1 and 2. Both the RSM and BSM models 

fit the resulting data with very little error and more than a 99% 

correlation. Notably, while the BSM is quadratic along one 

axis, it is linear along the second axis. The metamodel 

performance is comparable, but the BSM actually has slightly 

less computational complexity. Results are shown in Figure 6. 

 
Figure 6. Case 3: Metamodel Accuracy. 

 The fourth case considered was the RWVC under the 

presence of a geometric boundary. The workspace volume no 

longer grows with increasing link lengths, but begins to shrink 

as the robot workspace extends past the boundary. For this 

application, the RWVC was formulated as a ratio of the robot 

workspace volume within the geometric boundary with respect 

to the 2-unit square volume that defines the boundary. The 

metamodel results are shown in Figure 7.  

 Without developing supporting software, iterations were 

limited to the generation of a 25 control point mesh, 

representing a 3x3 mesh of quadratic patches. At this point, the 

correlations and maximum errors produced by the two 

metamodels were equivalent. However, while the narrow 

“ridgeline” that is apparent in the data is better represented by 

the BSM, the “3-peak” representation is misleading, and thus 

the RSM has apparently better visualization properties.  

Subsequent iterations would probably improve the BSM 

representation. 

 The final case considered was for the JCNC, as a function 

of θ1 and θ3, for fixed link lengths of (0.5, 0.4, 0.1) and θ2=30
o
. 

Like case 2, this is a highly nonlinear function.  Figure 8 shows 

the results. 

 The BSM used for case 5 was also limited to 25 control 

point mesh, representing a 3x3 mesh of quadratic patches. Both 

correlations remain low, 56% for the BSM and 41% for the 

RSM, and significant errors remain. However, the BSM 

resembles the data more closely than the RSM. Based on the 

results from case 2, a mesh of 49 control points could achieve 

an estimated 90% fit. Additional work is needed to facilitate the 

calculation of larger control point meshes. 

 
Figure 7. Case 4: Metamodel Accuracy. 

  

 
Figure 8. Case 5: Metamodel accuracy. 

3.3. MODEL PERFORMANCE 

 Based on the relative performance of the BSM with respect 

to the RSM in each of the five cases defined in sections 4.1 and 

4.2, and the six criteria identified in section 2.5, the Decision 

Matrix shown in Table 2 was developed.  Each trial was rated 

as successively more difficult and each of the 6 criteria was 

weighted according to their importance.  The BSM was rated in 

comparison to the RSM baseline.  
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Table 2. Decision Matrix comparing RSMs with BSMs for 6 criteria and 5 trial cases. 

 
 

 Because of the complexity of the Decision Matrix, a 

simplified Pugh chart shown in Table 3 was developed from the 

Decision Matrix. Five relative performance levels performance 

were identified, significant improvement (++), imp rovement 

(+), equivalent (X), degradation (-), and significant degradation 

(--), and the BSM was rated using the RSM as a baseline. 

Table 3. Pugh Chart comparing RSMs with BSMs for 6 

criteria and 5 trial cases. 

Case 
Criteria 

1 2 3 4 5 
Total 

1 X X + X X +1 

2 X ++ X X + +3 

3 X + X - + +1 

4 + + + + + +5 

5 + + + + + +5 

6 - - - - - - - - - - -10 

Total 0 +3 +1 -1 +2 +5 
 

 Criterion 1, computational complexity, suggests the 

techniques are essentially equivalent, based upon Gopi and 

Manohar’s demonstration that a B-spline’s computational 

complexity is determined by its order just as is the case for a 

polynomial [10]. The case 3 results give a slight edge to BSMs, 

since their model is equivalent, but is not fully quadratic. 

 Criterion 2, model accuracy, strongly favors BSMs for case 

2, and based on the progress of the mesh in case 5, suggests that 

some benefit also exists for this trial. This criterion was 

calculated based on the how well the metamodel fit the data, as 

does not evaluate the data quality.  The accuracy of each trial is 

shown in Table 4. The development of appropriate software 

facilitating mesh generation would greatly enhance the ability 

to examine this concept for problems of realistic complexities. 

 Criterion 3, model visualization favors BSM in large part 

because they more accurately represent the data for cases 2 and 

5, while favoring the case 4 RSM representation due to the 

misleading “3-peak” BSM representation.  The rating of this 

criterion is somewhat subjective, but is based on a visual 

comparison of the actual data to the resulting model in an 

attempt to penalize a model that may produce an exceptionally 

accurate fit by inducing more variations than probably actually 

exist. 

Table 4.  Metamodel Accuracy for each trial case. 

   (100% is a perfect fit) 

Case 
Model 

1 2 3 4 5 

RSM 99.5% 42.9% ~100% 96.2% 40.9% 

BSM 99.5% 95.9% ~100% 96.9% 59.5% 

 Criterion 4, model flexibility, favors the more flexible 

geometric BSM representation based on reviews in the 

literature [10,25]. Criterion 5 favors the local BSM behavior 

with respect to new data, also based on the literature survey 

[22]. In this situation, B-Spline basis functions are also more 

stable than the power basis functions used in RSMs [1]. 

Criterion 6 strongly favors the present commercial availability 

of RSM supporting software. In a commercial design setting, 

this criterion is particularly valid, although in a research setting, 

it can be argued that it should not be considered. 

 Overall, BSMs are slightly favored, (more definitively so if 

criterion 6 is resolved with the development of supporting 

software), particularly for the nonlinear cases 2 and 5. For the 

remaining cases, BSMs appear to perform approximately as 

well as RSMs.  This is not surprising since BSMs are a 

generalization of RSMs. The BSM advantage lies with highly 

nonlinear applications.   

4. CONCLUSIONS AND FUTURE WORK 

  This comparison does not support a definitive conclusion 

that BSMs are more suitable than RSMs to solve robot 

workspace optimization problems. Both techniques are suitable 

for simple test problems, although BSMs appear to have an 

edge in representing more complex nonlinearities. One can 

conclude that BSMs are as suitable as RSMs, and possibly 

more suitable for nonlinear cases. As this is a preliminary 
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study, these results are sufficiently encouraging to suggest 

additional work is warranted. 

 Unfortunately, many algorithms succeed with simple cases 

only to fail when applied to complex “real” problems [9]. 

Therefore, additional work examining BSM performance for 

complex and nonlinear “real” optimization problems is needed. 

Software tools to support this research also address the primary 

BSM disadvantage, the current lack of available BSM software. 

Development of supporting software could verify this apparent 

performance advantage. Initial results, while promising, require 

additional research. 

 This research is a preliminary investigation to 

determine if a metamodeling method based on spline theory 

would be competitive with existing approaches such as RSMs. 

The results are sufficiently promising to justify further research 

into the potential of BSMs to represent the design space of 

complex systems.  The ultimate goal of this research is the 

development of a method, based on spline theory that can 

represent the complex relationships between design variables 

and performance indices that can be used to enhance the 

effectiveness of the engineering design process. 
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