
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

A Comparison of TCP Automatic Tuning Techniques for
Distributed Computing

Eric Weigle and Wu-Chun Feng

1 1 th IEEE International Symposium on High-Performance
Distributed Computing

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative actiodequal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, orto allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8/00)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A Comparison of TCP Automatic-Tuning Techniques for Distributed Computing

Eric Weigle and Wu-chun Feng

Research and Development in Advanced Network Technology
Computer and Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545

{ehw, feng}@lanl.gov

Abstract

Rather than paiizful, manual, static, per-connection op-
timization of TCP buffer sizes siniply to achieve acceptable
perfonnance for distributed applications 18, I O] , inany re-
searclzers liave proposed techniques to perforin this tuning
automatically [4, 7,9,11,12,14]. This paperjrst discusses
tlie relative merits of the various approaches in tlaeory, and
then provides substantial experimental data concerning two
coinpetiizg iniplerneiitations - the buffer autotuning already
present in Linux 2.4.x and “Dynainic Right-Sizing.” Tlzis
paper reveals lieretofore unknown aspects of the problem
and current solutions, provides insiglit into tlie proper ap-
proach for various circumstances, and points toward ways
to further irnprove perfornzance.

Keywords: dynamic right-sizing, autotuning, high-
performance networking, TCP, flow control, wide-area net-
work.

1. Introduction

TCP, for good or ill, is the only protocol widely avail-
able for reliable end-to-end congestion-controlled network
communication, and thus it is the one used for almost all
distributed computing.

Unfortunately, TCP was not designed with high-
performance computing in mind - its original design deci-
sions focused on long-term fairness first, with performance
a distant second. Thus users must often perform tortuous
manual optimizations simply to achieve acceptable behav-
ior. The most important and often most difficult task is de-
termining and setting appropriate buffer sizes. Because of
this, at least six ways of automatically setting these sizes
have been proposed.

In this paper, we compare and contrast these tuning
methods. First we explain each method, followed by an in-
depth discussion of their features. Next we discuss the ex-
periments to fully characterize two particularly interesting
methods (Linux 2.4 autotuning and Dynamic Right-Sizing).
We conclude with results and possible improvements.

1.1. TCP Tuning and Distributed Computing

Computational grids such as the Information Power
Grid [5] , Particle Physics Data Grid [l], and Earth System
Grid [3] all depend on TCP. This implies several things.

First, bandwidth is often the bottleneck. Performance for
distributed codes is crippled by using TCP over a WAN. An
appropriately selected buffer tuning technique is one solu-
tion to this problem.

Second, bandwidth and time are money. An OC-3 at
155Mbps can cost upwards of $50,000 a month and higher
speeds cost even more. If an application can only utilize a
few megabits per second, that money is being wasted. Time
spent by people waiting for data, time spent hand-tuning
network parameters, time with under-utilized compute re-
sources - also wasted money. Automatically tuned TCP
buffers more effectively utilize network resources and save
that money, but an application designer must still choose
from the many approaches.

Third, tuning is a pain. Ideally, network and protocol
designers produce work so complete that those doing dis-
tributed or grid computing are not unduly pestered with the
“grungy” details. In the real world, application develop-
ers must still make decisions in order to attain peak per-
formance. The results in this paper show the importance
of paying attention to the network and show one way to
achieve maximal performance with minimal effort.

2. Buffer I’uning Techniques

I

Enable 1 User
NLANRFTP I User

TCP buffer-tuning techniques balance memory demand
with the reality of limited resources - maximal TCP buffer
space is useless if applications have no memory. Each tech-
nique discussed below uses different information and makes
different trade-offs. All techniques are most useful for large
data transfers (at least several times the bandwidth x delay
product of the network). Short, small transmissions are
dominated by latency, and window size is practically irrele-
vant.

Static Out Visible
Static Out . ODaaue

2.1. Current Tuning Techniques

1.

2.

3.

4.

5.

6.

7.

Manual tuning [8,10]

PSC’s Automatic TCP Buffer Tuning [9]

Dynamic Right-Sizing (DRS) [4,14]

Linux 2.4 Auto-tuning [12]

Enable tuning [111

NLANR’s Auto-tuned FI’P (in ncFTP) [7]

L A W S DRS FTP’(in WUFTP)

connections can increase their window size - performance
improvements are an intentional side-effect.

Enable uses a daemon to perform the same tasks as a
human performing manual tuning. It gathers information
about every pair of hosts between which connections are
to be tuned and saves it in a database. Hosts then look up
this information when opening a connection and use it to
set their buffer sizes. Enable [113 reports performance im-
provements over untuned connections by a factor of 10-20
and above 2.4 autotuning by a factor of 2-3.

Auto-ncFTP also mimics the same sequence of events
as a human manually tuning a connection. Here, it is per-
formed once just before starting a data connection in FTP
so the client can set buffer sizes appropriately.

DRS FTP uses a new command added to the FTP control
language to gain network information, which is used to tune
buffers during the life of a connection. Tests of this method
show performance improvements over stock FTP by a factor
of 6 with lOOms delay, with optimally tuned buffers giving
an improvement by a factor of 8.

2.2. Comparison of Tuning Techniques

Thing I Level I Changes I Band I Visibilitv 1
I I 0 , - 1 I I

I PSC I Kernel I Dvnamic I In I Transparent 1

Manual tuning is the baseline by which we measure au-
totuning methods. To perform manual tuning, a human uses
tools such as ping and pathchar or pipechar to deter-
mine network latency and bandwidth. The results are mul-
tiplied to get the bandwidth x delay product, and buffers
are generally set to twice that value.

PSC’s tuning is a mostly sender-based approach. Here
the sender uses TCP packet header information and times-
tamps tb estimate the bandwidth x delay product of the net-
work, which it uses to resize its send window. The receiver
simply advertises the maximal possible window. PSC’s pa-
per [9] presents results for a NetBSD 1.2 implementation,
showing improvement over stock by factors of 10-20 for
small numbers of connections.

DRS is a mostly receiver-based buffer tuning approach
where the receiver tries to estimate the bandwidth x delay
product of the network and the congestion-control state of
the sender, again using TCP packet header information and
timestamps. The receiver then advertises a window large
enough that the sender is not flow-window limited.

Linux autotuning refers to a memory management
technique used in the stable Linux kernel, version 2.4.
This technique does not attempt any estimates of the
bandwidth x delay product of a connection. Instead, it
simply increases and decreases buffer sizes depending on
available system memory and available socket buffer space.
By increasing buffer sizes when they are full of data, TCP

Linux2.4 I Kernel I Dynamic I In I Transparent
DRS I Kernel I Dvnamic I In I Transparent

Table 1. Comparison of Tuning Techniques

User-level versus Kernel-level refers to whether the
buffer tuning is accomplished as an application-level solu-
tion or as a change to the kernel (Linux, “BSD, etc.).

Manual tuning tediously requires both types of changes.
An ‘ideal’ solution would require only one type of change
- kernel-level for situations where many TCP-based pro-
grams require high performance, user-level where only a
single TCP-based program (such as FTP) requires high per-
formance.

Kernel-level implementations will always be more effi-
cient, as more network and high-resolution timing informa-
tion is available, but they are complicated and non-portable.
Whether this is worth the 20- 100% performance improve-
ment is open to debate.

Static versus Dynamic refers to whether the buffer tun-
ing is set to a constant at the start of a connection, or if it
can change with network “weather” during the lifetime of a
connection.

2

Generally a dynamic solution is preferable - it adapts
itself to changes in network state, which some work has
shown to have multi-fractal congestion characteristics [6,
131. Static buffer sizes are always too large or small
given “live” networks. Yet, static connections often have
smoother application-level performance than dynamic con-
nections, which is desirable.

Unfortunately, both static and dynamic solutions have
problems. Dynamic changes in buffer sizes imply changes
in the advertised window, which if improperly implemented
can break TCP semantics (data legally sent for a given win-
dow is in-ff ight when the window is reduced, thus causing
the data to be dropped at the end host). Current dynamic
tuning methods monotonically increase window sizes to
avoid this - possibly wasting memory.

In-Band versus Out-of-Band refers to whether
bmdwzdth x delay information is obtained from the
connection itself or is gathered separately from the data
transmission to be tuned. An ideal solution would be
in-band to minimize user inconvenience and ensure the
correct time-dependent and path-dependent information is
being gathered.

DRS FTP is ‘both’ because data is gathered over the con-
trol channel; usually this channel uses the same path as the
data channel, but in some ‘third-party’ cases the two chan-
nels are between different hosts entirely. In the first case
data collection is ‘in-band’, while in the second not only is
it out of band, it measures characteristics of the wrong con-
nection! Auto-ncFTP suffers from the same ‘third-party’
problem.

Transparent versus Visible refers to user inconvenience
- how easily can a user tell if they are using a tuning
method, how many changes are required, etc. An ideal so-
lution would be transparent after the initial install and con-
figuration required by all techniques.

The kernel approaches are transparent; other than im-
proved performance they are essentially invisible to aver-
age users. The FTP programs are ‘opaque’ because they
can generate detectable out-of-band data, and require some
start-up time to effectively tune buffer sizes. Enable is com-
pletely visible. It requires a daemon and database sepa-
rate from any network program to be tuned, generates fre-
quent detectable network benchmarking traffic, and requires
changes to each network program that wishes to utilize its
functionality.

3. Experiments

These experiments shift our focus to the methods of di-
rect interest: manual tuning, Linux 2.4 autotuning, and
Dynamic Right-Sizing under Linux. The remaining ap-
proaches are not discussed further because such analysis is
available in the referenced papers.

3.1. Varied Experimental Parameters

Our experiments consider the following parameters:
Tuning (None, 2.4-auto, DRS): We compare a Linux

2.2.20 kernel which has no autotuning, a 2.4.17 kernel
which has Linux autotuning, and a 2.4.17 kernel which also
has Dynamic Right-Sizing. We will refer to these three as
2.2.20-None, 2.4.17-Auto, and 2.4.17-DRS.

Buffer Sizes (32KB to 32MB): Initial buffer size con-
figuration is required even for autotuning implementations.
There are three cases:

No user or kernel tuning; buffer sizes at defaults. Gives
baseline for comparison with tuned results.

Kernel-only tuning; configure maximal buffer sizes
only. Gives results for kernel autotuning implemen-
tations.

User and kernel tuning; use setsockopt () to con-
figure buffer sizes manually. Gives results for manu-
ally tuned connections.

Network Delay (zOSms, 25ms, 50ms, 100ms): We
vary the delay from 0.5ms to lOOms to show the perfor-
mance differences between LAN and WAN environments.
We use TICKET [15] to perform WAN emulation. This
emulator can route at line rate (up to lGbps in our case) in-
troducing a delay between 200 microseconds and 200 mil-
liseconds.

Parallel Streams (1, 2, 4, 8): We use up to 8 paral-
lel streams to test the effectiveness of this commonly-used
technique with autotuning techniques. This also shows how
well a given tuning technique scales with increasing num-
bers of flows. When measuring performance, we time from
the start of the first process to the finish of the last process.

3.2. Constant Experimental Parameters

Topology: Figure 1 shows the generic topology we use
in our tests. We have some number of network source (S)
processes sending data to another set of destination (D) pro-
cesses through a pair of bottleneck routers (R) connected
via some WAN cloud. The “WAN cloud” may be a direct
long-haul connection or through some arbitrarily complex
network. (In the simplest case, both routers and the “WAN
cloud” could be a single very high-bandwidth LAN switch.)

3

n . 4 D5

Hardware: Tests are run between two machines with
dual 933MHz Pentium I11 processors, an Alteon Tigon I1
Gigabit Ethernet card on a 64-bit 66-MHz PCI bus, and
5 12MB of memory.

4. Results and Analysis
Figure 1. Generic Topology

Our experiments place all processes (parallel streams)
on a single host. The results of more complicated one-
to-many or many-to-one experiments (common in scatter-
gather computation, or for web servers) can be inferred by
observing memory and CPU utilization on the hosts. This
information shows the scalability of the sender and receiver
tuning and whether one end’s behavior characterizes the
performance of the connection. This distinction is critical
for one-to-many relationships, as the “one” machine must
split its resources among many flows while each of the
“many” machines can dedicate more resources to the one
flow.

Unidirectional Transfers: Although TCP is inherently
a full duplex protocol, the majority of traffic generally flows
in one direction. TCP protocol dynamics do not signifi-
cantly differ between one flow with bidirectional traffic and
two unidirectional flows sending in opposite directions [161.

Loss: Our WAN emulator is configured to emulate no
loss (although loss may still occur due to senderheceiver
buffer over-runs). All experiments are intended to be the
best-case scenario. The artificial inclusion of loss adds
nothing to the discussion, as congestion control for TCP
Reno/SACK under Linux is a constant for all experiments.

Data Transfer: Rather than using some of the available
benchmarking programs we chose to write a simple TCP
based program to mimic message-passing traffic. This pro-
gram tries to send large (1MB) messages between hosts as
fast as possible. A total of 128 messages are sent, a number
chosen because:

128MB transfers are large enough to allow the conges-
tion window to fully open.

128MB transfers are small enough to occur commonly
in practice ’.
Longer transfers do not help differentiate among tun-
ing techniques (tested, but results omitted).

It is evenly divisible among all numbers of parallel
streams.

We present data in order of increasing delay. With con-
stant bandwidth (Gigabit Ethernet), this will show how well
each approach scales as pipes get “fatter.”

4.1. First Case, zO.5rns Delay

With delays on the order of half a millisecond, we ex-
pect that even very high bandwidth links can be saturated
with small windows - the default 64KB buffers should be
sufficient.

Figure 2 shows the performance using neither user nor
kernel tuning. With a completely default configuration, the
Linux 2.4 stack with autotuning outperforms the Linux 2.2
stack without autotuning by lOOMbps or more (as well as
showing more stable behavior). Similarly, 2.4.17-DRS out-
performs 2.4.17-Auto by a smaller margin of 30-50Mbps.
This is due to more appropriate use of TCP’s advertised
window field and faster growth to the best buffer size possi-
ble.

Unexpectedly for such a low-delay case, all kernels ben-
efit from the use of parallel streams, with improvements
in performance from 5570%. When a single data flow is
striped among multiple TCP streams, it effectively obtains
a super-exponential slow-start phase and additive increase
by N (the number of TCP streams). In this case, that behav-
ior improves performance.

Note that limitations in the firmware of our Gigabit Eth-
ernet NICs limit performance to 800Mbps or below, so we
simply consider 800Mbps ideal.

*Custom firmware solutions can improve throughput, but such results
are neither portable nor relevant to this study. ‘“In the long run we are all dead.” -John Maynard Keynes

4

2.2.20-none --*-----
2.4.17-Auto ----e----

I000
....

800 - 2.4.17-DRS -

..* ..

m

2oo I
O L I

1 2 3 4 5 6 7 8

Number of Parallcl Processes

Figure 2. No Tuning, 0.5ms

Figure 3 shows the performance with kernel tuning only;
that is, increasing the maximum amount of memory that the
kernel can allocate to a connection.

As expected, results for 2.2.20-None (which does no au-
totuning) mirror the results from the prior test.

2.4.17-Auto connections perform 30-50Mbps better than
in the untuned case, showing that the default 64KB buffers
were insufficient.

2.4.17-DRS connections also perform better with one or
two processes, but as the number of processes increases,
DRS actually performs worse! DRS is more aggressive in
allocating buffer space; with such low delay, it overallocates
memory, and performance suffers (see Figure 5’s discussion
below).

Furthermore, performance is measured a t the termina-
tion of the entire transfer (when the final parallel process
completes). Large numbers of parallel streams can lead to
the starvation of one or more processes due to TCP conges-
tion control, so the parallelized transfer suffers. Yet this can
be a good thing - parallel flows can induce chaotic network
behavior and be unfair in some cases; by pcnalizing users
of heavily parallel flows, DRS could induce more network
fairness while still providing good performance.

U

D
e
s
.-

4
B
9
3

B
m

-a

2.4.17-Auto ----8----
2.4.17-DRS -

...

................... t 1 - =........ _...

400 1
2oo t

0 ‘ I
1 2 3 4 5 6 7 8

Number of Parallel Processes

Figure 3. Kernel-Only Tuning, 0.5ms

Figure 4 shows the results for hand-tuned connections.
DRS obeys the user when buffers are set by setsock-
opt (1 , so 2.4.17-Auto and 2.4.17-DRS use the same
buffer sizes and perform essentially the same. The perfor-
mance difference between 2.2.20 and 2.4.17 is due to stack
improvements in Linux 2.4.

2.2.20-none -----*.----
2.4.17-Aut0 ----e----
2.4.17-DRS -

....... *
Goo t
400 i
2oo t

0 ‘ J
1 2 3 4 5 6 7 8

Number of Parallel Processes

Figure 4. User/Kernel Tuning with Ideal Sizes,
0.5ms

The “ideal” buffer sizes in the prior graph (Figure 4) are
larger than one might expect; Figure 5 shows the perfor-
mance of 2.4.17-Auto with buffer sizes per process between
8KB and 64MB. We achieve peak performance with sizes
on the order of 1MB - much larger than the calculated ideal
of 64KB, the bandwidthx delay of the network. The differ-
ence is due to the interaction and feedback between several
factors, the most important of which are TCP congestion
control and process scheduling.

To keep the pipe full, one must buffer enough data to

5

avoid transmission “bubbles.” However, with multi-fractal
burstiness caused by TCP congestion control [6,13], occa-
sionally the network is so overloaded that very large buffers
are needed to accommodate it. Also, these buffers them-
selves can increase the effective delay (and therefore in-
creasing the buffering required) in a feedback loop only ter-
minated by a lull later in the traffic stream. This buffering
can occur either in the network routers or in the end hosts.

Because of process scheduling, it is incorrect to divide
the predicted “ideal” buffer size (the bandwidth x delay)
by the number of processes to determine the buffer size per
process when using parallel streams. Because only one pro-
cess can run on a given CPU at a given time, the kernel must
buffer packets for the remaining processes until they can get
a time slice. Thus, as the number of processes grows, the ef-
fective delay experienced by those processes increases, and
the amount of required buffering also grows. Beyond a cer-
tain point, this feedback is great enough that the addition of
additional parallelism is actually detrimental. This is what
we see with DRS in Figure 5.

F 500 .-
3

400

$ 300
a
2 200

1 process - 900 1 . ’ I

850 2 process -----x--.--

-

-

-

-

IO000 100000 I e 4 6 1 e 4 7

..
.........................

~

Buffer size

’

I

t 2.4.17-A~t0 .---*---
2.4.17-DRS -

1 2 3 4 5 6 7 8

Number of Parallel Processes

Figure 6. No Tuning, 25ms

Figure 7 shows results with Kernel-Only Tuning. The
performance of DRS improves dramatically while the per-
formance of simple autotuning and untuned connections is
constant. As we increase the number of processes we again
see the performance of DRS fall.

This graph actually reveals a bug in the Linux 2.4 ker-
nel series that our DRS patch fixes; the window scaling ad-
vertised in SYN packets is based on initial (default) buffer
size, not the maximal buffer size up to which Linux can
tune. Thus with untuned default buffers, no window scaling
is advertised - so even if the kernel is allowed to allocate
multi-megabyte buffers, the size of those buffers cannot be
represented in TCP packet headers.

Figure 5. Effect of Buffer Size on Perfor-
mance, 0.5ms

4.2. Second Case, ~25rns Delay

This case increases delay to values more in line with
a network of moderate size, giving a bandwidth x delay
product of over 3MB. In this case, the default configura-
tion is insufficient for high performance, giving less than
20Mbps for a single process with all kernels (Figure 6). As
the number of processes increases, our effective flow win-
dow increases, and we achieve a linear speed-up. In this
case, simple autotuning outperforms DRS, as the memory-
management technique is more effective with small win-
dows (it was designed for heavily loaded web servers).

F 500
.-
a
3 400
5 3 300
a : 200

100

1 2 3 4 5 6 7 8

Number of Parallel Processes

Figure 7. Kernel-Only Tuning, 25ms

With both user and kernel tuning, maximal performance
increases for all kernels. However, as shown in Figure 8,
performance does fall for DRS in the two and four pro-
cess case - here we see that second-guessing the kernel can
cause problems, and larger buffer sizes are not always de-

6

performance improvement.
200

700

2.2.20-none - - - . - .

2.4.17-DRS --t
2.4.17-Auto ----*----

-

600

g 500
.3

400
.c 2 300

5 m 200
U

50 c 4 ~~

..........
.......

..---

1 2 3 4 5 6 7 8
Number of Parallel Processes

loo t
1 2 3 4 5 6 7 8

Number of Parallel Processes

Figure 8. User/Kernel Tuning with Ideal Sizes,
25ms

4.3. Third and Fourth Cases, 50-1OOnis Delay

The patterns observed in results for the 50ms and looms
cases do not significantly differ (other than adjustments in
scale) from those in the 25ms case - the factors dominat-
ing behavior are the same. That is, at low delays (below
20ms), one can find very interesting behavior as TCP inter-
acts with the operating system, NIC, and so forth. At higher
delays (25ms and above), the time scales are large enough
that TCP slow-start, additive increase, and multiplicative
decrease behaviors are most important; interactions with the
operating system and so forth become insignificant.

In fact, the completely untuned cases differ so little that

Figure 9. Kernel-Only Tuning, 1 OOms

Similar to Figure 8, the hand-tuned case in Figure 10
shows 2.4.17-DRS and 2.4.17-Auto performing identically
with 2.2.20-None performing slightly worse. Interestingly,
at this high delay, the performance difference between DRS
and autotuning is insignificant - the factors dominating per-
formance are not buffer sizes but rather standard TCP slow-
start, additive increase, and multiplicative decrease behav-
iors, and the 128MB transfer size is insufficient to differen-
tiate the flows. With latencies this high, very large (multi-
gigabyte, minimum) transfer sizes would be required to
more fully utilize the network. It would also help to use
a modified version of TCP such as Vegas [2] or one of the
plethora of other versions, because a multiplicative decrease
can take a ridiculous amount of time to recover on high-
delay links.

5. Guidelines on Selecting an Auto-Tuned TCP

the following three equations (generated experimentally)
suffice to calculate the bandwidth in Mbps with error uni-
formly below 20%, given only the number of processes and

, This section gives a few practical guidelines for a
prospective of an automatically tuned TCP.

the delay in milliseconds.

0 2.2.20-None: (processes x 214)ldelay

0 2.4.17-Auto: (processes x 467)ldelay

0 2.4.17-DRS: (processes x 355)ldelay

1. You have kernel-modification privileges to the ma-
chine. So, you may use a kernel-level solution which
will generally provide the best performance. Currently,
only NetJ3SD and Linux implementations exist, so for
other operating systems, you must either wait or use a
user-level solution.

0 If you want to use NetBSD, you must use PSC's As in Figure 7, the kernel-only tuning case in Figure 9
shows 2.4.17-DRS significantly outperforming 2.4.17-Auto
(by a factor of 5 to 15). DRS at 50ms delay with 8 processes 0 Linux 2.4 autotuning is appropriate for
achieves 310Mbps (graph omitted), and at lOOms with 8 large numbers of small connections, such

tuning.

7

6. Conclusion

200

2.2.20-none --=- - -
2.4.17-Auto ----e----
2.4.17-DRS - -

50 t
0

1 2 3 4 5 6 7 8

Number of Parallel Processes

Figure 10. User/Kernel Tuning with Ideal
Sizes, 100ms

as web/media servers, o r machines where users
are willing to tune parallel streams.

0 DRS is appropriate for smaller numbers of large
connections, such as FTP or bulk data transfers,
or machines where users are not willing to tune
parallel streams.

2. You d o not have kernel-modification privileges to the
machine or are unwilling to make changes, forcing a
user-level solution. All user-level solutions perform
comparably, so the choice between them is based on
features.

0 If all you need is FTP, LANL‘s DRS FTP or
NLANR’s Auto-tuned FTP will be the easiest
plug-in solutions. Obviously, w e are biased in
favor of LANL’s implementation, which dynam-
ically adjusts the window, over NLANR’s imple-
mentation, which does not.

0 If you require multiple applications, then the En-
able [ll] service may fit your needs. This will,
however, require source-code level changes to
each program you wish to use.

In all cases, initial tuning should b e performed to

Ensure TCP window scaling, timestamps, SACK op-
tions are enabled.

Set the maximum memory available to allocate per
connection or for user-level tuning.

Set ranges for Linux 2.4 autotuning.

(Optional) Flush caches in between runs so inappropri-
ately set slow-start thresholds are not re-used.

8

We have presented a detailed discussion on the various
techniques for automatic TCP buffer tuning, showing the
benefits and problcms with each approach. We have pre-
sented experimental evidence showing the superiority of
Dynamic Right-Sizing over simple autotuning as found in
Linux 2.4. We have also uncovered several unexpected as-
pects of the problem (such as the calculated “ideal” buffers
performing more poorly than somewhat larger buffers). Fi-
nally, the discussion has provided insight into which solu-
tions are appropriate for which circumstances, and why.

References

ANL, CalTech, LBL, SLAC, JF, U. Wisconsin, BNL,
FNL, and SDSC. Thc Particle Physics Data Grid.
h ttp://www.cacr.cal tech.cdu/ppdg/.
L. Brakmo and L. Peterson. TCP Vegas: End to End Con-
gestion Avoidance on a Global Internet. IEEE Journal on
Selected Areas iri Cornnirrnication, 13(8): 1465-1480, Octo-
ber 1995.
W. Feng, I. Fostcr, S. Haminond, B. Hibbard, C. Kesselman,
A. Shoshani, B. Tierney, and D. Williams. Prototyping an
Earth System Grid. http://\vww.scd.ucar.edulcss/esg/.
M. Fisk and W. Feng. Dynamic Adjustment of TCP
Window Sizes. Technical Report Los Alamos Unclas-
sified Report (LA-UR) 00-3221, Los Alamos National
Laboratory, July 2000. See http://www.lanl.gov/radi-
ant/website/pubs/hptcp/tcpwindow.pdf.
W. E. Johnston, D. Gannon, and B. Nitzberg. Grids as
Production Computing Environments: The Engineering As-
pects of NASA‘s Information Power Grid. In Proceedirigs
of 8th IEEE lnteniational S)wiposium on Higlt-Per/oniiaiice
Distributed Coriipufirzg, August 1999.
W. Leland, M. Taqqu, W. Willinger, ~ and D. Wilson. On
the Self-similar Nature of Ethemet Traffic (Extended Ver-
sion). IEEWACM Trailsactioils on Networking, 2(1): 1-1 5,
February 1994.
G. Navlakha and J. Ferguson. Automatic
TCP Window Tuning and Applications.
http://dast.nlanr.net/Projects/Autobuf/autotcp.html. April
2001.
Pittsburgh Supercomputing Center. Enabling
High-Performance Data Transfers on Hosts.
http://www.psc.edu/networking/perf-tune.htm1.
J. Semke, J. Mahdavi, , and M. Mathis. Automatic TCP
Buffer Tuning. ACM SIGCOMM 1998,28(4), October 1998.
B. Tiemey. TCP Tuning Guide for Distributed Applica-
tions on Wide-Area Networks. In USENIX & SAGE Login,
http://www-didc.lbl .gov/tcp-wan.htm1, February 2001.
B. L. Tierney, D. Gunter, J . Lee, and M. Stoufer. Enabling
Network-Aware Applications. In Proceedings of IEEE Iizter-
national Syniposirun on N i g h Perfoniiaiice Distrrtbted Com-
puting, August 2001.
L. Torvalds and The Free Software Community. The Linux
Kernel, September 1991. http://www.kemel.org/.

[13] A Veres and M. Boda. The Chaotic Nature of TCP Conges-
tion Control. In Proceedings of IEEE Iizfocom 2000, March
2000.

[14] E. Weigle and W. Feng. Dynamic Right-Sizing: A Simu-
lation Study. In Proceedings of IEEE Inlernational Con-
ference on Computer Coninzunicutioris and Networks, 2001.
http://public.lanl.gov/ehw/papers/ICCCN-2001 -DRS.ps.

[I51 E. Weigle and W. Feng. TICKETing High-speed Traffic
with Commodity Hardware and Software. In Proceedings
of the Third Annual Passive and Active Meusurenzent Work-
shop (PAM2002), March 2002.

[16] L. Zhang, S. Shenker, and D. D. Clark. Observations on
the Dynamics of a Congestion Control Algorithm: The Ef-
fects of Two-way Traffic. In Proceedings of ACM SigCornm
1991, September 1991.

9

