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Abstract 

Rather than paiizful, manual, static, per-connection op- 
timization of TCP buffer sizes siniply to achieve acceptable 
perfonnance for distributed applications 18, I O ] ,  inany re- 
searclzers liave proposed techniques to perforin this tuning 
automatically [4, 7,9,11,12,14]. This paperjrst discusses 
tlie relative merits of the various approaches in tlaeory, and 
then provides substantial experimental data concerning two 
coinpetiizg iniplerneiitations - the buffer autotuning already 
present in Linux 2.4.x and “Dynainic Right-Sizing.” Tlzis 
paper reveals lieretofore unknown aspects of the problem 
and current solutions, provides insiglit into tlie proper ap- 
proach for various circumstances, and points toward ways 
to further irnprove perfornzance. 

Keywords: dynamic right-sizing, autotuning, high- 
performance networking, TCP, flow control, wide-area net- 
work. 

1. Introduction 

TCP, for good or ill, is the only protocol widely avail- 
able for reliable end-to-end congestion-controlled network 
communication, and thus it is the one used for almost all 
distributed computing. 

Unfortunately, TCP was not designed with high- 
performance computing in mind - its original design deci- 
sions focused on long-term fairness first, with performance 
a distant second. Thus users must often perform tortuous 
manual optimizations simply to achieve acceptable behav- 
ior. The most important and often most difficult task is de- 
termining and setting appropriate buffer sizes. Because of 
this, at least six ways of automatically setting these sizes 
have been proposed. 

In this paper, we compare and contrast these tuning 
methods. First we explain each method, followed by an in- 
depth discussion of their features. Next we discuss the ex- 
periments to fully characterize two particularly interesting 
methods (Linux 2.4 autotuning and Dynamic Right-Sizing). 
We conclude with results and possible improvements. 

1.1. TCP Tuning and Distributed Computing 

Computational grids such as the Information Power 
Grid [5] ,  Particle Physics Data Grid [l], and Earth System 
Grid [3] all depend on TCP. This implies several things. 

First, bandwidth is often the bottleneck. Performance for 
distributed codes is crippled by using TCP over a WAN. An 
appropriately selected buffer tuning technique is one solu- 
tion to this problem. 

Second, bandwidth and time are money. An OC-3 at 
155Mbps can cost upwards of $50,000 a month and higher 
speeds cost even more. If an application can only utilize a 
few megabits per second, that money is being wasted. Time 
spent by people waiting for data, time spent hand-tuning 
network parameters, time with under-utilized compute re- 
sources - also wasted money. Automatically tuned TCP 
buffers more effectively utilize network resources and save 
that money, but an application designer must still choose 
from the many approaches. 

Third, tuning is a pain. Ideally, network and protocol 
designers produce work so complete that those doing dis- 
tributed or grid computing are not unduly pestered with the 
“grungy” details. In the real world, application develop- 
ers must still make decisions in order to attain peak per- 
formance. The results in this paper show the importance 
of paying attention to the network and show one way to 
achieve maximal performance with minimal effort. 



2. Buffer I’uning Techniques 
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NLANRFTP I User 

TCP buffer-tuning techniques balance memory demand 
with the reality of limited resources - maximal TCP buffer 
space is useless if applications have no memory. Each tech- 
nique discussed below uses different information and makes 
different trade-offs. All techniques are most useful for large 
data transfers (at least several times the bandwidth x delay 
product of the network). Short, small transmissions are 
dominated by latency, and window size is practically irrele- 
vant. 
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2.1. Current Tuning Techniques 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Manual tuning [8,10] 

PSC’s Automatic TCP Buffer Tuning [9] 

Dynamic Right-Sizing (DRS) [4,14] 

Linux 2.4 Auto-tuning [12] 

Enable tuning [ 111 

NLANR’s Auto-tuned FI’P (in ncFTP) [7] 

L A W S  DRS FTP’(in WUFTP) 

connections can increase their window size - performance 
improvements are an intentional side-effect. 

Enable uses a daemon to perform the same tasks as a 
human performing manual tuning. It gathers information 
about every pair of hosts between which connections are 
to be tuned and saves it in a database. Hosts then look up 
this information when opening a connection and use it to 
set their buffer sizes. Enable [ 113 reports performance im- 
provements over untuned connections by a factor of 10-20 
and above 2.4 autotuning by a factor of 2-3. 

Auto-ncFTP also mimics the same sequence of events 
as a human manually tuning a connection. Here, it is per- 
formed once just before starting a data connection in FTP 
so the client can set buffer sizes appropriately. 

DRS FTP uses a new command added to the FTP control 
language to gain network information, which is used to tune 
buffers during the life of a connection. Tests of this method 
show performance improvements over stock FTP by a factor 
of 6 with lOOms delay, with optimally tuned buffers giving 
an improvement by a factor of 8. 

2.2. Comparison of Tuning Techniques 

Thing I Level I Changes I Band I Visibilitv 1 
I I 0 ,  - 1  I I 

I PSC I Kernel I Dvnamic I In I Transparent 1 

Manual tuning is the baseline by which we measure au- 
totuning methods. To perform manual tuning, a human uses 
tools such as ping and pathchar or pipechar to deter- 
mine network latency and bandwidth. The results are mul- 
tiplied to get the bandwidth x delay product, and buffers 
are generally set to twice that value. 

PSC’s tuning is a mostly sender-based approach. Here 
the sender uses TCP packet header information and times- 
tamps tb estimate the bandwidth x delay product of the net- 
work, which it uses to resize its send window. The receiver 
simply advertises the maximal possible window. PSC’s pa- 
per [9] presents results for a NetBSD 1.2 implementation, 
showing improvement over stock by factors of 10-20 for 
small numbers of connections. 

DRS is a mostly receiver-based buffer tuning approach 
where the receiver tries to estimate the bandwidth x delay 
product of the network and the congestion-control state of 
the sender, again using TCP packet header information and 
timestamps. The receiver then advertises a window large 
enough that the sender is not flow-window limited. 

Linux autotuning refers to a memory management 
technique used in the stable Linux kernel, version 2.4. 
This technique does not attempt any estimates of the 
bandwidth x delay product of a connection. Instead, it 
simply increases and decreases buffer sizes depending on 
available system memory and available socket buffer space. 
By increasing buffer sizes when they are full of data, TCP 

Linux2.4 I Kernel I Dynamic I In I Transparent 
DRS I Kernel I Dvnamic I In I Transparent 

Table 1. Comparison of Tuning Techniques 

User-level versus Kernel-level refers to whether the 
buffer tuning is accomplished as an application-level solu- 
tion or as a change to the kernel (Linux, “BSD, etc.). 

Manual tuning tediously requires both types of changes. 
An ‘ideal’ solution would require only one type of change 
- kernel-level for situations where many TCP-based pro- 
grams require high performance, user-level where only a 
single TCP-based program (such as FTP) requires high per- 
formance. 

Kernel-level implementations will always be more effi- 
cient, as more network and high-resolution timing informa- 
tion is available, but they are complicated and non-portable. 
Whether this is worth the 20- 100% performance improve- 
ment is open to debate. 

Static versus Dynamic refers to whether the buffer tun- 
ing is set to a constant at the start of a connection, or if it 
can change with network “weather” during the lifetime of a 
connection. 
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Generally a dynamic solution is preferable - it adapts 
itself to changes in network state, which some work has 
shown to have multi-fractal congestion characteristics [6, 
131. Static buffer sizes are always too large or small 
given “live” networks. Yet, static connections often have 
smoother application-level performance than dynamic con- 
nections, which is desirable. 

Unfortunately, both static and dynamic solutions have 
problems. Dynamic changes in buffer sizes imply changes 
in the advertised window, which if improperly implemented 
can break TCP semantics (data legally sent for a given win- 
dow is in-ff ight when the window is reduced, thus causing 
the data to be dropped at the end host). Current dynamic 
tuning methods monotonically increase window sizes to 
avoid this - possibly wasting memory. 

In-Band versus Out-of-Band refers to whether 
bmdwzdth x delay information is obtained from the 
connection itself or is gathered separately from the data 
transmission to be tuned. An ideal solution would be 
in-band to minimize user inconvenience and ensure the 
correct time-dependent and path-dependent information is 
being gathered. 

DRS FTP is ‘both’ because data is gathered over the con- 
trol channel; usually this channel uses the same path as the 
data channel, but in some ‘third-party’ cases the two chan- 
nels are between different hosts entirely. In the first case 
data collection is ‘in-band’, while in the second not only is 
it out of band, it measures characteristics of the wrong con- 
nection! Auto-ncFTP suffers from the same ‘third-party’ 
problem. 

Transparent versus Visible refers to user inconvenience 
- how easily can a user tell if they are using a tuning 
method, how many changes are required, etc. An ideal so- 
lution would be transparent after the initial install and con- 
figuration required by all techniques. 

The kernel approaches are transparent; other than im- 
proved performance they are essentially invisible to aver- 
age users. The FTP programs are ‘opaque’ because they 
can generate detectable out-of-band data, and require some 
start-up time to effectively tune buffer sizes. Enable is com- 
pletely visible. It requires a daemon and database sepa- 
rate from any network program to be tuned, generates fre- 
quent detectable network benchmarking traffic, and requires 
changes to each network program that wishes to utilize its 
functionality. 

3. Experiments 

These experiments shift our focus to the methods of di- 
rect interest: manual tuning, Linux 2.4 autotuning, and 
Dynamic Right-Sizing under Linux. The remaining ap- 
proaches are not discussed further because such analysis is 
available in the referenced papers. 

3.1. Varied Experimental Parameters 

Our experiments consider the following parameters: 
Tuning (None, 2.4-auto, DRS): We compare a Linux 

2.2.20 kernel which has no autotuning, a 2.4.17 kernel 
which has Linux autotuning, and a 2.4.17 kernel which also 
has Dynamic Right-Sizing. We will refer to these three as 
2.2.20-None, 2.4.17-Auto, and 2.4.17-DRS. 

Buffer Sizes (32KB to 32MB): Initial buffer size con- 
figuration is required even for autotuning implementations. 
There are three cases: 

No user or kernel tuning; buffer sizes at defaults. Gives 
baseline for comparison with tuned results. 

Kernel-only tuning; configure maximal buffer sizes 
only. Gives results for kernel autotuning implemen- 
tations. 

User and kernel tuning; use setsockopt ( )  to con- 
figure buffer sizes manually. Gives results for manu- 
ally tuned connections. 

Network Delay (zOSms, 25ms, 50ms, 100ms): We 
vary the delay from 0.5ms to lOOms to show the perfor- 
mance differences between LAN and WAN environments. 
We use TICKET [15] to perform WAN emulation. This 
emulator can route at line rate (up to lGbps in our case) in- 
troducing a delay between 200 microseconds and 200 mil- 
liseconds. 

Parallel Streams (1, 2, 4, 8): We use up to 8 paral- 
lel streams to test the effectiveness of this commonly-used 
technique with autotuning techniques. This also shows how 
well a given tuning technique scales with increasing num- 
bers of flows. When measuring performance, we time from 
the start of the first process to the finish of the last process. 

3.2. Constant Experimental Parameters 

Topology: Figure 1 shows the generic topology we use 
in our tests. We have some number of network source (S) 
processes sending data to another set of destination (D) pro- 
cesses through a pair of bottleneck routers (R) connected 
via some WAN cloud. The “WAN cloud” may be a direct 
long-haul connection or through some arbitrarily complex 
network. (In the simplest case, both routers and the “WAN 
cloud” could be a single very high-bandwidth LAN switch.) 
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Hardware: Tests are run between two machines with 
dual 933MHz Pentium I11 processors, an Alteon Tigon I1 
Gigabit Ethernet card on a 64-bit 66-MHz PCI bus, and 
5 12MB of memory. 

4. Results and Analysis 
Figure 1. Generic Topology 

Our experiments place all processes (parallel streams) 
on a single host. The results of more complicated one- 
to-many or many-to-one experiments (common in scatter- 
gather computation, or for web servers) can be inferred by 
observing memory and CPU utilization on the hosts. This 
information shows the scalability of the sender and receiver 
tuning and whether one end’s behavior characterizes the 
performance of the connection. This distinction is critical 
for one-to-many relationships, as the “one” machine must 
split its resources among many flows while each of the 
“many” machines can dedicate more resources to the one 
flow. 

Unidirectional Transfers: Although TCP is inherently 
a full duplex protocol, the majority of traffic generally flows 
in one direction. TCP protocol dynamics do not signifi- 
cantly differ between one flow with bidirectional traffic and 
two unidirectional flows sending in opposite directions [ 161. 

Loss: Our WAN emulator is configured to emulate no 
loss (although loss may still occur due to senderheceiver 
buffer over-runs). All experiments are intended to be the 
best-case scenario. The artificial inclusion of loss adds 
nothing to the discussion, as congestion control for TCP 
Reno/SACK under Linux is a constant for all experiments. 

Data Transfer: Rather than using some of the available 
benchmarking programs we chose to write a simple TCP 
based program to mimic message-passing traffic. This pro- 
gram tries to send large (1MB) messages between hosts as 
fast as possible. A total of 128 messages are sent, a number 
chosen because: 

128MB transfers are large enough to allow the conges- 
tion window to fully open. 

128MB transfers are small enough to occur commonly 
in practice ’. 
Longer transfers do not help differentiate among tun- 
ing techniques (tested, but results omitted). 

It is evenly divisible among all numbers of parallel 
streams. 

We present data in order of increasing delay. With con- 
stant bandwidth (Gigabit Ethernet), this will show how well 
each approach scales as pipes get “fatter.” 

4.1. First Case, zO.5rns Delay 

With delays on the order of half a millisecond, we ex- 
pect that even very high bandwidth links can be saturated 
with small windows - the default 64KB buffers should be 
sufficient. 

Figure 2 shows the performance using neither user nor 
kernel tuning. With a completely default configuration, the 
Linux 2.4 stack with autotuning outperforms the Linux 2.2 
stack without autotuning by lOOMbps or more (as well as 
showing more stable behavior). Similarly, 2.4.17-DRS out- 
performs 2.4.17-Auto by a smaller margin of 30-50Mbps. 
This is due to more appropriate use of TCP’s advertised 
window field and faster growth to the best buffer size possi- 
ble. 

Unexpectedly for such a low-delay case, all kernels ben- 
efit from the use of parallel streams, with improvements 
in performance from 5570%. When a single data flow is 
striped among multiple TCP streams, it effectively obtains 
a super-exponential slow-start phase and additive increase 
by N (the number of TCP streams). In this case, that behav- 
ior improves performance. 

Note that limitations in the firmware of our Gigabit Eth- 
ernet NICs limit performance to 800Mbps or below, so we 
simply consider 800Mbps ideal. 

*Custom firmware solutions can improve throughput, but such results 
are neither portable nor relevant to this study. ‘“In the long run we are all dead.” -John Maynard Keynes 
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Figure 2. No Tuning, 0.5ms 

Figure 3 shows the performance with kernel tuning only; 
that is, increasing the maximum amount of memory that the 
kernel can allocate to a connection. 

As expected, results for 2.2.20-None (which does no au- 
totuning) mirror the results from the prior test. 

2.4.17-Auto connections perform 30-50Mbps better than 
in  the untuned case, showing that the default 64KB buffers 
were insufficient. 

2.4.17-DRS connections also perform better with one or 
two processes, but as the number of processes increases, 
DRS actually performs worse! DRS is more aggressive in 
allocating buffer space; with such low delay, it overallocates 
memory, and performance suffers (see Figure 5’s discussion 
below). 

Furthermore, performance is measured a t  the termina- 
tion of the entire transfer (when the final parallel process 
completes). Large numbers of parallel streams can lead to 
the starvation of one or more processes due to TCP conges- 
tion control, so the parallelized transfer suffers. Yet this can 
be a good thing - parallel flows can induce chaotic network 
behavior and be unfair in some cases; by pcnalizing users 
of heavily parallel flows, DRS could induce more network 
fairness while still providing good performance. 

U 
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Figure 3. Kernel-Only Tuning, 0.5ms 

Figure 4 shows the results for hand-tuned connections. 
DRS obeys the user when buffers are set by setsock- 
opt  ( 1 ,  so 2.4.17-Auto and 2.4.17-DRS use the same 
buffer sizes and perform essentially the same. The perfor- 
mance difference between 2.2.20 and 2.4.17 is due to stack 
improvements in Linux 2.4. 

2.2.20-none -----*.---- 
2.4.17-Aut0 ----e---- 
2.4.17-DRS - 

....... .............................. * .............................................................. ....... 
Goo t 
400 i 
2oo t 

0 ‘  J 
1 2 3 4 5 6 7 8  

Number of Parallel Processes 

Figure 4. User/Kernel Tuning with Ideal Sizes, 
0.5ms 

The “ideal” buffer sizes in the prior graph (Figure 4) are 
larger than one might expect; Figure 5 shows the perfor- 
mance of 2.4.17-Auto with buffer sizes per process between 
8KB and 64MB. We achieve peak performance with sizes 
on the order of 1MB - much larger than the calculated ideal 
of 64KB, the bandwidthx delay of the network. The differ- 
ence is due to the interaction and feedback between several 
factors, the most important of which are TCP congestion 
control and process scheduling. 

To keep the pipe full, one must buffer enough data to 
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avoid transmission “bubbles.” However, with multi-fractal 
burstiness caused by TCP congestion control [6,13], occa- 
sionally the network is so overloaded that very large buffers 
are needed to accommodate it. Also, these buffers them- 
selves can increase the effective delay (and therefore in- 
creasing the buffering required) in a feedback loop only ter- 
minated by a lull later in the traffic stream. This buffering 
can occur either in the network routers or in the end hosts. 

Because of process scheduling, it is incorrect to divide 
the predicted “ideal” buffer size (the bandwidth x delay) 
by the number of processes to determine the buffer size per 
process when using parallel streams. Because only one pro- 
cess can run on a given CPU at a given time, the kernel must 
buffer packets for the remaining processes until they can get 
a time slice. Thus, as the number of processes grows, the ef- 
fective delay experienced by those processes increases, and 
the amount of required buffering also grows. Beyond a cer- 
tain point, this feedback is great enough that the addition of 
additional parallelism is actually detrimental. This is what 
we see with DRS in Figure 5. 

F 500 .- 
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2 200 

1 process - 900 1 . ’ I 

850 2 process -----x--.-- 

- 

- 

- 

- 

IO000 100000 I e 4 6  1 e 4 7  

...................................................... 
......................... .................. 

~ ................. ............................. ............ ....................... ...................... 

Buffer size 

’ 

I 

t 2.4.17-A~t0 .---*--- 
2.4.17-DRS - 

1 2 3 4 5 6 7 8  

Number of Parallel Processes 

Figure 6. No Tuning, 25ms 

Figure 7 shows results with Kernel-Only Tuning. The 
performance of DRS improves dramatically while the per- 
formance of simple autotuning and untuned connections is 
constant. As we increase the number of processes we again 
see the performance of DRS fall. 

This graph actually reveals a bug in the Linux 2.4 ker- 
nel series that our DRS patch fixes; the window scaling ad- 
vertised in SYN packets is based on initial (default) buffer 
size, not the maximal buffer size up to which Linux can 
tune. Thus with untuned default buffers, no window scaling 
is advertised - so even if the kernel is allowed to allocate 
multi-megabyte buffers, the size of those buffers cannot be 
represented in TCP packet headers. 

Figure 5. Effect of Buffer Size on Perfor- 
mance, 0.5ms 

4.2. Second Case, ~25rns Delay 

This case increases delay to values more in line with 
a network of moderate size, giving a bandwidth x delay 
product of over 3MB. In this case, the default configura- 
tion is insufficient for high performance, giving less than 
20Mbps for a single process with all kernels (Figure 6). As 
the number of processes increases, our effective flow win- 
dow increases, and we achieve a linear speed-up. In this 
case, simple autotuning outperforms DRS, as the memory- 
management technique is more effective with small win- 
dows (it was designed for heavily loaded web servers). 

F 500 
.- 
a 
3 400 
5 3 300 
a : 200 

100 

1 2 3 4 5 6 7 8  

Number of Parallel Processes 

Figure 7. Kernel-Only Tuning, 25ms 

With both user and kernel tuning, maximal performance 
increases for all kernels. However, as shown in Figure 8, 
performance does fall for DRS in the two and four pro- 
cess case - here we see that second-guessing the kernel can 
cause problems, and larger buffer sizes are not always de- 
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performance improvement. 
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Figure 8. User/Kernel Tuning with Ideal Sizes, 
25ms 

4.3. Third and Fourth Cases, 50-1OOnis Delay 

The patterns observed in results for the 50ms and looms 
cases do not significantly differ (other than adjustments in 
scale) from those in the 25ms case - the factors dominat- 
ing behavior are the same. That is, at low delays (below 
20ms), one can find very interesting behavior as TCP inter- 
acts with the operating system, NIC, and so forth. At higher 
delays (25ms and above), the time scales are large enough 
that TCP slow-start, additive increase, and multiplicative 
decrease behaviors are most important; interactions with the 
operating system and so forth become insignificant. 

In fact, the completely untuned cases differ so little that 

Figure 9. Kernel-Only Tuning, 1 OOms 

Similar to Figure 8, the hand-tuned case in Figure 10 
shows 2.4.17-DRS and 2.4.17-Auto performing identically 
with 2.2.20-None performing slightly worse. Interestingly, 
at this high delay, the performance difference between DRS 
and autotuning is insignificant - the factors dominating per- 
formance are not buffer sizes but rather standard TCP slow- 
start, additive increase, and multiplicative decrease behav- 
iors, and the 128MB transfer size is insufficient to differen- 
tiate the flows. With latencies this high, very large (multi- 
gigabyte, minimum) transfer sizes would be required to 
more fully utilize the network. It would also help to use 
a modified version of TCP such as Vegas [2] or one of the 
plethora of other versions, because a multiplicative decrease 
can take a ridiculous amount of time to recover on high- 
delay links. 

5. Guidelines on Selecting an Auto-Tuned TCP 

the following three equations (generated experimentally) 
suffice to calculate the bandwidth in Mbps with error uni- 
formly below 20%, given only the number of processes and 

, This section gives a few practical guidelines for a 
prospective of an automatically tuned TCP. 

the delay in milliseconds. 

0 2.2.20-None: (processes x 214)ldelay 

0 2.4.17-Auto: (processes x 467)ldelay 

0 2.4.17-DRS: (processes x 355)ldelay 

1. You have kernel-modification privileges to the ma- 
chine. So, you may use a kernel-level solution which 
will generally provide the best performance. Currently, 
only NetJ3SD and Linux implementations exist, so for 
other operating systems, you must either wait or use a 
user-level solution. 

0 If you want to use NetBSD, you must use PSC's As in Figure 7, the kernel-only tuning case in Figure 9 
shows 2.4.17-DRS significantly outperforming 2.4.17-Auto 
(by a factor of 5 to 15). DRS at 50ms delay with 8 processes 0 Linux 2.4 autotuning is appropriate for 
achieves 310Mbps (graph omitted), and at lOOms with 8 large numbers of small connections, such 

tuning. 
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6. Conclusion 

200 

2.2.20-none --=- - - 
2.4.17-Auto ----e---- 
2.4.17-DRS - - 

50 t 
0 

1 2 3 4 5 6 7 8  

Number of Parallel Processes 

Figure 10. User/Kernel Tuning with Ideal 
Sizes, 100ms 

as  web/media servers, o r  machines where users 
are  willing to tune parallel streams. 

0 DRS is appropriate for smaller numbers of large 
connections, such as FTP or  bulk data transfers, 
or machines where users are not willing to tune 
parallel streams. 

2. You d o  not have kernel-modification privileges to the 
machine or  are unwilling to make changes, forcing a 
user-level solution. All user-level solutions perform 
comparably, so the choice between them is based on 
features. 

0 If all you need is FTP, LANL‘s DRS FTP or  
NLANR’s Auto-tuned FTP will be the easiest 
plug-in solutions. Obviously, w e  are biased in 
favor of LANL’s implementation, which dynam- 
ically adjusts the window, over NLANR’s imple- 
mentation, which does not. 

0 If you require multiple applications, then the En- 
able [ll] service may fit your needs. This will, 
however, require source-code level changes to 
each program you wish to use. 

In all cases, initial tuning should b e  performed to 

Ensure TCP window scaling, timestamps, SACK op- 
tions are enabled. 

Set the maximum memory available to  allocate per 
connection or for user-level tuning. 

Set ranges for Linux 2.4 autotuning. 

(Optional) Flush caches in between runs so inappropri- 
ately set slow-start thresholds are not re-used. 

8 

We have presented a detailed discussion on the various 
techniques for automatic TCP buffer tuning, showing the 
benefits and problcms with each approach. We have pre- 
sented experimental evidence showing the superiority of 
Dynamic Right-Sizing over simple autotuning as  found in 
Linux 2.4. We have also uncovered several unexpected as- 
pects of  the problem (such as the calculated “ideal” buffers 
performing more poorly than somewhat larger buffers). Fi- 
nally, the discussion has provided insight into which solu- 
tions are appropriate for which circumstances, and why. 
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