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Development of an Autonomous Continuous Monitoring System
for Mechanical Damage Detection

Hoon Sohn', David W. Allen, Keith Worden?, and Charles R. Farrar

Engineering Sciences and Applications Division, Los Alamos National Laboratory
Los Alamos, New Mexico, USA

ABSTRACT

The primary objective of damage identification is to ascertain the existence of damage within a
mechanical system. This study applies the Sequential Probability Ratio Test (SPRT) to examine
if damage is present or not. In the original formulation of the SPRT, the distribution of data is
assumed Gaussian and thresholds for monitoring are set focusing on the center mass properties
of the distribution. Decision-making for damage identification is, however, often sensitive to the
tails of the distribution and the tails may not necessarily be governed by Gaussian characteristics.
By modeling the tails using the technique of Extreme Value Statistics (EVS), the thresholds for
the SPRT may be set more accurately avoiding the unnecessary normality assumption. The
proposed combination of the SPRT and the EVS is demonstrated using experimental data
collected from a three-story frame structure with bolted connections.

INTRODUCTION

The primary goal of structural health monitoring is simply to identify from measured data if a
structure has deviated from a normal operational condition. Particularly, vibration-based damage
detection techniques assume that changes of the structure’s integrity affect characteristics of the
measured vibration signals enabling one to detect damage. Many current approaches to this
problem involve methods that leave much to the interpretation of analysts. These methods may
enable a trained eye to discern and locate damage but are not easily automated or objective. In an
attempt to automate the damage identification procedure, the SPRT is employed for the decision-
making procedure. The original SPRT assumes that the extracted features have a Gaussian
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distribution. This normality assumption, however, may place misleading constraints on the tails
of the distribution. As the problem of damage detection specifically focuses attention on the tails,
the assumption of normality is likely to lead the analysis astray. To overcome this difficulty, the
performance of the SPRT is improved by integrating the EVS, which specifically models
behavior in the tails of the distribution of interest, into the SPRT.

METHODOLOGY

A unique combination of time series analysis, hypothesis testing, and extreme value statistics is
presented to automate the damage identification procedure with special attention to statistical
inference for decision-making. First, damage-sensitive features are extracted using the time
series analysis of vibration signals. Then, a brief summary of the SPRT is presented and the EVS
is incorporated with the SPRT.

Time Series Analysis

A linear prediction model combining auto-regressive (AR) and auto-regressive with
exogenous inputs (ARX) models is employed to extract features for the subsequent SPRT
analysis. First, all time signals are normalized prior to fitting an AR model by subtracting its
mean and dividing by the standard deviation. Then, an AR(r) model with » auto-regressive terms
is constructed for a given time signal x(¢#) (Sohn and Farrar, 2001):

x(t) = Z¢ x(t—j) + e (1) (1)

Assuming that the error between the measurement and the prediction obtained by the AR
model [ e, (#) in Equation (1)] is mainly caused by the unknown external input, an ARX model is

employed to reconstruct the input/output relationship between e_(¢) and x(¢):

0= Y w-0) 43 e =)+, @)

where ¢ (¢) is the residual error after fitting the ARX(p,q) model to e (¢) and x(¢) pair. Ljung
(1999) suggests keeping the sum of p and ¢ smaller than » ( p+¢g <r). Although the p and ¢

values of the ARX model are set rather arbitrarily, similar results are obtained for different
combinations of p and g values as long as the sum of p and ¢ is kept smaller than r.

Sequential Probability Ratio Test (SPRT-N)
In the previous section, the AR-ARX model is constructed using the time signal from the
baseline structure. When a new time series y(f) is obtained from unknown condition of the

structure, the prediction or residual error becomes:
p q
£,(0)=y(0) =Y e, yt=) =Y B, e,(t- ) (3)
i=1 j=1

where ¢ (¢) is the residual error of y(#) obtained using the previously estimated AR-ARX

model. e (¢) is computed in a similar way to e (¢) in Equation (1). When a new time signal is

obtained from a damaged structure and fed to the AR-ARX model, the time prediction model
trained with the undamaged cases will not properly predict the new time series. Therefore, the



standard deviation of the residual error & (7) is expected to increase compared to that of the
baseline residual error ¢ ().

Based on this premise, a simple hypothesis test discriminating two hypotheses is constructed

using the standard deviation of the residual errors as the parameter in question (Sohn et al, 2002):

H,:o(¢)<o0,, H :o(g)z20, 0<o,<0 < 4)

When the standard deviation of the residual error o(¢,) is less than a user specified lower bound

o, the system in question is considered undamaged. On the other hand, when o(¢,) becomes

larger than the other user specified upper bound o, the system is suspected damaged. Note that
the selection of o, and o, is structure-dependent and it might be necessary to use signals from

both undamaged and damage cases to establish these two decision boundaries.
A SPRT starts with observing a sequence of the residual errors, {¢, (i)} (i=12,...). Define

this accumulated data set at stage n is denoted as £, =[¢,(1),... &,(n)]. The goal of a statistical

inference is to reveal the probability model of E , which is assumed to be at least partially

unknown. When the statistical inference is cast as a parametric problem, the functional form of
E, is assumed known and the statistical inference poses some questions regarding the

parameters of the probability model. For instance, if {¢ (i)} are independent and identically

distributed (i.i.d.) normal variables, one may pose some statistical test about the mean and/or the
variance of this normal distribution.

A sequential test is one of the simplest tests for such a statistical inference where the number
of samples required before reaching a decision is not determined in advance. An advantage of the
sequential test is that, on average, a smaller number of observations are needed to make a
decision compared to the conventional fixed-sample size test. For the well-established fixed-
sampling tests, the sample size n is fixed, and an upper bound on the type I error is pre-
specified. Then, an optimal fixed-sample test is selected by minimizing the probability of type II
error. On the other hand, a sequential test specifies upper bounds on the probabilities of type I
and II errors, and minimizes the sample number required to make a decsion. Among various
valid sequential tests, it can be proven that the SPRT minimizes on average the sample size
required to make a correction making it an optimal sequential test (Ghosh, 1970). Because of the
sensitivity of the SPRT to signal disturbance, the SPRT has been applied for the surveillance of
nuclear power plant components (Humenik and Gross, 1990).

For the hypothesis test in Equation (4), a SPRT, S(b,a), makes three distinctive decision at
stage n (Ghosh, 1970):

Accept H, if Z, <b

Reject H, if Z, > a (5)
Continue observing dataif b<Z <a
where the transformed random variable Z, is the natural logarithm of the probability ratio at
stage n:

Z —n fENH) _ SE, o) o
fENH)  f(E,|0,)

rn=>1 (6)



where f(E,|H,) or f(E, |o,) is the conditional probabilty of observing the accumuated data
set £ given the assumption that the null hypothese is true. f(E, | H,) or f(E, |o,) is defined
in a similar fashion. Without any loss of generality, Z, is defined zero when
f(E, 16)=f(E, 0,)=0. b and a are the two stopping bounds for accepting and rejecting
H , respectively, and they can be estimated by the following Wald approximations (Wald,

1947):

b2 and a=1n!=7 (7)
- a

where o and [ the predetermined upper limits for type I and II errors, respectively. When
implementing the SPRT, a trade-off must be considered before assigning values for & and £ .

When there is a large penalty associated with false positive alarms (for example, alarms that shut
down traffic over a bridge), it is desirable to keep « smaller than £ . On the other hand, for

safety critical systems such as nuclear power plants, one might be more willing to tolerate a false
positive alarm to have a higher degree of safety assurance. In this case, S is often specified

larger than o .

Itz = Zz[ , the modified observations {z;} (i =1,2,...) are defined as follows:

z =Zn“zi ,z, =In S(E o)) and z, =lnf(Ei lo)f(E |o,) )
p f(E |o,) fE o) (E|o))

Assuming that £, has a normal distribution with mean x and standard deviation o, z, can be

related to & (i):

1 2 -2 . 2 1
2= (0,2 =0, e, ()~ 1) —ln;’— )

o

In a graphical representation of the SPRT S(b,a), Z,, which is the cumulative sum of the
transformed variable z,, is continuously plotted against the two stopping bounds b and a. A Z,
value less than a is indicative of acceptance of the H  hypothesis, while a Z, value greater than

b indicates an acceptance of the H, hypothesis. This SPRT using the normality assumption is
referred to SPRT-N hereafter.

SPRT Combined with Extreme Value Statistics (SPRT-G)

Now, the SPRT is extended to the extreme values of the parent distribution, the distribution
of the residual errors. In the previous section, the SPRT is formulated assuming that the residual
errors have a normal distribution. However, slight errors in the normality assumption of the
parent distribution can lead to larger errors for the extremes resulting in errneous false
positive/negative indications of damage. To avoid this problem, the SPRT is reformulated using
the probability distributions of extreme values (SPRT-G). There are only three possible choices
for the distributions of the extremes regardless the parent distrubution type: Gumbel, Weibull, or
Frechet. Particulary, because the maxima of a normal distribution are known to have a Gumbel
distribution and the residual errors of the experimental study presented later are close to a normal
distribution, the derivation presented here focuses on incorprating Gumbel distribution for




maxima values into the SPRT. The cumulative distribution function for a Gumbel distribution is
(Fisher and Tippet, 1928):

- x—1 . 0 <X <00
Gumbel W (x) =exp| —exp B or 550 (10)
Similar formulation of the SPRT can be easily derived for the other types of extreme value
distribution and for minima values. Similar to Equation (4), the following hypothesis test is
constructed using the standard deviation of the maxima as the parameter in question:

H,;.0,<0y,, H:0,20,, 0<0,,<0, <© (11)

where o,, is the standard deviation of the residual error maxima, and the subscript “M” denotes
a quantity related to the maxima. o, , is a user specified lower limit of the standard deviation

for the undamage contion, and o, is the other user specified upper limit for the damage

condition. It is observed that the change of the maxima distribution’s standard deviation is
monotomically related to the change of the parent distribution’s standard deviation. Here, an
indirect statitstical inference on the standard deviation of the parent distribution (the distribution
of the residaul errors) is conducted by examining the standard deviation of the maximum values.

It can be shown that the model parameters, 4 and o, of the Gumble distribution are related
to its mean ,, and standard deviation o, (Castillo, 1987):

J6

5§="25, and 1=pu, —-0577725 (12)
T

If the distribution of the maxima is preprocessed such that the mean value is zero, Equation (8)
can be rewritten in terms of A and o :

_ln f(El |ﬂ“l’5l) and z :lnf(Ez |/11’5l)f(Ei—l |/1()’§0)

Z = i (13)
f(E4,,9,) SENA,,0,)f(Ey | 4,6))

For the original SPRT, E, is defined as the accumulated sample points up to stage n. When the

SPRT is applied to the maximum values like in Equation (13), E, =[¢&,(1),... &,(n)] becomes a

collection of the maximum values instead. That is, & (i) in E, now becomes a maximum value

obtained from samples. Aftere some manuplication, z, for the maximum values is related to x;:

o, b4 0 2 x;,+0.4504 o, x; +0.4504 o,
z,=—In— +— (0'0 -0, )xl.+exp - |-&Xp ———F—————— (14)

o, 6 Je o,z V6 o, /7

TEST STRUCTURE

The three-story frame structure shown in Figure 1 consists of Unistrut columns and
aluminum floor plates. The floors are 1.3 cm-thick aluminum plates with two-bolt connections to
brackets on the Unistrut. The base is a 3.8 cm-thick aluminum plate. Support brackets for the
columns are bolted to this plate and hold the Unistrut columns. The floor layout from the top of
the structure is shown in Figure 2. All bolted connections are tightened to a torque value of 0.7
Nm in the undamaged state. Four Firestone air mount isolators, which allow the structure to
move freely in horizontal directions, are bolted to the bottom of the base plate.



The structure is instrumented with 24 single-axis accelerometers, two per joint (one on the
plate and the other on the column) as shown in Figure 2. The accelerometers are numbered from
the corner A to B, C, and D counterclockwise and from the top floor to the first floor. The
nominal sensitivity of each accelerometer is 1 V/g. The shaker is connected to the base plate by a
stringer as shown in Figure 1. The RMS voltage of the shake was fixed at 2 volts, and random
signals were generated from the shaker. A 10-mV/lb-force transducer is also mounted between
the stinger and the base plate. This force transducer is used to measure the input to the base of
the structure. Using a commercial data acquisition system, the acceleration time histories are
recorded. Each time signal gathered consisted of 8192 points and were sampled at 1600 Hz.

Two damage cases as shown in Figure 1 are investigated in this experiment: Damage 1 and 2.
For each damage case, four bolts at each joint are loosened until hand tight, allowing relative
movement between the floor plate and column. After each damage case, all the bolts were
tightened back to the initial torque of 0.7 Nm. Five time series are measured from the initial
undamaged case, and these time series are used for constructing the baseline AR-ARX model.
Five time series are recorded under each damage cases, and additional five time series are
obtained after tightening all bolts to the initial torque values. That is, a total of 20 time series are
used for this experiment.

RESULTS

The time series analysis begins with the assumption that a “pool” of signals is acquired from
a known structural condition of the system. In this example, multiple time series are recorded
from the undamaged structure. The collection of these time series is called the “reference
database” in this study. The construction of this reference database is shown to be useful for
normalizing data with respect to varying operational and environmental conditions. The details
of this data normalization can be found in Sohn and Farrar (2001).

Instead of independently analyzing 24 time histories from each accelerometer, the point-by-
point difference between time series from the two adjacent accelerometers at a joint is first
computed. Then, the resulting 12 time series corresponding to each joint are used for the AR-
ARX modeling. The order r in the AR model is set to 25, and the p and ¢ orders for the ARX
model are set to 20 and 5, respectively.

Next, the SPRT-N and SPRT-G are applied to the residual errors obtained from the AR-ARX
modeling. The type I & II errors are set to 0.001. The formulation of the SPRT is based on the
premise that, when a system being monitored undergoes a structural change such as damage, a
signal measured under the new structural condition will be significantly different from the signal
obtained from the initial undamage case. Therefore, when a time prediction model is constructed
using the baseline undamaged time signal, the prediciton error of the newly obtained signal,
which is again from the damaged case, will depart from that of the baseline signal. Particularly,
the prediction error of the new singal is expected to increase. Based on this observation, the
sequential hypothesis test shown in Equation (4) is conducted using SPRT-N. In this particular
example, o, and o, in Equation (4) are set to 0.40 and 0.42, respectively. Note that the

establishment of the o, and o, values is based on the observation of actually damaged cases.

That is, changes of the standard deviation should be first monitored for the corresponding
damage cases to select the appropriate o, and o, values. In a similar fashion, the sequential



hypothesis test in Equation (11) is cast for SPRT-G. o, , and o, in Equation (11) are set to

0.24 and 0.26, respectively.

The results of damage classification are reported in Table 1. The results using SPRT-G is
presented in parenthesis when the results from SPRT-N and SPRT-G are different. To briefly
summarize the results, both methods illustrate comparable performance. SPRT-N and SPRT-G
do not show any false-positive indications of damage for all five undamaged cases. For Damage
1, the damaged joint is located at the corner A on the first floor, and this joint is associated with
sensor readings from channels 17 and 18. Using SPRT-N and SPRT-G, the correct damage
location is correctly revealed for all five cases of Damage 1. For Damage 2, where the bolts at
the corner C on the third floor is hand tight and this joint corresponds to channel 5 and 6
readings, SPRT-N indicates that the adjacent joint at the corner D on the same floor is most
likely damaged. SPRT-G also suggests the existance of damage at the same adjacent joint but
correclty identifies the actually damaged joint 3 times out of the five exampled time series.

CONCLUSIONS

In an effort to find an automated and objective method for damage identification, a unique
integration of time series analysis, statistical inference, and extreme value theory is explored.
Time series analysis techniques solely based on the measured vibration signals are first
employed to extract damage-sensitive features from a structure for damage classification. While
there has been increasing interest in the field of structural health monitoring, the decision as to
whether a structure is damaged or not tends to be made on the basis of exceeding some heuristic
threshold. In this study, the sequential probability ratio test (SPRT) is employed to provide a
more principled statistical tool for this decision-making procedure, excluding unnecessary
interpretation of the measured data by users. Finally, the performance and robustness of damage
classification is improved by incorporating extreme values statistics of the extracted features into
the SPRT. The applicability of the SPRT to structural health monitoring is demonstrated using
measured time signals from a three-story frame structure tested in a laboratory environment. The
framework of the proposed SPRT method is well suited for developing a continuous monitoring
system, and can be easily implemented on digital signal processing (DSP) chips automating the
damage classification process.
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Table 1: Damage classification results using SPRT-N and SPRT-G (in parenthesis)

Test | Chl-2 Ch3- Ch5- Ch7- Ch9- Chll- Chl13- Chl5- Chl7- Chl9- Ch21- Ch23-
Case Ch4 Ché Ch8 Chl0 Chl2 Chl4 Ch6 Chl8 Ch20 Ch22 Ch24
_ 0* 0 0 0 0 0 0 0 1(1) 0 0 0
2 0 0 0 0 0 0 0 0 1(1) 0 0 0
g 0 0 0 0 0 0 0 0 1(1) 0 0 0
8 0 0 0 0 0 0 0 0 1(1) 0 0 0
0 0 0 0 0 0 0 0 1(1) 0 0 0
o 0 0 0(1) 1 0 0 0 0 0 0 0 0
& 0 0 0(0) 1 0 0 0 0 0 0 0 0
g 0 0 0(0) 1 0 0 0 0 0 0 0 0
o 0 0 0(1) 1 0 0 0 0 0 0 0 0
0 0 0(1) 1 0 0 0 0 0 0 0 0

*The zero ‘0’ denotes that the null hypothesis is accepted indicationg no damage is present at that joint, and the
unity ‘1’ denotes that the null hypothesis is rejected and the corresponding joint is damaged. The shaded areas
represent the locations of the acutally damaged joints, and the hypothesis results in these shadded ares should ideally
correspond to 1. The hypothesis results should be zero otherwise. For each undamaged and damage cases, five time
series are recorded, and the corresponding damage classification results are shown.
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