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UNCERTAINTY QUANTIFICATION OF A CONTAINMENT VESSEL DYNAMIC RESPONSE
SUBJECTED TO HIGH-EXPLOSIVE DETONATION IMPULSE LOADING

Edward A. Rodriguez'”, Jason E. Pepin'”, Ben H. Thacker® and David S. Riha®®

Technical Staff Member'"
Engineering Sciences & Applications Division
Los Alamos National Laboratory
MS P946
Los Alamos, NM 87545

ABSTRACT

Los Alamos National Laboratory (LANL), in
cooperation with Southwest Research Institute, has
been developing capabilities to provide reliability-
based structural evaluation techniques for performing
weapon component and system reliability assessments.
The development and applications of Probabilistic
Structural Analysis Methods (PSAM) is an important
ingredient in the overall weapon reliability
assessments. Focus, herein, is placed on the
uncertainty quantification associated with the structural
response of a containment vessel for high-explosive
(HE) experiments. The probabilistic dynamic response
of the vessel is evaluated through the coupling of the
probabilistic code NESSUS! with the non-linear
structural  dynamics code, DYNA-3D?. The
probabilistic model includes variations in geometry and
mechanical properties, such as Young’s Modulus, yield
strength, and material flow characteristics. Finally, the
probability of exceeding a specified strain limit, which
is related to vessel failure, is determined.

INTRODUCTION

Over the past 30 years, Los Alamos National
Laboratory (LANL), under the auspices of the U.S.
Department of Energy, has been conducting confined
high explosion experiments utilizing large, spherical,
steel pressure vessels. Design of these spherical
vessels was originally accomplished by maintaining
that the vessel’s kinetic energy, developed from the
detonation impulse loading, be equilibrated by the
elastic strain energy inherent in the vessel. Within the
last decade, designs have been accomplished utilizing
sophisticated and advanced 3D computer codes that
address both the detonation hydrodynamics and the
vessel’s highly nonlinear structural response.

Cylindrical and spherical pressure vessels are used to
contain the effects of high explosions. In some cases,
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the vessel is designed for one-time use only, efficiently
utilizing the significant plastic energy absorption
capability of ductile vessel materials™!. Alternatively,
the vessel can be designed for multiple use, in which
case the material response is restricted to the elastic
range'.

Understanding of the dynamic events under detonation
conditions is the first step towards the development of a
rational pressure vessel design criteria. The multiple-
use pressure vessels must, in effect, be designed with
similar rules as those in Section III or VIII of the
ASME Boiler & Pressure Vessel Code, hereafter
referred to as the ASME Code. That is, it becomes
imperative to the designer to maintain a purely elastic
membrane response of the structural system. On the
other hand, Environment, Safety, and Health (ESH)
issues, such as waste-stream isolation, and clean-up
costs associated with HE detonations within vessels,
may be prohibitively expensive because of hazardous
materials that may be present. In this scenario, the
pressure vessel design is driven to a “single-use” mode,
dictating that a more cost-effective design must be
developed. The designer must start with a rational
ductile failure design criterion that utilizes the plastic
reserve capacity in providing structural margin. As
such, quantifying uncertainties associated with loading
functions, geometry (i.e., radius and thickness),
fabrication, and material properties is of paramount
importance when the design of these containment
vessels is within the plastic regime.

The containment vessel illustrated is a 6-ft inside
diameter, manufactured from HSLA-100 steel,
spherical vessel. Results are presented herein for a
particular explosive test, with probability density
functions describing the vessel radius and thickness,
and material parameters. No attempt is made, in this
paper, to describe the loading function on a
probabilistic basis. This will be accomplished in an
upcoming study describing the variation of HE mass
resulting in pressure-time history PDF.
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The containment vessel is shown in Fig. 1, and consists
of a minimum 2.0-in wall thickness HSLA-100
spherical shell with three ports. It is subjected to the
transient pressure loading for a quantity of HE, up to a
maximum charge size of 40 lbs. equivalent TNT.

o

Figure 1: LANL 6-ft. ID containment vessel.

1. DESCRIPTION OF CONTAINMENT VESSEL

The containment vessel is a spherical vessel with three
access ports: two 16-inch ports aligned in one axis on
the sides of the vessel and a single 22-inch port at the
top “north pole” of the vessel. The vessel has an inside
diameter of 72 inches and a 2 inch nominal wall
thickness. The vessel is fabricated from HSLA-100
steel, chosen for its high strength, high fracture
toughness, and no requirement for post weld heat
treatment.

The vessel’s three ports must maintain a seal during use
to prevent any release of reaction product gases or
material to the external environment. Each door is
connected to the vessel with 64 high strength bolts, and
four separate seals at each door ensure a positive
pressure seal.

2. DETERMINSTIC ANALYSIS

A series of hydrodynamic and structural analyses of the
spherical containment vessel were performed using a
combination of two numerical techniques. Using an
uncoupled approach, the transient pressures acting on
the inner surface of the vessel were computed using the
Eulerian hydrodynamics code, CTH, which simulated
the HE burn, the internal gas dynamics, and shock
wave propagation. The HE was modeled as spherically
symmetric with the initiating burn taking place at the
center of the sphere. The vessel’s structural response to
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these pressures was then analyzed” using the DYNA-
3D explicit finite element structural dynamics code. In
this section, we summarize the results of the structural
analysis of the confinement vessel subjected to a 40 Ib.
HE charge detonation of PBX-9501 ignited at the
center of the vessel.

The simulation required the use of a large, detailed
mesh to accurately represent the dynamic response of
the vessel and to adequately resolve the stresses and
discontinuities caused by various engineering features
such as the bolts connecting the doors to their nozzles.
Taking advantage of two planes of symmetry, one
quarter of the structure was meshed using
approximately one million hex elements. Six hex
elements were used through the 2-inch wall thickness
to accurately simulate the bending behavior of the
vessel wall. The one-quarter symmetry model is shown
in Figure 2. The structural response simulation used an
explicit finite element code called PARADYN, which
is a massively parallel version of DYNA-3D, a
nonlinear, explicit Lagrangian finite element analysis
code for three-dimensional transient structural
mechanics. PARADYN was run on 504 processors of
Los Alamos National Laboratory’s Accelerated
Strategic Computing Initiative platform  “Blue
Mountain,” which is an interconnected array of
independent SGI (Silicon Graphics, Inc.) computers.
The containment vessel can be handled on Blue
Mountain computer with approximately 2.5 hours of
run time. The same analysis would have taken about
35 days when run on a single processor.

Figure 2: One quarter symmetry mesh used for the
structural analysis.

The pressure-time history used for the 40 Ib HE load
case, as shown in Figure 3, was calculated for a
duration of approximately 7 ms, which is more than
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sufficient to cover the initial blast loading and several
subsequent reverberations inside of the vessel.
Confirmatory analyses have shown'®” that a smaller
duration (~ 2-ms) is adequate to represent the initial
impulse loading providing the driving energy to the
vessel. After the 7 ms of computed pressure loading,
the pressure inside the vessel was taken as constant,
that being the residual quasi-static pressure resulting
from the expansion of reaction product gases.
Numerical computations for the structural analysis
were carried out to 20 ms duration, a time considered
far enough removed from the initial pressure spike to
capture the peak dynamic response. The vessel initially
deforms in a “breathing mode,” an almost uniform
radial expansion of the entire vessel and ports. Because
of the asymmetry of the vessel’s ports, in terms of mass
and stiffness, the breathing mode degenerates after a
couple of cycles into a more complex combination of
bending/extensional modes as shown in Figure 4.
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Figure 3: Pressure time history for the center detonated
40 1b HE load case.
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Figure 4: Structural response of the containment vessel.
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Stresses caused by high-order bending modes, during
the time history, are significantly greater than the
stresses caused by the initial breathing response. Even
well after the initial load and unload, the dynamic stress
waves propagate through the vessel, and at certain
times, combine to cause plastic straining in the vessel
wall. Pure membrane stresses are developed only

during the initial vessel response, the breathing mode.
As shown in Figure 5, a unique combination of
localized bending and membrane stresses causes a
small amount of plastic strain to occur at the bottom of
the vessel at 5 ms.
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Figure 5: Plastic strain occurs at the bottom of the
confinement vessel for the 40 1b HE load case.

3. PROBABILISTIC ANALYSIS

After investigation of the deterministic response of the
vessel and where maximum responses occurred, the
equivalent plastic strain at the bottom of the vessel was
selected as the response metric. To quantify the
uncertainty associated with the plastic strain occurring
at the bottom of the containment vessel, a probabilistic
analysis was performed with the vessel geometry and
material properties as random variables.

Efficient probabilistic methods were used to calculate
the probabilistic response of the containment vessel™.
These methods have been primarily developed for
complex computational systems requiring time-
consuming calculations, the results of which have been
shown to approach the exact solution obtained from
traditional Monte Carlo methods using significantly
fewer function evaluations .
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Most Probable Point (MPP) Methods

A class of probabilistic methods based on the most
probable point (MPP) are becoming routinely used as a
means of reducing the number of g-function
evaluations from that of brute-force Monte Carlo
simulation.  Although many variations have been
proposed, the best-known and most widely-used MPP-
based methods include the first-order reliability method
(ForM) | second-order reliability method (SOrRM) ),
and advanced mean value (AMV) ',

The basic steps involved in MPP-based methods are as
follows: (1) Obtain an approximate fit to the exact g-
function at X* where X* is initially the mean random
variable values; (2) Transform the original, non-normal
random variables into independent, normal random
variables u ); (3) Calculate the minimum distance,
(or safety index), from the origin of the joint PDF. to
the limit state surface, g = 0. This point, u*, on the
limit state surface is the most probable point (MPP) in
the u-space; (4) Approximate the g-function g(u) at u*
using a first or second-order polynomial function; and
(5) Solve the resulting problem using available
analytical solutions .

Step (1), which involves evaluating the g-function,
represents the main computational burden in the above
steps. Once a polynomial expression for the g-function
is established, it is a numerically simple task to
compute the failure probability and associated MPP.
Because of this, the complete response CDF can be
computed very quickly by repeating steps (2)-(4) for
different z, values. The resulting locus of MPP’s is
efficiently used in the advanced mean value algorithm
(discussed next) to iteratively improve the probability
estimates in the tail regions.

Advanced Mean Value (AMYV) Method

The advanced mean value class of methods are most
suitable for complicated but well-behaved response
functions requiring computationally-intensive
calculations. Assuming that the response function is
smooth and a Taylor's series expansion of Z exists at
the mean values, the mean value Z-function can be
expressed as

Zyy = Z(/,l)+ Z
i=1
(D

K24

@(‘lm (‘X: - Iut)+ H(X)

where Z), is a random variable representing the sum of
the first order terms and H(X) represents the higher-
order terms.
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For nonlinear response functions, the MV first-order
solution obtained by using Equation 1 may not be
sufficiently accurate. For simple problems, it is
possible to use higher-order expansions to improve the
accuracy. For example, a mean-value second-order
solution can be obtained by retaining second-order
terms in the series expansion. However, for problems
involving implicit functions and large n, the higher-
order approach becomes difficult and inefficient.

The AMV method improves upon the MV method by
using a simple correction procedure to compensate for
the errors introduced from the truncation of the Taylor's
series. The AMV model is defined as

Ly = Ly +H (ZMV) @
where H(Zyy) is defined as the difference between the
values of Zy and Z calculated at the Most Probable
Point Locus (MPPL) of Z,; , which is defined by
connecting the MPP's for different z, values. The AMV
method reduces the truncation error by replacing the
higher-order terms H(X) by a simplified function
H(Zyy). As a result of this approximation, the
truncation error is not optimum; however, because the
Z-function correction points are usually close to the
exact MPP's, the AMV solution provides a reasonably
good solution.

The AMV solution can be improved by using an
improved expansion point, which can be done typically
by an optimization procedure or an iteration procedure.
Based initially on Z,; and by keeping track of the
MPPL, the exact MPP for a particular limit state Z(X) - z,
can be computed to establish the AMv+ model, which is
defined as

S L .
s = Z(X *)+ ZEL{I (Xi — X )+H(X)
i=1 i
(3)

where X* is the converged MPP. The AMV-based
methods have been implemented in NESSUS and
validated using numerous problems '°.

Probabilistic Sensitivity Analysis

For design purposes, it is important to know which
problem parameters are the most important and the
degree to which they control the design. This can be
accomplished by performing sensitivity analyses. In a
deterministic analysis where each problem variable is
single-valued, design sensitivities can be computed that
quantify the change in the performance measure due to
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a change in the parameter value, i.e., 0Z/0X;. As stated
earlier, each random input variable is characterized by
a mean value, a standard deviation, and a distribution
type. That is, three parameters are defined as opposed
to just one. The performance measure is the
exceedance probability (or safety index). Sensitivity
measures are needed then to reflect the relative
importance of each of the probabilistic parameters on
the probability of exceedance. NESSUS computes
probabilistic based sensitivities for both MpPP and
sampling based methods; details are given by Thacker
8] The sensitivity computed as a by-product of MPp-
based methods is

0=L
i O’u

1

4)

measures the change in the safety index with respect to
the standard normal variate u. Although useful for
providing an importance ranking, this sensitivity is
difficult to use in design because u is a function of the
variable's mean, standard deviation, and distribution.
Two other sensitivities that are more useful for design
(and for importance ranking as well) include

s — Do

)
u

; p,

which measures the change in the probability of
exceedance with respect to the mean value; and

s - Po

= 6
7 do; p, ©

which measures the change in the probability of
exceedance with respect to the standard deviation.
Multiplying by o; and dividing by p; non-
dimensionalizes and normalizes the sensitivity to
facilitate comparison between variables. The
sensitivities given by Equations 5 and 6 are computed
for both component and system probabilistic analysis.

The four random variables are radius of the vessel wall
(radius), thickness of the wvessel wall (thickness),
modulus of elasticity (E), and yield stress (Sy) of the
HSLA steel. A summary of the probabilistic inputs is
included in Table 1. The properties for radius and
thickness are based on a series of quality control
inspection tests that were performed by the vessel
manufacturer. The coefficients of variation for the
material properties are based on engineering judgment.

5

In this case, the material of the entire vessel, excluding
the bolts, is taken to be a random variable.

Table 1: Probabilistic inputs for the containment
vessel random variables

Variable PDF c u COVv
Radius (in) | Normal 37.0 0.0521 0.00141
Thick (in) Lognormal | 2.0 0.08667 0.04333
E (Ib/in) Lognormal | 29.0E+06 1.0E+06 0.03448
S, (Ib/in%) Normal 106.0E+03 | 4.0E+03 0.03774

When the thickness and radius random variables are
perturbed, the nodal coordinates of the finite element
model change with the exception of the three access
ports in the vessel, which remain constant in size and
move only to accommodate the changing wall
dimensions. This was accomplished in NESSUS by
defining a set of scale factors that defined how much
and in what direction each nodal coordinate was to
move for a given perturbation in both the thickness and
radius. These effects are cumulative so that thickness
and radius can be perturbed simultaneously. Once
these scale factors are defined and input to NESSUS,
the probabilistic analysis, whether simulation or
AMV+, can be performed without further user
intervention.

The response metric for the probabilistic analysis is the
maximum equivalent plastic strain occurring over all
times at the bottom of the vessel finite element model.
Using NESSUS, the iterative Advanced Mean Value
(AMV+) method was used to calculate a CDF for
equivalent plastic strain.  Also, Latin Hypercube
Simulation (LHS)""! with 100 samples was performed
to verify the correctness of the AMV+ solution near the
mean value. The CDF is plotted in Figure 6 on a linear
probability scale and in Figure 7 on a standard normal
probability scale. As shown, the LHS and AMV+
results are in excellent agreement. For far fewer finite
element model evaluations, the AMV+ solution is able
to predict probabilities in the extreme tail regions. If
failure were to be assumed when the equivalent plastic
strain exceeded some critical value, then the CDF
shown in Figures 6 and 7 directly provide non-failure
probabilities, ie., probability of failure

(p,)=1-cDF.

As shown in Figure 7, the CDF approaches an
asymptotic state above about u = 2. This is because
beyond u = 2, the vessel wall thickness becomes so thin
that the deterministic model is unable to compute a
converged solution. Although not simulated here, this
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condition would suggest catastrophic failure such as
rupture or fracture.

Containment Vessel CDF
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0754 |

o AMV+
LHS

05048

Probability

0.25 4

0.00 : .
0.00 0.02

Equivalent Plastic Strain

T
0.04

Figure 6: CDF for equivalent plastic strain at the
bottom of the containment vessel.
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Figure 7: CDF for equivalent plastic strain plotted in
standard normal space.

Probabilistic  sensitivities (aﬂ / Ou; ) o, and

(6[3/ GO'l.)O'l. are shown in Figures 8 and 9
respectively. The subscript i refers to the particular
random variable and beta (ﬂ), the safety index, is
inversely proportional to p, through the relationship
p,= CD(—ﬂ ) where @ is the standard normal CDF.

The

nondimensionalize the values and facilitate a relative
comparison between parameters. Finally, the values
are normalized such that the maximum value is equal to
one.

sensitivities are multiplied by o, to

1

6
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Figure 8. Probabilistic sensitivity with respect to mean

(u=3).
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Figure 9. Probabilistic sensitivity with respect to
standard deviation (u = 3).

The sensitivities shown in Figures 8 and 9 indicate how
a change in the mean and standard deviation of each
random variable will affect the computed probability.
These results can also be used to eliminate unimportant
variables from the random variables considered thus
improving computational efficiency, or conversely,
where resources could most effectively be focused. As
shown, thickness contributes the most to the computed
probability.  This suggests that the most effective
strategy for reducing (or at least controlling) the
reliability of the vessel would be to control the
thickness of the material.

4. SUMMARY

The work presented here represents an ongoing effort at
Los Alamos National Laboratory to move towards
increased reliance on numerical simulation and less on
testing as part of the Stockpile Stewardship program.
The containment vessel was selected for analysis
because of the safety and mission critical nature in
performing and containing small-scale dynamic
experiments.
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The paper demonstrates the successful application of
the probabilistic analysis program NESSUS to a large
ASCI scale problem (>1M elements) for the first time
demonstrating its usefulness for LANL-type problems.
Extensive modifications to NESSUS have been made
to facilitate these calculations including the ability to
link any number of numerical and/or analytical models
together, support for parallel and batch job execution,
and the inclusion of a graphical user interface that runs
on all laboratory hardware. Future work may include
additional testing to improve the characterization of the
vessel thickness, coupling the hydrocode simulation of
the detonation event with the structural response
simulation, and incorporating alternative different
failure models (fracture, burst, etc).
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