
Los Alamos
NATIONAL LABORATORY

LA-UR-

Approved for public release;

distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government

retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.

Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the

auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

02-1929

GRAPH VISUALIZATION FOR THE
ANALYSIS OF THE STRUCTURE AND
DYNAMICS OF EXTREME-SCALE
SUPERCOMPUTERS

Kathryn Berkbigler
Brian Bush
Kei Davis
Adolfy Hoisie
Steve Smith

InfoViz 2000
IEEE Symposium on Information Visualization
Boston, MA
28-29 October 2002



Graph Visualization for the Analysis of the Structure and Dynamics of

Extreme-Scale Supercomputers

Kathryn Berkbigler, Brian Bush,

Kei Davis, Adolfy Hoisie, and

Steve Smith (sas@lanl.gov)

Los Alamos National Laboratory,

Los Alamos, NM 87545

Cheng Zhou, Kenneth L. Summers, and

Thomas P. Caudell (tpc@eece.unm.edu)

Albuquerque High Performance Computing Center

University of New Mexico

Albuquerque, NM 87131

Abstract

We are exploring the development and application of in-

formation visualization techniques for the analysis of new

extreme-scale supercomputer architectures. Modern super-

computers typically comprise very large clusters of com-

modity SMPs interconnected by possibly dense and often

nonstandard networks. The scale, complexity, and inherent

nonlocality of the structure and dynamics of this hardware,

and the systems and applications distributed over it, chal-

lenge traditional analysis methods. As part of the à la carte

team at Los Alamos National Laboratory, who are simu-

lating these advanced architectures, we are exploring ad-

vanced visualization techniques and creating tools to pro-

vide intuitive exploration, discovery, and analysis of these

simulations. This work complements existing and emerg-

ing algorithmic analysis tools. Here we gives background

on the problem domain, a description of a prototypical com-

puter architecture of interest (on the order of 10,000 proces-

sors connected by a quaternary fat-tree network), and pre-

sentations of several visualizations of the simulation data

that make clear the flow of data in the interconnection net-

work.

1 Introduction

The magnitude of the scientific computations targeted by

the US Department of Energy Accelerated Strategic Com-

puting Initiative (ASCI) project requires as-yet unavail-

able computational power. To facilitate these computations

ASCI plans to deploy massive computing platforms, possi-

bly consisting of tens of thousands of processors, capable

of achieving 10-100 teraOPS.

Better hardware design and lower development costs re-

quire performance evaluation, analysis, and modeling of

parallel applications and architectures, and in particular a

predictive capability.

The tools of the trade in performance modeling and anal-

ysis are typically categorized as algorithmic/analytical anal-

ysis, statistical analysis, analysis with queuing theory, and

simulation. For systems of ASCI-proposed size and com-

plexity simulation is the predictive tool of choice, though

simulation may be considerably augmented by analytical

and statistical analysis [1]. Because of the sheer volume

of relevant data generated by a simulation run, visualization

is an important, potentially the primary, method of practical

data abstraction and comprehension.

1.1 Goals

The à la carte project seeks to develop a simulation-

based analysis tool for evaluating massively-parallel com-

puting platforms including current and future ASCI-scale

systems. While developing a general framework for build-

ing these simulations and analyzing them, an intermediate

goal is to model, and validate the model of, the ASCI Q

machine [2] with a realistic ASCI workload.

It is clear that simulating systems of the size and com-

plexity that we envision will require the use of parallel sim-

ulation [3]. DaSSF [4, 5], being developed at Dartmouth

College, is the current choice for discrete-event simulation.

Since this system does not include a visualization compo-

nent to aid in the analysis of the complex time-varying in-

teractions of the logical components, we are researching vi-

sualization methods independent of these tools. Because the

network connecting the processors in the simulated machine

is large and complex the visualization efforts have focused

on representations of spatial/temporal graphs.

The following section describes the approach we have

taken to visualize the results of these machine simulations,

the Flatland visualization tool used for the 3D interactive

environment, and the details of the models used to represent

the machine switch fabric.



2 Visualization Approach

Our visualization efforts focus on viewing the execution

of the simulation and on displaying the performance of the

simulated system. Visualization also aids in debugging the

simulation itself, in developing and evaluating the efficiency

of load balancing of the simulation entities, and in under-

standing synchronization between simulation timelines. Vi-

sualizing the simulated system allows end-users to under-

stand how varying workload or network interconnection ar-

chitecture affects the overall performance of an advanced or

novel architecture. They can also see communication pat-

terns in the network, levels of network usage, and the pres-

ence of bottlenecks. Our visualization approach includes

direct representations of the architecture as well as inno-

vative abstractions of the architecture and dynamics of the

system.

We assume each network switch has eight duplex I/O

ports; the ports may be linked to computational nodes or

to other switches. The network is organized into layers of

switches that connect only to the layers above and below:

for eight-port switches there are four upward connections

and four downward connections yielding a quaternary fat-

tree network: “quaternary” because each switch has four

connections in each direction; “fat” because the number of

switches per layer is the same for all layers.

Figure 1 illustrates the layout of such a network with 64

computational nodes and three layers of 16 switches each.

To aid in the following discussion, we introduce the

some formalism describing these interconnection networks

(or graphs). Let L be the number of layers in a com-

plete quaternary fat-tree network. Number the layers ` =
1, . . . , L. Each layer has 4L−1 switches, so we label these

with IDs x = 0, . . . , 4L−1 − 1. This means there are

sL = L · 4L−1 switches in the network and nL = 4L nodes

connected to it. Each port p of switch x in layer ` connects

to four switches

yp = 4`
⌊ x

4`

⌋

+ 4`−1p +
(

x mod 4`−1
)

(1)

in layer ` + 1 at port p + 4, where p = 0, 1, 2, 3.

2.1 Flatland: An Immersive Visualization Devel­
opment Framework

Flatland is an immersive visualization development

framework developed at the University of New Mexico as

part of the Homunculus Project [7]. It is used to facilitate

rapid prototyping and research in scientific and informa-

tion visualization, immersive environments and interfaces,

and human factors engineering. The Flatland infrastruc-

ture aids in creating and managing complex scene graphs

with OpenGL geometry, lighting, shadows, stereo render-

ing, and spatialized sound objects; dynamically loading ap-

plications without mutual interference; managing novel in-

put and output devices; navigation of the resulting virtual

spaces; and providing some basic, optional spatial reference

objects such as a landscape, stars, or sun.

One of the tenets of our approach to visualization is

that immersive 3D environments can offer unique advan-

tages over non-immersive three-dimensional graphics, or

two-dimensional plots, charts, or graphs. By placing the

user of these tools within the same context as the objects be-

ing viewed and allowing the user to navigate around them,

choosing their own point of view and using motion paral-

lax to comprehend the three-dimensional relationships be-

tween objects, and allowing the objects to cast shadows and

perhaps even to have behavior and emit sounds, a qualita-

tive improvement in comprehension of the data is achieved.

Figure 2 shows all of the representations referenced.

2.2 Direct Representation

To debug a simulation it is useful to have a visual rep-

resentation that clearly and explicitly represents all of the

simulated components. With the fat-tree connected mas-

sively parallel computing architectures, we started by laying

out the processors, NICs, and switches in several relatively

obvious direct representations. The first (Representation

DL) is a simple distribution of processors and NICs along

a line with the layers of switches above them, also along

a line. The second (Representation DC) involves wrapping

this line around into a circle, creating a sort of cone topped

with a cylinder. The third (Representation DR) is a rectan-

gular grid laydown of the processors, NICs and switches.

The visualization is animated so that the user can see the

progression of messages sent through the network.

Although the direct representations provide the highest

level of detail of message properties and component con-

nectivity, they suffer from the lack of scalability: the vi-

sual complexity of the display (i.e., number of overlapping

entities) becomes overwhelming when large models—more

than several hundred computational nodes—are displayed.

The ad hoc attribute coloring capabilities make this repre-

sentation extremely valuable for debugging purposes, how-

ever. The largest machine we have studied is a 4096 node

machine with 6 layers of 1024 switches each. These rep-

resentations were overwhelmed at that scale. For a more

thorough description of these representations see the project

website [6].

2.3 Layered Block Representation

To address the scalability and visual complexity issues

of the direct representations we have developed a more ab-

stract model, motivated by the graph connection matrix,



Figure 1. Representation QS: Quaternary fat­tree network with 64 computational nodes (small circles
along the bottom) and three layers of 16 switches each (rectangles). Each switch has four duplex
connections to the layer above and four duplex connections to the layer below.

Figure 2. Six representations shown side­by­side in Flatland. Foreground, left to right: Repre­
sentation DL: direct linear, Representation DR: direct rectangular, Representation DC: direct cone,
Representation HT: H Tree, Representation F1: one fractal layout; Background: Representation LB:
layered block.



where switch layers are grouped together into aggregate

visual objects. The network is laid out on a square with

equally-spaced pillars along the diagonal representing the

computational nodes and their NICs. The various switch

layers are grouped by fours on succeeding levels below. For

example, the first level below the nodes consists of groups

of four switches, the second level consists of groups of six-

teen switches, etc. Figure 3 shows a view of this represen-

tation. When a processor sends a message to another pro-

cessor through the switching fabric, a line or “pipe” leaves

the processor and grows across the switching fabric until

it comes to the point on the implied connectivity matrix

where the two processors’ connection would normally be

indicated. At that point it makes a 90 degree turn and con-

tinues to grow until it reaches the destination processor. In

one mode of use the layered switch blocks change color as

they are involved in more and more communication traf-

fic, allowing the viewer to recognize the relative level of

utilization of each switch or switch group. It is also pos-

sible to subdivide a switch group vertically into individual

switches.

The layered representation provides a more compact dis-

play than the direct representation and is somewhat more

scalable, but it still suffers from similar problems once the

number of nodes approaches one thousand. It does have the

advantage of being able to show the activity in very large

systems (e.g., 4096 computational nodes) if the pipes show-

ing individual messages are suppressed. Unfortunately, the

connectivity matrix scale is of order nL, which naturally

limits its scalability. At 4096 processors, individual proces-

sors, NICs, and even the first level of switches are smaller

than a single pixel when viewed in their entirety, even on a

high resolution screen (1600 × 1200). This is only a par-

tial limitation since two dominant modes of use are likely

to be a) macroscopic, attempting to understand the aggre-

gate dynamics of the system which will be mostly differen-

tiated at higher level switches, or b) microscopic, focusing

on following single messages through the system. Never-

theless, in this representation, full microscopic detail and

system wide macroscopic context cannot be apprehended

simultaneously.

2.4 General Framework for Representations of
Fat Trees

We now consider a general framework that allows us

to express the layout of computational nodes and network

switches in a two-dimensional compact scalable visualiza-

tion of a fat-tree. These representations efficiently pack the

switches into a planar image-like structure that utilizes the

hierarchical nature of the fat-tree. With this representation,

it is sufficient to consider only the switches in the network

layout, as each quadruplet of computational nodes connects

to only a single switch—the lowest-level switch in any lay-

out can be replaced by that switch and its four connected

nodes. The compact method maps switches in layers into

the spatial coordinates of cells in a 2D plane.

A general technique to code the plethora of possible fat-

tree compact 2D representations is a follows: Consider a

pair of generating functions An and Bn which map the in-

tegers 0, 1, 2, 3 to pixel coordinates; here n is a non-negative

integer specifying the scale of the mapping. It is very impor-

tant that the range of the functions An and Bn are disjoint—

otherwise, switches on different layers will overlap on the

same cell. Since the fat-tree is quaternary, it is useful to

represent switch IDs in base four: namely, represent a num-

ber x as x =
∑L−1

n=1
4n−1xn where the xn are its base-four

digits. We can now write the cell coordinates of switch x in

layer ` out of a total of L layers as:

FL,`(x) =































(0, 0) for L = 1
∑L−1

n=` An(xn) for ` = 1
∑L−1

n=` An(xn)

+
∑`−1

n=1
Bn(xn) for 1 < ` < L

∑L−1

n=1
Bn(xn) for ` = L

(2)

The layout is generated as the union of all the cell coordi-

nates of the switches:

L
⋃

`=1

4
L−1

−1
⋃

x=0

FL,`(x). (3)

Note that although we have considered two-dimensional

layouts here, the formalism extends to the three-

dimensional case.

2.5 Compact, Self­Similar, and Fractal Represen­
tations

Figure 4 shows two self-similar representations as im-

plemented in Flatland.

The previous direct and connection matrix methods,

which essentially scale with nL, fail to scale up to large

systems in several possible ways. While level of detail

management would help make this dynamic range problem

somewhat more graceful, it would not allow us to apprehend

each individual node, NIC and switch, all at the same time,

without improving the compactness of our layout. The di-

rect cone representation described in Section 2.2 scales by

approximately nL, which is linear with nL, but the direct

rectangular layout scales by the
√

nL. Thus the 4096 node

system, for example, only requires an area on the order of

64 × 64 units to display. This seems very promising but by

distributing the processors in a 64 × 64 array, the majority

of the processors are in the middle of the area and simi-

larly, the switching layers, laid out in 32× 32 arrays tend to



Figure 3. Representation LB: The network is laid out in a square with pillars representing nodes along
the diagonal. The first layer of switches is below this in groups of four (shown in red), the second
layer of switches is below that in groups of sixteen (shown in green)—subsequent layers are blue
(3rd), cyan (4th), magenta (5th), and yellow (6th). The switch groups brighten in color when one of
their switches is active, and the pipes represent individual messages passing through the switches
below them.

Figure 4. The H Tree representation (HT) is on the left, and a fractal representation F1 is on the right.



occlude each other nearly as badly. From this simple anal-

ysis, it appears that laying the processors, NICs, and each

switch layer out in two dimensions is compact enough for

our needs but leads immediately to occlusion problems.

Motivated by the somewhat self-similar nature of the fat-

tree, we investigated two different compact 2D representa-

tions, one inspired by a simple pair of fractal generators

as described in Section 2.5.1 and another inspired by H-

array radar antennae as described in Section 2.5.2 below.

The similarities between these two representations lead us

to consider a more general representation of all layouts in

two dimensions of fat-trees.

2.5.1 Fractal Representation

We start with a fractal-based representation defined by

An(k) = 3n−1a(k) and Bn(k) = 3n−1b(k) (4)

where

a(k) =



















(0, 1) for k = 0

(1, 0) for k = 1

(0,−1) for k = 2

(−1, 0) for k = 3

(5)

and

b(k) =



















(−1, 1) for k = 0

(1, 1) for k = 1

(1,−1) for k = 2

(−1,−1) for k = 3

. (6)

The function a(k) places the lower-layer switches on the

sides of a square, while the function b(k) places the higher-

layer ones on the corners of the same square. The 3n−1

coefficient in Eq. (4) ensures that subsequent squares are

appropriately scaled to a larger size. Figure 5 shows the

fractal for the first several L—one can plainly see the self-

similarity between networks of different sizes.

This layout has the advantage that in scales well—one

can represent the 6144 switches of a six-layer fat-tree in

a 243 × 243 cell area, for instance. It has a disadvantage

that the switches for different layers are interleaved, mak-

ing it somewhat difficult to visually separate the activity in

different network layers. We have used animated versions

of these layouts to successfully distinguish the distribution

of messages in two 4096-computational-node applications

with different communication patterns, however.

2.5.2 “Fat H” Representation

We can address the problem of switch layers being inter-

leaved in Representation F1 in a new representation defined

by

An(k) = (n + 2)2n−2b(k) and Bn(k) = 2n−2b(k). (7)

In this case both the lower and upper level switches lie on

the corners of a square, but the coefficient (n+2) in Eq. (7)

forces the lower level switches onto the corners of a larger

square. Thus the more central groups of switches are in

higher layers. Figure 6 illustrates this.

This representation has a fractal dimension d = 2, which

“efficiently” fills two-dimensional space but is not techni-

cally fractal (since it does not have fractional dimension).

One can see this in Figure 6 in that the highest, central layer

of switches occupies a smaller region of the diagram rela-

tive to the layers below as L increases. Hence, the layout

is not self-similar as a function of L. One could rectify this

situation by altering the scaling factors in Eq. (7) at the ex-

pense of letting higher layers take relatively more area in

the diagram.

2.5.3 Additional Representations

We can also reformulate other representations in terms of

the formalism of Equation (2). In general, to create ad-

ditional representations, one only needs to choose a pair

(An(k), Bn(k)) whose ranges do not overlap.

2.5.4 Comparison

It is instructive to compare the advantages and disadvan-

tages of some of the fat-tree representations we have cre-

ated so far. Table 1 ranks all six representations in terms of

usability metrics.

3 Conclusion

The representations developed here have been useful in

helping both casual observers and researchers intimate with

the topology of the architecture of the proposed ASCI Q

machine get a better intuitive understanding of its structure.

Animating the output from the simulations has been useful

in troubleshooting the simulation. So far, the only simula-

tions which have been run are of a uniform distribution of

communication and a distribution which approximates the

kinds of calculations done on volumetric grids where each

cell in a grid communicates only with its nearest neighbors.

We have been able to see, in the block structure and early

compact, self-similar representations, the characteristic dif-

ferences between these two distributions, most notably the

localization of message traffic in the latter example and the

attendant reduction in utilization of higher switch levels.

As we continue to investigate and refine the compact,

self-similar representations, and begin to use all the repre-

sentations to analyze the behaviour of more interesting data

sets, we hope to see more subtle features in these data sets

and most importantly in more realistic models of applica-

tion mixes running on these machines.



L=1 L=2 L=3

L=4 L=5 L=6

Figure 5. Representation F1: The six panels show placement of switches (circles) for the represen­
tation generated by Eq. (4) for L = 1, . . . , 6.

L=1 L=2 L=3

L=4 L=5 L=6

Figure 6. Representation HT: The six panels show placement of switches (circles) for the represen­

tation generated by Eq. (7) for L = 1, . . . , 6.



Property QS DL DC DR LB F1 HT

Microscopic Detail very very very very yes somewhat somewhat

Scalability no no somewhat yes somewhat yes very

Visual Complexity very high high moderate high moderate moderate low

Table 1. Advantages and disadvantages of various representations.

3.1 Future Work

Future work includes: Elaborating the H Tree and Fractal

representations (HT and F1) with color, shape, and size cod-

ing; Extending the nearly two-dimensional, compact, self-

similar representations into three dimensions; Exploring

other self-similar representations; Adding optional, explicit

representation of message traffic. We also plan to apply

these same visualizations to real message traffic obtained

from these systems as they are built and instrumented. We

also anticipate that these tools can be used to analyze ap-

plication level message traffic such as is generated by MPI

or OpenMP based parallel programs. We are evaluating the

data formats used by the Vampir performance analysis tools

as a possible bridge to allow us to use those tools as well as

to use our tools on Vampir trace data.

4 Acknowledgements

This work was carried out under the auspices of the De-

partment of Energy at Los Alamos National Laboratory un-

der ASCI DisCom2. We would like to thank LANL’s Dis-

Com2 project leader, Steven Turpin, for his support. We

would also like to thank the Albuquerque High Performance

Computing Center for their support.

References

[1] Francis J. Alexander, Kathryn Berkbigler, Graham

booker, Brian Bush, Kei Davis, Adolfy Hoisie, and

Steve Smith. Design and Implementation of Low-

and Medium-Fidelity Network Simulations of a 30-

TeraOPS System, Los Alamos National Laboratory,

2002.

[2] R. Kaufman, The Q Supercomputer and

Compaq. High Performance Technical

Computing News, Issue 18, November

2000, http://www.compaq.com/hpc/news/

news hpc 60171.html.

[3] Richard M. Fujimoto. Parallel and Distributed Sim-

ulation Systems, John Wiley & Sons, Inc., 2000.

[4] James H. Cowie, David M. Nicol, Andy T. Ogielski.

Modeling the Global Internet. Computing in Sci-

ence & Engineering 1(1):30-38, 1999.

[5] Jason Liu and David M. Nicol. Dartmouth Scalable

Simulation Framework User’s Manual. Dartmouth

College Dept. of Computer Science, February 6,

2002.

[6] http://www.c3.lanl.gov/˜parsim

[7] http://www.ahpcc.unm.edu/homunculus/indexold.html


	Graph Visualization for the Analysis of the Structure and Dynamics of Extreme-Scale Supercomputers
	Abstract
	1 Introduction
	1.1 Goals

	2 Visualization Approach
	2.1 Flatland: An Immersive Visualization Development Framework
	2.2 Direct Representation
	2.3 Layered Block Representation
	2.4 General Framework for Representations of Fat Trees
	2.5 Compact, SelfSimilar, and Fractal Representations
	2.5.1 Fractal Representation
	2.5.2 “Fat H” Representation
	2.5.3 Additional Representations
	2.5.4 Comparison


	3 Conclusion
	3.1 Future Work

	4 Acknowledgements
	References

