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Abstract

Classical matching theory can be defined in terms of matrices with
nonnegative entries. The notion of Positive operator , central in
Quantum Theory , is a natural generalization of matrices with non-
negative entries. Based on this point of view , we introduce a defi-
nition of perfect Quantum (operator) matching . We show that the
new notion inherits many “classical” properties , but not all of them
. This new notion goes somewhere beyound matroids . For separa-
ble bipartite quantum states this new notion coinsides with the full
rank property of the intersection of two corresponding geometric
matroids . In the classical situation , permanents are naturally asso-
ciated with perfects matchings. We introduce an analog of perma-
nents for positive operators, called Quantum Permanent and show
how this generalization of the permanent is related to the Quantum
Entanglement. Besides many other things , Quantum Permanents
provide new rational inequalities necessary for the separability of
bipartite quantum states . Using Quantum Permanents , we give
deterministic poly-time algorithm to solve Hidden Matroids Inter-
section Problem and indicate some “classical” complexity difficul-
ties associated with the Quantum Entanglement. Finally , we prove
that the weak membership problem for the convex set of separable
bipartite density matrices is NP-HARD.

1 Introduction and Main Definitions

The (classical) Matching Theory is an important , well studied but
still very active part of the Graph Theory (Combinatorics) . The
Quantum Entanglement is one of the central topics in Quantum In-
formation Theory . We quote from [31] : ”An understanding of
entanglement seems to be at the heart of theories of quantum com-
putations and quantum cryptography , as it has been at the heart of
quantum mechanics itself . ”

We would like to stress that our paper does not contain explicit con-
nections to Quantum Computing (though they might arise sooner or
later ) . It rather aims to study the Quantum Entanglement from the
point of view of classical computational complexity and compu-
tational geometry and to use some ideas/structures from Quantum
Information Theory to construct and analyse classical algorithms.
We will introduce in this paper a Quantum generalization of the
Matching Theory and will show that this generalization gives new

and surprising insights on the nature of the Quantum Entanglement
. Of course , there already exist several “bipartite” generalizations
of (classical) bipartite matching theory . The most relevant to our
paper is the Theory of Matroids , namely its part analyzing proper-
ties of intersections of two geometric matroids .

Definition 1.1: Intersection of two geometric matroids M I(X,Y) =
{(zi,y:),1 <i < K} is afinite family of distinct 2-tuples of non-
zero N-dimensional complex vectors , i.e. z;,y; € C.

The rank of MI(X,Y") is the largest integer m such that there ex-
ist1 <41 < ... < iy < K with both sets {zi,, ..., zs,, } and
{¥i,, -, Yi., } being linearly independent. If Rank(MI(X,Y))
is equal to N then M I(X,Y) is called matching . The matroidal
permanent M P x y) is defined as follows :

MP(X’y> =:

. T
2191 <ig<..<in<K det(ZlngN iy, T,) det(ZlngN Yir i, XD

Remark 1.2: Let us denote linear space (over complex numbers
) of N x N complex matrices as M (N) . It is clear from this
definition that M 1(X,Y") is matching iff M P x y) > 0. More-
over, MI(X,Y") is matching iff the linear subspace Lin(X,Y") C
M(N) generated by the matrices {a:iy:r, 1 < ¢ < K} contains a
nonsingular matrix and , in general , Rank(MI(X,Y")) is equal
to the maximal matrix rank achieved in Lin(X,Y) . The follow-
ing equality generalizes Barvinok’s ([10] ) unbiased estimator for
mixed discriminants :

MPxyy = E(|det( Y &riy))I*) @)

1<i<K

where {£;,1 < i < K} are zero mean independent (or even
2N-wise independent ) complex valued random variables such that
E(|&|? = 1,1 < i < K . Itis not clear whether the analysis from
[9] can be applied to M P x vy . Il

Example 1.3: Suppose that z; € {e1,...,en},1 < i < K, where
{e1,...,en} is a standard basis in C*V. Define the following posi-
tive semidefinite NV x N matrices :

0= ¥

(ei,y;)E(X,Y)

yiyl, 1 <i<N.

Then it is easy to see that in this case matroidal permanent coinsides
with the mixed discriminant , i.e. MPxyy = M(Q1,---,QnN)
where the mixed discriminant defined as follows :

M(Ql,---QN) = ﬁdet(:plQl—l—%-azNQN) (3)



We will also use the following equivalent definition :

M(@Q1,..Qn)= Y (1" [ Qilc(),r(), @

o, TESN

where S, is the symmetric group, i.e. the group of all permutations
of the set {1,2,---, N}. If matrices Q;,1 < ¢ < N are diagonal
then their mixed discriminant is equal to the corresponding perma-
nent ([30]). ll

Let us pose , before moving to Quantum generalizations , the fol-
lowing “classical” desision problem . We will call it Hidden Ma-
troids Intersection Problem (HMIP ) :

Problem 1.4: Given linear subspace L C M (V) and a promise
that L has a ( hidden ) basis consisting of rank one matrices. Is
there exists poly-time deterministic algorithm to decide whether L
contains a nonsingular matrix ? Or more generally , to compute
maximum matrix rank achieved in L ? |}

Below in the paper we will assume that linear subspace L C M (N)
in (HMIP ) is given as a some rational basis in it. If this basis con-
sists of rank one matrices then there is nothing “hidden” and one
can just apply standard poly-time deterministic algorithm comput-
ing rank of intersection of two matroids. A natural (trivial) way
to attack (HMIP ) would be to exract a ( hidden ) basis consisting
of rank one matrices. We are not aware about the complexity of
this extraction . The following example shows that there exist lin-
ear subspaces L C M (NN) having a rational real basis and a “rank
one” basis but without rational “rank one” basis :

Consider the following 2 X 2 matrix

0 —2
=(17)

and define linear subspace IR C M (2) generated by A and the
identity I .

It is easy to see that

Rank(bA + al) < 1iffa® + 2% = 0.

Therefore there are no rank one rational (complex) matrices in I R
. From the other hand rank one matrices

C =V2I+iA D =+2I—iA

form a basis in IR .

One of the main results of our paper is a positive answer to the
nonsingularity part of (HMIP ) . Moreover our algorithm is rather
simple and does not require to work with algebraic numbers .

And , of course , we are aware about randomized poly-time algo-
rithms , based on Scwartz’s lemma , to solve this part of (HMIP
) . But for general linear subspaces , i.e. without extra promise ,
poly-time deterministic algorithms are not known and the problem
is believed to be "THARD” . To move to Quantum generalization ,
we need to recall several , standard in Quantum Information litera-
ture , notions .

1.1 Positive and completely positive operators ; bipartite
density matrices and Quantum Entanglement

Definition 1.5 A positive semidefinite matrix pa, 5 : C¥ @CV —
CY @ C¥ is called bipartite unnormalized density matrix
(BUDM ) , if tr(pa,p) = 1 then this pa,p is called bipartite den-
sity matrix .

It is convinient to represent bipartite pa,g = p(i1, i2, j1,j2) as the
following block matrix :

Al,l A1,2 Al,N
PAE = A2n Asp ... Agn

AN,l AN,2 AN,N

where Ai, j, =t {p(i1,i2,j1,j2) + 1 < iz, 5o < N} 1 <

i1,j1 < N
A (BUDM ) p called separable if
P =pPxy) = Z aizaif @ yiy;r, (6)
1<i<K

and entangled otherwise .

If vectors z;,y;; 1 < ¢ < K in (6) are real then p is called real
separable .

Quantum marginals defined as pa = 21 <icn Aiiand

pe(i,j) =tr(Ai;);1<i,j <N.

We will call (BUDM ) p weakly separable if there exists a sep-
arable p{ x y with the same Image as p : I'm(p) = I'm(p(x y))-
( Recall that in this finite dimensional case Im(p) is a linear sub-
space formed by all linear combinations of columns of matrix p .)
A linear operator T : M (N) — M (N) called positive if T(X) >
0 for all X > 0, and strictly positive if T'(X) = «atr(X)I for all
X > 0and some « > 0. A positive operator T is called completely
positive if

T(X)= Y  AXA[A;,X e M(N) @)

1<i<N?2

Choi’s representation of linear operator 7' : M (N) — M(N) is a
block matrix CH(T);,; =: T(eie}). Dual to T respect to the inner

product < X,Y >= ¢tr(XY") is denoted as T*. Very usefull and
easy Choi’s result states that T' is completely positive iff CH(T)
is (BUDM ) . Using this natural (linear) correspondence between
completely positive operators and (BUDM ) , we will freely trans-
fer” properties of (BUDM ) to completely positive operators . For
example , a linear operator T is called separable iff C H(T') is sep-
arable , i.e.

T(2) = Txy)(2) = Y wiyl Zyia] ®)
1<i<K

Notice that CH(T(x,v)) = p(v,x) and T’k vy = Ty, x) -
(Components of vector y are complex conjugates of corresponding
components of 3 ) . [l

Remark 1.6: In light of definition (1.5) , we will represent linear
subspaces L C M(N) = CY @ CV in (HMIP ) as images of
weakly separable (BUDM ) p . And as the complexity measure we
will use the number of bits of (rational) entries of p. il

The next definition introduces the quantum permanent Q P(p) , the
main tool to solve (HMIP ) . Though it was not our original inten-
tion , it happened that QP (p(x,vy) = M Pix vy -

Definition 1.7: We define quantum permanent, QP(p) , by the
following equivalent formulas :

QP(p) =1 Y (=1)" " M(Ao(1), 0y Avow)i 9

cESN

QP(p)= > (=) [T rho(i, 1a(3), m2(i), ma(3));

71,72, T3ESN i=1

10)

1 sign(T1T2T3)T.
QP(p) = il Z (-1) gn(T17273)T4

T1,72,73,T4ESN
N

[ rho(ri(), 72 (), 75(3), 74.3)). (11)

i=1



Remark 1.8: The representation (6) is not unique , it follows di-
rectly from the Caratheodory Theorem that one always can choose
K < N%*in (6). Thus, the set of separable (BUDM ) , de-
noted by Sep(IN, N) , is a convex closed set . As it is known that
Sep(N, N) has non-empty interiour , it follows from straigthfor-
ward dimensions counting that for the "most” separable (BUDM )

- N4
at least K Z IN—1' I

In the next proposition we summarize the properties of the quantum
permanents we will need later in the paper .

Proposition 1.9:

1.
QP(px,vy) = MPx vy 12)
2.
QP(p) =< p""2,Z >, (13)
where p®N stands for a tensor product of N copies of p ,
< .,.>is a standard inner product and
26335 i 35Y) = Sp (e
ifi = ()1 < i < N);7 € Sv(k = 1,2) and zero
otherwise .
( The equality (13) implies that if p1 = p2 >= 0 then
QP(p1) 2 QP(p2) 2 0.)
3.
QP((A1 ® A2)p(A3 [ A4) = det(A1A2A3A4)QP(p)
(14)
4.
QP(pa,B) = QP(pp,a) (15)

Example 1.10: Let us present a few cases when Quantum Perma-
nents can be computed “exactly ”. They will also illustrate how
universal is this new notion .

1. Let pa,p be a product state , i.e. pa,p = C @ D . Then
QP(C @ D) = Det(C)Det(D) .

2. Let pa,p be a pure state , i.e. there exists a matrix (R =
R(i,j):1<1i,j <N)
such that pa, (i1, i2, j1, j2) = R(i1,12)R(j1,j2) -
In this case QP(pa,p) = N!|Det(R)|* .

t

i

3. Define blocks of pa, g as A; ; = R(i, j)eie
Then QP(pa,B) = Per(R) .

1
The next definition introduces Quantum Perfect Matching.

Definition 1.11: Let us consider a positive (linear) operator T' :
M(N) — M(N),amap G : C¥ — OV, and the following
three conditions :

1. G(x) € Im(T (zx").

2. If{z1,...,zn}is abasisin CV then {G(z1), ..., G(zn)} is
also a basis, i.e. the map G preserves linear independence.

3. If {z1, ..., zn} is an orthogonal basis in C"V then
{G(z1),...,G(zn)} is abasis .

. We say that map G is Quantum Perfect Matching for T if it sat-
isfies conditions (1,2) above ; say map G is Quantum Semi-Perfect
Matching for 7' if it satisfies conditions (1,3) above .

(As notion of positive linear operator as well notions of Quantum
Perfect (Semi - Perfect ) Matching can be similarly defined for a
real numbers case . ) il

In the rest of the paper we will address the following topics :

1. Characterization of Quantum Perfect Matchings in spirits of
Hall’s theorem .

2. Topological and algebraic properties of Quantum Perfect Match-

ings , i.e. properties of maps G in Definition (1.11).

3. Compelexity of checking whether given positive operator has
Quantum Perfect Matching . For weakly separable opera-
tors this problem is equivalent to the nonsingularity part of
(HMIP) .

4. Quantum (or Operator ) generalizations of Sinkhorn’s itera-
tions (in the spirit of [24] , [32], [30] ).

5. van der Waerden Conjecture for Quantum Permanents.

6. Connections between topics above and the Quantum Entan-
lement .

7. Complexity to check the separability .

2 Necessary and sufficient conditions for Quantum Perfect
Matchings

Definition 2.1: A positive linear operator T' : M (N) — M(N)
called rank non-decreasing iff

Rank(T (X)) > Rank(X) ifX > 0; (16)
and called indecomposable iff

Rank(T (X)) > Rank(X) ifX > 0 andl < Rank(X) < N.
a7
A positive linear operator T' : M(N) — M(N) called doubly
stochastic iff T'(I) = I and T*(I) = I ; called € - doubly stochas-
tic iff DS(T) =: tr((T(I) — I)?) + tr((T*(I) — I)*) < €*.
1

The next conjectures generalize Hall’s theorem to Quantum Perfect
Matchings .

Conjecture 2.2: Assuming that the Axiom of Choice and the Con-
tinium Hypothesis hold, a positive linear operator 7' has Quantum
Perfect Matching iff it is rank non-decreasing . il

Conjecture 2.3: Assuming that the Axiom of Choice and the Con-
tinium Hypothesis hold, a positive linear operator 7' has Quantum
Semi-Perfect Matching iff it is rank non-decreasing . il

Remark 2.4: We realize that the presence of the Axiom of Choice
and the Continium Hypothesis in linear finite dimensional result
might look a bit weird . But we will illustrate below in this section
that for some completely positive entangled operators correspond-
ing Quantum semi-perfect matching maps GG are necessary quite
complicated , for instance necessary discontinuos . Moreover Con-
jecture 1 is plain wrong , even for doubly stochastic indecompos-
able completely positive operators . In separable and even weakly
separable cases one does not need “exotic axioms” and one can re-
alize Quantum perfect matching map it it exists as a linear nonsin-
gular transformation through a rather simple use of Edmonds-Rado
theorem .



The next Proposition(2.5) is a slight generalization of the corre-
sponding result in [24] .

Proposition 2.5: Doubly stochastic operators are rank non-decreasing

. Ifeither T(I) = T or T*(I) = I and DS(T) < N~ ' then T
is rank non-decreasing . If DS(T) < (2N + 1)™* then T is rank
non-decreasing .

Example 2.6: Consider the following completely positive doubly
stochastic operator Sk : M(3) — M(3):

1
Skg(X) = EA(LQ)XAT

"
(1,2) + A(1,3>XA

"
(1,3) + A(2,3>XA

(2,3)
(18)
Here {A(; j),1 < ¢ < j < 3} is a standard basis in a linear

subspace of M (3) consisting of all skew-symmetric matrices , i.e.
Aip = eie; — eiel and {e;,1 < i < 3} is a standard orthonor-
mal basis in C® . Tt is easy to see that for a non-zero 3-dimensional
column vector x vector y € ImSkg(mtT) iff y1z14+y222+ysxs =
0 or in other words j € 2+ , where 2 stands for orthogonal com-
plement of « . Notice that Dim(z") = 2.

Suppose that G’ is Quantum semi-perfect matching map ,

then G(z) € % and , at least , G(z) is nonzero for nonzero vec-
tors z. By the well known topological result , impossibility to comb
the unit sphere in C* , none of Quantum semi- perfect matchings
for Sks is continuous. It is not difficult to show that the operator
Sks is entangled . A direct computation shows that

QP(CH(Sks)) =0 (19)

An easy “lifting” of this construction allows to get a similar ex-
ample for all N > 3. From the other hand , for N = 2 all rank
non-decreasing positive operators have linear nonsingular Quan-
tum perfect matchings .

Proposition 2.7: Assuming that the Axiom of Choice and the Con-
tinium Hypothesis hold, Sks has a Quantum semi-perfect matching

Proof: (Sketch) Let us well order the projective unit sphere PS>
inC%®: PS, = (ta;a € T') in such way that for any 3 € T the
interval (to : a < () is at most countable . As complex con-
jugation does not affect linear independence , our goal is to build
(go € PSo;a €T : gy # 0, 9a € t2) such that if (ta, ,tas, tas)
is orthogonal basis then (ga, , gas, Jas ) are independent .
As it usually happens in inductive constructions , we will induc-
tively force an additional property : go # tgifa > 3.
Notice if this condition satisfied then the linear space L(ga,g3)
generated by (ga, gs) is not equal to L(ta,tg) if < ta,tg >=0
and a > 3. Using the countability assumption , it is easy to show
that at each step of trasfinite induction the set of "bad” candidates
has measure zero , which allows always to choose a ”good” guy gy
without changing already constructed (ga; o < 7). 11

The next Proposition shows that Sks does not have Quantum
perfect matchings !

Proposition 2.8: Sks does not have Quantum perfect matchings

Proof: Suppose that G(.) is Quantum perfect matching for Sks .

Take any non-zero x and an orthogonal basis {y, z} in «* such that

G(z) = (0,a1,a2) in {z,y, 2} basis and a1 # 0,a2 # 0.

Let G(y) = (b1,0,b2),G(2) = (c1,c2,0) (Recall that G(z) €
1

).

Suppose that z € L(G(z), G(y)), and y € L(G(z), G(z)).

Then by = 0 and ¢; = 0 . This contradicts

to ((G(z), G(y), G(z)) being a basis . Thus there exists

an orthogonal basis (O1, O2, O3) such that O3

does not belong to L(G(01), G(02)).

Take non-zero vector v such that v = L(G(01), G(02)) .

As O(3) € L(G(01),G(02)) thus < v,03 ># 0 and (O1, O2,v)
is a basis . But , clearly , there is no basis (G(0O1), G(O2), d) with
d € v- = L(G(01),G(0)) .

We got a contradiction , hence there are no Quantum perfect match-
ing for Sk; . M

Next result shows that for weakly separable (and thus for sepa-
rable) operators the situation is very different.

Theorem 2.9: Suppose that T : M(N) — M(N) is linear pos-
itive weakly separable operator , i.e. there exists a a family of
rank one matrices {z1yl, ..., mly;} C M(N) such that for pos-
itive semidefinite matrices X > 0 the following identity holds :

l
Im(T(X)) = Im(>_ wiy! Xya]) (20)

i=1
Then the following conditions are equivalent :

1. T is rank non-decreasing .

2. The rank of intersection of two geometric matroids MI1(X,Y)
is equal to N.

3. The exists a nonsingular matrix A such that Im(AX A") c
Im(T(X)),X = 0.

If, additionaly , T is completely positive then these conditions are
equivalent to existence of nonsingular matrix A such that operator
T'(X) = T(X) — AX A" is completely positive .
In this case QP(CH(T)) > N!|Det(A)]* > 0.

Proof: Recall Edmonds-Rado Theorem for M I(X,Y):
Rank of MI(X,Y) is equal N iff

dim(L(z;;i € A) + dim(L(y;;5 € A) > N, 1)

where A C {1,2,...,1} and A is a complement of A.
Suppose that rank of MI(X,Y’) is equal to N. Then

RankT (X) = dim(L(xs;i € A)) where A =: {i : y] Xy; # 0}

As dim(L(y;;j € A) < dim(Ker(X)) = N — Rank(X)
hence , from Edmonds-Rado Theorem we get that RankT (X) >
N — (N — Rank(X)) = Rank(X) .

Suppose that T is rank non-decreasing and forany A C {1, 2, ...,1}
consider an orthogonal projector P &= 0 on L(y;; j € A)* . Then

dim(L(z; : i € A)) > RankT(P) > Rank(P) =

= N — dim(L(y;;j € A)).
It follows from Edmonds-Rado Theorem that rank of MI(X,Y")
isequal to N .
All "equivalencies” follow now directly .
The inequality QP(CH(T)) > N!|Det(A)|* > 0 follows from
monotonicity of Quantum Permanents (Part 2 of Prop. 1.9 ) and
Part 2 of Example 1.10 i

Remark 2.10: Let us explain why Conjectures (2.2 - 2.3) general-
ize Hall’s theorem . Consider a square weighted incidence matrix
Ar of a bipartite graph I' , i.e.Ar (i, 7) > 0 if ¢ from the first part
is adjacent to j from the second part and equal to zero otherwise.
Then Hall’s theorem can be immediately reformulated as follows
: A perfect matching , which is just a permutation in this bipartite
case , exists iff |[Arz|+ > |z|4+ for any vector x with nonnega-
tive entries , where |z |+ stands for a number of positive entries of
a vector z . One also can look at Theorem(2.9) as a Hall’s like
reformulation of Edmonds-Rado theorem . |}



2.1 A pleminary summary

So far , we got necessary and sufficient conditions for the existence
of Quantum Perfect Matchings for weakly separable operators and
presented an example of completely positive doubly stochastic en-
tangled operator which has a Quantum Semi-Perfect Matching (which
is necessary discontinuous ) , but does not have Quantum Perfect
Matchings .

These results provide new combinatorial - topological insights on
the nature of the Quantum Entanglement and hint that even the no-
tion of rank non-decreasing operator is beyound Matroids Theory
for entangled operators.

It is not clear to us how crucial are “logical” assumptions

in Proposition (2.7) . As conditions in Definition 1.11 are semi-
algebraic , it seems possible to try to apply powerfull Tarski theory

Theorem(2.9) shows that in separable (even weakly separable) case
these assumptions are not needed . The next question , which we
study in the next sections , is about efficient , i.e. polynomial time
, deterministic algorithms to check the existence of Quantum Per-
fect Matchings . We will describe and analyse below in the paper a
“direct” deterministic polynomial time algorithm for weakly sepa-
rable case (which also solves the nonsigularity part of (HMIP ) ) .
A complexity bound for a separable case is slightly better than for
just weakly separable case . Our algorithm is an operator general-
ization of Sinkhorn’s iterative scaling . We conjecture that without
some kind of separability promise checking whether given positive
operator is rank non-decreasing is "THARD” even for completely
positive operators.

3 Operator Sinkhorn’s iterative scaling

Recall that for a square matrix A = {a;; : 1 < i,5 < N} row
scaling is defined as

Qij

Zj @ij

aij

column scaling as C'(A) = {E

R(A) =A{ }

} assuming that all denomina-
§ ¢id

tors are nonzero.

The iterative process ...C RCR(A) is called Sinkhorn’s itera-
tive scaling (SI). There are two main , well known , properties of
this iterative process , which we will generalize to positive Opera-
tors.

Proposition 3.1:

1. Suppose that A = {a;; > 0:1 <14, j < N}. Then (SI)
convergess iff A is matching, i.e., there exists a permutation
m such that a; -y > 0 (1 <i < N).

2. If A is indecomposable, i.e., A has a doubly-stochastic pat-
tern and is fully indecomposable in the usual sense , then
(SI) converges exponentially fast. Also in this case there ex-
ist unique positive diagonal matrices D1, D2, det(D2) = 1
such that the matrix DT * AD3 " is doubly stochastic.

Definition 3.2: [Operator scaling ] Consider linear positive oper-
ator T : M(N) — M(N) . Define a new positive operator ,
Operator scaling , S¢,,c,(T') as :

Soy.0(T)(X) =: CLT(CI X Cy)CT (22)

Assuming that both T'(I) and T™(I) are nonsingular we define
analogs of row and column scalings :

(T) (23)

_1
I1,T*(I)” 2

Operator Sinkhorn’s iterative scaling (OSI) is the iterative process
..CRCR(T)

Remark 3.3: Using Choi’s representation of the operator 7' in
Definition(1.5) , we can define analogs of operator scaling (which
are exactly so called local transformations in Quantum Information
Theory) and (OSI) in terms of (BUDM ) :

Soy.00(paB) = C1 @ Ca(pa,p)Ci @ Cl;
_1 1
R(pap) =ps” @1(pap)p,” ©1,
_1 1
Clpa,p) =1@pg*(pa,B) @ pp®. (24)
|

Let us introduce a class of locally scalable functionals (LSF ) de-
fined on a set of positive linear operators , i.e. functionals satisfying
the following identity :

©(Sc,,05(T)) = Det(C1CT)Det(C2CH)o(T)  (25)

We will call (LSF ) bounded if there exists a function f such that
|o(T)| < f(tr(T(I)) . Itis clear that bounded (LSF ) are natural
”potentials” for analyzing (OSI) . Indeed , Let T,,,70 = T be a
trajectory of (OSI), T is a positive linear operator . Then T;(I) = I
forodd ¢ and T5; (I)* = I,i > 1. Thus if ¢(.) is (LSF ) then

o(Tiy1) = a(i)p(T:), a(i) = Det(T; (1)) "ifiisodd
a(i) = Det(T;(I)) "ifi > Oiseven. (26)

As tr(Ti(I)) = tr(T;7(I)) = N,i > 0, thus by the ariph-
metic/geometric means inequality we have that |o(Ti41)| > |¢(T3)|
and if ¢(.) is bounded and |p(T")| # 0 then DS(T},) converges to
Zero .

To prove a generalization of Statement 1 in Prop.(3.1) we need
to ”invent” a bounded (LSF ) ¢(.) such that ¢(T') # 0 iff operator
T is rank non-decreasing . We call such functionals responsible
for matching . It is easy to prove that QP(CH(T')) is a bounded
(LSF) . Thusif QP(CH(T')) # 0 then DS(T},) converges to zero
and , by Prop. (2.5), T is rank non-decreasing . From the other
hand , QP(CH(Sks3)) = 0 and Sks is rank non-decreasing (even
indecomposable ). This is another “strangeness” of entangled op-
erators , we wonder if it is possible to have nice” , say polynomial
with integer coefficients , responsible for matching (LSF ) ? We
introduce below responsible for matching bounded (LSF ) which
is continuous but non-differentiable .

Definition 3.4: For a positive operator T' : M(N) — M(N), we
define its capacity as

Cap(T) = inf{Det(T (X)) : X »= 0,Det(X)=1}. (27)

1

It is easy to see that Cap(T') is (LSF ) .

Since Cap(T) < Det(T(I)) < (ELED)N
hence Cap(T) is bounded (LSF) .

Lemma 3.5: A positive operator T : M(N) — M(N) is rank
non-decreasing iff Cap(T) > 0.

Proof: Let us fix an orthonormal basis (unitary matrix) U = {w, ..., un }

in C'™ and associate with positive operator T the following positive
operator :

To(X)=: Y T(uwuf)tr(Xuuf). (28)

1<i<N



(In physics words , Ty is a decohorence respect to the basis U , i.e.

in this basis applying Ty to matrix X is the same as applying 7" to

the diagonal restriction of X. )

It is easy to see that a positive operator 7" is rank non-decreasing iff

operators Ty are rank non-decreasing for all unitary U .

And for fixed U all properties of Ty are defined by the following

N-tuple of N x N positive semidefinite matrices :
Ary = (T(uul), ..., T(unuly). (29)

Importantly for us , Ty is rank non-decreasing iff the mixed dis-

criminant M (T (uyul), ..., T(unul,)) > 0.

Define capacity of Arr ,

C’ap(AT,U) =:
inf{Det(ElSiSN T(uiuj)’yi) 1 >0, ngigN vi =1}
It is clear from the definitions that Cap(T) is equal to infimum of

Cap(Ar,v) over all unitary U.
One of the main results of [30] states that

M(Ary) = M(T(wul),...T(uvuly)) < Cap(Ary) <
N
< %M(T(ulu{),...,T(qu)). (30)

As the mixed discriminant is a continuous (analytic ) functional and
the group SU(N) of unitary matrices is compact , we get the next
inequality :

N

M(Ary) < Cap(T) < X mmin

min
— N! vesvuw)

M(Ar,v)
UESU(N)

€2y

The last inequality proves that Cap(T) > 0 iff positive operatorT’
is rank non-decreasing. ll

So , the capacity is a bounded (LSF ) responsible for matching

, which proves the next theorem :
Theorem 3.6:

1. Let T,,,To = T be a trajectory of (OSI), T is a positive
linear operator . Then DS(Ty) converges to zero iff T is
rank non-decreasing .

2. Positive linear operator T' is rank non-decreasing iff for all
€ > 0 there exists e-doubly stochastic operator scaling of T

The next theorem generalizes second part of Prop. (3.1) and is
proved on almost the same lines as Lemmas 24,25,26,27 in [30] .

Theorem 3.7:

1. There exist nonsingular matrices C1, C such that Sc, ¢, (T')
is doubly stochastic iff the infimum in ( 26) is attained .
Moreover, if Cap(T) = Det(T(C)) where C = 0, Det(C) =
1
then S -1 1 (T) is doubly stochastic .

T(C)T ,02

Positive operator T' is indecomposable iff the infimum in (
27) is attained and unique .

2. Doubly stochastic operator T is indecomposable iff
tr(T(X))? < a tr(X)? for some 0 < a < 1 and all trace-
less hermitian matrices X.

3. If Positive operator T is indecomposable then DS(T,,) con-
verges to zero with the exponential rate , i.e. DS(T,) <
Ka" for some K and0 < a < 1.

4 Lower and upper bounds on Quantum Permanents

The next proposition follows fairly directly from the second part of
Prop.(1.9) and Cauchy-Schwarz inequality

Proposition 4.1: Suppose that pa,g is (BUDM ). Then

max |M(A1,c'(l)7 ey AN,o-(N))| =

oceSN
M(A11,...,AN,N) (32)
Corollary 4.2: If pa, 5 is (BUDM ) then
QP(pA,B) S N!M(Al,l, ...,AN,N) S N!Det(pA). (33)

Permanental part of Example(1.10) shows that N is exact constant
in both parts of (32) , i.e. if blocks A; j = eie;, 1<43<N
then QP(pa,p) = Nland M (A1, ....,An,n) = Det(pa) =1.

The next proposition follows from the Hadamard’s inequality :
if X = 0is N x N matrix then Det(X) < [\, X (i, ).

Proposition 4.3: If X > 0 then the following inequality holds :

K
Det(z :ciy:eri:cZ) >

i=1
Corollary 4.4: Suppose that separable (BUDM ) pa,B is Choi’s
representation of completely positive operator T .
Then for all X > 0O the next inequality holds :

Det(T(X)) > QP(pa,B)Det(X) (35)
Since pa = T(I), hence QP(pa,) < Det(pa) in separable
case .

(Notice that Corollary 4.2 provides an example of entangled (BUDM
) which does not satisfy (35) .)

Call (BUDM ) p4,s doubly stochastic if it is Choi’s represen-
tation of completely positive doubly stochastic operator 7' . Le.
(BUDM ) pa,B is doubly stochastic iff pa = pp = I . As we
already explained , the set of separable (BUDM ) is convex and
closed . Thus the set of doubly stochastic separable (BUDM ) ,
DSEP(N,N),is a convex compact . Define

BIN)=  min_ QP(p).

pEDSEP(N,N)

Then it follows that 3(IN) > 0 for all integers NV . The next con-
jecture is , in a sense , a third generation of the famous van der
Waerden conjecture . First generation is a permanental conjecture
proved by Falikman and Egorychev ([15], [14]) in 1980 and second
generation is Mixed discriminants conjecture posed by R.Bapat [4]
in 1989 and proved by the author in 1999 [19]. Mixed discrimi-
nants conjecture corresponds to block-diagonal doubly stochastic
(BUDM ) . Any good lower bound on S(IN) will provide simi-
larly to [30] deterministic poly-time approximations for Matroidal
permanents and new sufficient conditions for the Quantum Entan-
glement.

Conjecture 4.5:

(36)

Itis true for N = 2. |}



5 Polynomial time deterministic algorithm for (HMIP )

We introduced Hidden Matroids Intersection Problem (HMIP ) as a
well posed computer science problem , which , seemingly , requires
no “Quantum” background . Also , we explained that (HMIP )
can be formulated in terms of weakly separable (BUDM ) . Let us
consider the following three properties of (BUDM ) pa,B . ( We
will view this p 4, as Choi’s representation of completely positive
operator T', i.e. pa,p = CH(T) .)

P1 Im(pa,s) contains a nonsingular matrix .
P2 The Quantum permanent QP (pa, ) > 0.
P3 Operator T is rank non-decreasing .

We proved already that P1 — P2 — P3 and illustrated that
that the implication P2 — P3 is strict . In fact the implication
P1 — P2 is also strict. But, our Theorem (2.9), which is just an
easy adoptation of Edmonds-Rado theorem , shows that for weakly
separable (BUDM ) the three properties P1, P2, P3 are equivalent
. Recall that to check P1 without the weak separability promise
is the same as to check whether given linear subspace of M ()
contains a nonsingular matrix and it is very unlikely that this de-
sision problem can be solved in Polynomial Deterministic time .
Next , we will desribe and analyze Polynomial time deterministic
algorithm to check whether P3 holds provided that it is promised
that pa, g is weakly separable .

In terms of Operator Sinkhorn’s iterative scaling (OSI) we need to
check if there exists n such that DS(T,,) < + . If L =: min{n :
DS(T,) < +} is bounded by a polynomial in N and number of
bits of pa,p then we have a Polynomial time Deterministic algo-
rithm to solve (HMIP ) . Algorithms of this kind for “classical”
matching problem appeared independently in [24] and [32] . In the
“classical” case they are just another , conseptually simple , but
far from optimal , poly-time algorithms to check whether a perfect
matching exists . But for (HMIP ), our , Operator Sinkhorn’s it-
erative scaling based approach seems to be the only possibility ?
Assume that , without loss of generality , that all entries of pa,B
are integer numbers and their maximum magnitude is (). Then

Det(pa) < (QN)™ by the Hadamard’s inequality . If QP(pa.) >

0 then necessary QP (pa,g) > 1 for it is an integer number. Thus

QP(CH(T))
Det(pa)

Each nth iteration (n < L) after the first one will multiply the
Quantum permanent by Det(X)™*, where X > 0,tr(X) = N
and tr((X —I)®) > + . Using results from [24] , Det(X)™* >
(1 — m) L =: § . Putting all this together , we get the follow-
ing upper bound on L , the number of steps in (OSI) to reach the
“boundary” DS(T,) < + :

QP(CH(Ty)) = > (QN)™Y

5 < QP(CH(T1))
- (@QN)7N

It follows frm Prop.(4.2) and Cor.(4.4) that in weakly separable

case QP(CH(TL)) < N!

and in separable case QP(CH(T.)) <1

Taking logarithms we get that in weakly separable case

(37)

L <~ 3N(NIn(N)+ N(In(N) + In(Q)); (38)
and in separable case
L <~ 3N(N(In(N) + In(Q)). 39

In any case , L is polynomial in the dimension [N and the number
of bits log(Q).

To finish our analysis , we need to evaluate a complexity of each
step of (OSI) .

Recall that T, (X) = L, (T (R}, X R.,))L},

for some nonsingular matrices L, and Ry,

T, (I) = L, (T(RLR,)) L}, and T (I) = Ru(T" (LLL, )R} .
To evaluate D.S(T,) we need to compute tr((T,:(I)—I)?) for odd
nand tr((T,(I) — I)?) foreven n .

Define P,, = L:fL L,,Q,= RILRR . Itis easy to see that the matrix
T, (I)is similarto P, T(Qr) , and T); (I) is similar to Qn,T*(Py) .
As traces of similar matrices are equal , therefore to evaluate DS(7},)
it is sufficient to compute matrices Py, Q..

But, Posr = (T(Qn)) " and Qui = (T*(P)) .

And this leads to standard , rational , matrix operations with O(N?)
per one iteration in (OSI) .

Notice that our original definition of (OSI) requires computation of
an operator square root . It can be replaced by the Cholesky fac-
torization , which still requires computing scalar square roots . But
our final algorithm is rational !

6 Weak Membership Problem for a convex compact set of
normalized bipartite separable density matrices is NP-
HARD

One of the main research activities in Quantum Information Theory
is a search for “operational” criterium for the separability . We will
show in this section that , in a sense defined below , the problem is
NP-HARD even for bipartite normalized density matrices provided
that each part is large (each “’particle” has large number of levels).
First , we need to recall some basic notions from computational
convex geometry.

6.1 Algorithmic aspects of convex sets

We will follow [18].

Definition 6.1: A proper ( i.e. with nonempty interior ) convex
set K C R" called well-bounded a-centered if there exist ratio-
nal vector ¢ € K and positive (rational ) numbers r, R such that
B(a,r) C K and K C B(a, R) (here B(a,r) ={z: ||z —a]| <
r} and ||.|| is a standard eucleadian norm in R™ ) . Encoding length
of such convex set K is

<K>=n+<r>+<R>+<a>,

where < r >, < R >,< a > are the number of bits of corre-
sponding rational numbers and rational vector .

Following [18] we define S(K, §) as a union of all §-balls with cen-
ters belonging to K ; and S(K,—0) = {z € K : B(z,d) C K'}.
|

Definition 6.2 The Weak Membership Problem (WM EM (K, y,§))
is defined as follows :

Given a rational vector y € R™ and a rational number 6 > 0 either
(i) assert that y € S(K,d) , or

(ii) assert that y & S(IK, —9) .

The Weak Validity Problem (WV AL(K, ¢,7,d)) is defined as
follows :
Given a rational vector y € R" , rational number - and a rational
number § > 0 either
(i) assert that < ¢,z >=: ¢To < v+ d forallz € S(K,—6) , or
(ii) assert that ¢” 2 > ~ — § for some z € S(K, §) .
|

Remark 6.3: Define M (K,c) =: maxzerx < ¢,z > . Itis easy
to see that

M(K,c) > M(S(K,—0),c) > M(K,c) —||c||6 Z;
M(K,c) < M(S(K,6),c) < M(K,c) +||c[|0



Recall that seminal Yudin - Nemirovskii theorem ([7], [18]) implies

that if there exists a deterministic algorithm solving W M EM (K, y,0)

in Poly(< K > + <y > + < § >) steps then there exists a de-
terministic algorithm solving WV AL(K, ¢, ~, ) in Poly(< K >
+ <>+ <>+ <y >)steps.

Let us denote as SEP(M, N) a compact convex set of separable

density matrices pa,B : cMeooN scMeoN ,tr(pa,) =1
, M > N . Recall that

SEP(M,N) =
CO({za" @yy - 2w € My e OV lall = llyll = 1}),
where CO(X) stands for a convex hull generated by a set X.
Our goal is to prove that Weak Membership Problem for SEP (M, N)
is NP-HARD . As we are going to use Yudin - Nemirovskii theo-
rem , it is sufficient to prove that WV AL(SEP(M,N),c,,0) is
NP-HARD respect to the complexity measure (M+ < ¢ > + <

0 > + < 7 >) and to show that < SEP(M, N) > is polynomial
in M.

6.2 Geometry of SEP(M,N)

First, SEP(M, N) can be viewed as a compact convex subset of
the hyperplane in R”, D =: N2 M?. The standard euclidean norm

in RN*M? corresponds to the Frobenius norm for density matrices
,ie. ||pllr = tr(pp'). The matrix 5,1 € SEP(M,N) and

| &I — 22" @ yy'|lr = /525 < 1 for all norm one vectors
z,y. Thus SEP(M, N) is covered by the ball B(55; 1,/ 525)
The following result was recently proved in [34] .

Theorem 6.4: Let A be a block hermitian matrix as in (5) . If

tr(A) = 0and ||Allr < /ﬁ then the the block matrix

%I + A is separable.

Summarizing , we get that for D = M N

1 1 1 D
B(1, m)cSEP(M,N)cB(BL 51

(balls are restricted to the corresponding hyperplane ) and conclude
that < SEP(M,N) >< Poly(MN). It is left to prove that
WVAL(SEP(M,N),c,,d) is NP-HARD respect to the com-
plexity measure (MN+ < c>+<d >+ <y >).

6.3 Proof of Hardness

Let us consider the following hermitian block matrix :

0 A ... Auo
C= Ay 0o ... 0 , (40)
Apo1 0 0

i.e. (i, 7) blocks are zero if either 7 # 1 or j # 1 and (1,1) block
is also zero ; Ay, ..., Apr—1 are real symmetric N x N matrices .

Proposition 6.5:

maxPeSEp(M,N) tT(Op) =

T 2
MaXy, e RN ||y||=1 ZlgiSM—l(y Aiy)”.

Proof: First, by linearity and the fact that the set of extreme points

Ext(SEP(M,N)) =
{zat @ yy' iz e OV y € CVsllall = |lyll = 1}

we get that

maxpesgp(M,N) tT(Cp) =

MaXy ot @yyt:zeCM yeCN;||z||=|ly||=1 157“(0(3333Jr ® yy*)).

But ¢r(C(yy" @ zat)) = tr(A(y)zz’) , where real symmetric
M x M matrix A(y) is defined as follows :

0 a1 .. AM-1
Ay = @ 0 U — (A1 < i< M-
apr—1 0 0

Thus

maxPeSEp(M,N) tT‘(Cp) =
MaX,yt goatioecM,yeoN zi=lyll=1 I7(CP) =
maX”y”:l AmazA(y)

(Above Az A(y) is a maximum eigenvalue of A(y))
It is easy to see A(y) has only two non-zero eigenvalues (d, —d) ,

where d = ZISZSMA(tr(Ainyf))2 .
As A;,1 < i < N — 1 are real symmetric matrices we finally get

that
> @A)

1<i<N-—1

max  tr(Cp) =
pESEP(M,N)

max
yERN ||z[=1

1

Proposition(6.5) and Remark(6.3) suggest that in order to prove
NP-HARDness of
WVAL(SEP(M,N),c,,d) respect to the complexity measure
M+ < ¢ >+ <6 >+ < >itis sufficient to prove that the
following problem of is NP-HARD :

Definition 6.6: (RSDF problem) Given k [ x [ real rational sym-
metric matrices (4;,1 < ¢ < [) and rational numbers (v, d) to
check whether

Y+ > maz,epe o f(2) 27 =06, f@) = Y (a7 Aiw)*.

1<i<l

respect to the complexity measure
(k+> e, <Ai>+<i>+<v>).1

It was shown in [6], by a reduction to the KNAPSACK, that RSDF
problem is NP-HARD provided
1(1-1
k>0 4
We summarize all this in the following theorem

Theorem 6.7: The Weak Membership Problem for SEP(M, N) is
NP-HARD if N < M < ME=1 4 o,

Remark 6.8: It is easy exercise to prove that (BUDM ) pa, g writ-
ten in block form (5) is real separable iff it is separable and all the
blocks in (5) are real symmetric matrices . It follows that , with ob-
vious modifications , Theorem 6.7 is valid for the real separability
too .

The construction (40) was inspired by Arkadi Nemirovski proof of
NP-HARDness to check the positivity of a given operator [2] . Il



7 Concluding Remarks

Many ideas of this paper were suggested by [30] . The world of
mathematical interconnections is very unpredictable (and thus is so
exciting) . The main technical result in a very recent breaktrough
in Communicational Complexity [33] is a rediscovery of particular
, rank one , case of a general , matrix tuples scaling , result proved
in [30] with much simpler proof than in [33] . Perhaps this our
paper will produce something new in Quantum Communicational
Complexity ?

We still don’t know whether there is a deterministic poly-time algo-
rithm to check whether given completely positive operator is rank
non-decreasing . And this question is related to lower bounds on
Cap(T) provided that Choi’s representation C'H (T') is an integer
semidefinite matrix .

Theorem(6.7) together with other results from our paper gives a
new , classical complexity based , insight on the nature of the Quan-
tum Entanglement and , in a sense , closes a long line of research in
Quantum Information Theory . Still many open questions remained
(for the author) , for instance , is it still NP-HARD for (M, N) bi-
partite systems wnen [V is a fixed constant ?

We hope that the constructions introduced in this paper , espe-
cially Quantum Permanent , will have a promising future . The
“third generation” of van der Waerden conjecture we introduced
above will require the ”second generation” of Alexandrov-Fenchel
inequalities [1]. We think , that in general , mixed discriminants
and mixed volumes should be studied (used ) more enthusiastically
in the Quantum context . After all , they are noncommutative gen-
eralizations of the permanent ....

It is my great pleasure to thank my LANL colleagues Manny Knill
and Howard Barnum .

Finally , I would like to thank Arkadi Nemirovski for many enlight-
ening discussions .
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