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Classical matching theory can be defined in terms of matrices with
nonnegative entries. The notion of Positive operator , central in
Quantum Theory , is a natural generalization of matrices with non-
negative entries. Based on this point of view , we introduce a defi-
nition of perfect Quantum (operator) matching . We show that the
new notion inherits many ”classical” properties , but not all of them
. This new notion goes somewhere beyound matroids . For separa-
ble bipartite quantum states this new notion coinsides with the full
rank property of the intersection of two corresponding geometric
matroids . In the classical situation , permanents are naturally asso-
ciated with perfects matchings. We introduce an analog of perma-
nents for positive operators, called Quantum Permanent and show
how this generalization of the permanent is related to the Quantum
Entanglement. Besides many other things , Quantum Permanents
provide new rational inequalities necessary for the separability of
bipartite quantum states . Using Quantum Permanents , we give
deterministic poly-time algorithm to solve Hidden Matroids Inter-
section Problem and indicate some ”classical” complexity difficul-
ties associated with the Quantum Entanglement. Finally , we prove
that the weak membership problem for the convex set of separable
bipartite density matrices is NP-HARD.

� �	��
����

	 �	� ��
	 ���	
�

	�

The (classical) Matching Theory is an important , well studied but
still very active part of the Graph Theory (Combinatorics) . The
Quantum Entanglement is one of the central topics in Quantum In-
formation Theory . We quote from [31] : ”An understanding of
entanglement seems to be at the heart of theories of quantum com-
putations and quantum cryptography , as it has been at the heart of
quantum mechanics itself . ”
We would like to stress that our paper does not contain explicit con-
nections to Quantum Computing (though they might arise sooner or
later ) . It rather aims to study the Quantum Entanglement from the
point of view of classical computational complexity and compu-
tational geometry and to use some ideas/structures from Quantum
Information Theory to construct and analyse classical algorithms.
We will introduce in this paper a Quantum generalization of the
Matching Theory and will show that this generalization gives new

and surprising insights on the nature of the Quantum Entanglement
. Of course , there already exist several ”bipartite” generalizations
of (classical) bipartite matching theory . The most relevant to our
paper is the Theory of Matroids , namely its part analyzing proper-
ties of intersections of two geometric matroids .

Definition 1.1: Intersection of two geometric matroids ������ � �
����� ���� � � � � �� is a finite family of distinct �-tuples of non-

zero 	 -dimensional complex vectors , i.e. ��� �� � 
� .
The rank of ������ � is the largest integer � such that there ex-
ist � � �� � 


 � �� � � with both sets ���� � 


� ���� and
���� � 


� ���� being linearly independent. If ����������� ��
is equal to 	 then ������ � is called matching . The matroidal
permanent ������ � is defined as follows :
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Remark 1.2: Let us denote linear space (over complex numbers
) of 	 � 	 complex matrices as ��	� . It is clear from this
definition that ������ � is matching iff ������ � � 	. More-
over , ������ � is matching iff the linear subspace ������ � � �
��	� generated by the matrices ������ � � � � � �� contains a
nonsingular matrix and , in general , ����������� �� is equal
to the maximal matrix rank achieved in ������ � � . The follow-
ing equality generalizes Barvinok’s ([10] ) unbiased estimator for
mixed discriminants :
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where ���� � � � � �� are zero mean independent (or even
�	 -wise independent ) complex valued random variables such that
������� � �� � � � � � . It is not clear whether the analysis from
[9] can be applied to ������ � .

Example 1.3: Suppose that �� � ���� 


� ���� � � � � � , where

���� 


� ��� is a standard basis in 
� . Define the following posi-
tive semidefinite 	 �	 matrices :
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Then it is easy to see that in this case matroidal permanent coinsides
with the mixed discriminant , i.e. ������ � � ����� � � � � �� �
where the mixed discriminant defined as follows :
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We will also use the following equivalent definition :
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where �
 is the symmetric group, i.e. the group of all permutations
of the set ��� �� � � � � 	�. If matrices ��� � � � � 	 are diagonal
then their mixed discriminant is equal to the corresponding perma-
nent ([30]).

Let us pose , before moving to Quantum generalizations , the fol-
lowing ”classical” desision problem . We will call it Hidden Ma-
troids Intersection Problem (HMIP ) :

Problem 1.4: Given linear subspace � � ��	� and a promise
that � has a ( hidden ) basis consisting of rank one matrices. Is
there exists poly-time deterministic algorithm to decide whether �
contains a nonsingular matrix ? Or more generally , to compute
maximum matrix rank achieved in � ?

Below in the paper we will assume that linear subspace � ���	�
in (HMIP ) is given as a some rational basis in it. If this basis con-
sists of rank one matrices then there is nothing ”hidden” and one
can just apply standard poly-time deterministic algorithm comput-
ing rank of intersection of two matroids. A natural (trivial) way
to attack (HMIP ) would be to exract a ( hidden ) basis consisting
of rank one matrices. We are not aware about the complexity of
this extraction . The following example shows that there exist lin-
ear subspaces � � ��	� having a rational real basis and a ”rank
one” basis but without rational ”rank one” basis :
Consider the following �� � matrix

� �

�
	 ��
� 	

�
�

and define linear subspace �� � ���� generated by � and the
identity � .
It is easy to see that
�������
 ��� � � iff �� 
 ��� � 	.
Therefore there are no rank one rational (complex) matrices in ��
. From the other hand rank one matrices
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�� � ��

form a basis in �� .
One of the main results of our paper is a positive answer to the
nonsingularity part of (HMIP ) . Moreover our algorithm is rather
simple and does not require to work with algebraic numbers .
And , of course , we are aware about randomized poly-time algo-
rithms , based on Scwartz’s lemma , to solve this part of (HMIP
) . But for general linear subspaces , i.e. without extra promise ,
poly-time deterministic algorithms are not known and the problem
is believed to be ”HARD” . To move to Quantum generalization ,
we need to recall several , standard in Quantum Information litera-
ture , notions .
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Definition 1.5: A positive semidefinite matrix  ��� � 
�

� �
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� is called bipartite unnormalized density matrix
(BUDM ) , if !"� ���� � � then this  ��� is called bipartite den-
sity matrix .
It is convinient to represent bipartite  ��� �  ���� ��� #�� #�� as the
following block matrix :
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where ������ �� � ���� ��� #�� #�� � � � ��� #� � 	�� � �
��� #� � 	 .
A (BUDM )  called separable if

 �  ���� � ��
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�
� � (6)

and entangled otherwise .
If vectors ��� ��� � � � � � in (6) are real then  is called real
separable .
Quantum marginals defined as  � �

�
�����

���� and

 ���� #� � !"������� � � �� # � 	 .

We will call (BUDM )  weakly separable if there exists a sep-
arable  ����� � with the same Image as  : ��� � � ��� ����� ��.

( Recall that in this finite dimensional case ��� � is a linear sub-
space formed by all linear combinations of columns of matrix  .)
A linear operator $ � ��	����	� called positive if $ ��� �
	 for all � � 	 , and strictly positive if $ ��� � %!"���� for all
� � 	 and some % � 	. A positive operator T is called completely
positive if

$ ��� �
�
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�
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Choi’s representation of linear operator $ � ��	� � ��	� is a

block matrix 
&�$ ���� �� $ ����
�
��
 Dual to $ respect to the inner

product � �� � �� !"��� �� is denoted as $�. Very usefull and
easy Choi’s result states that $ is completely positive iff 
&�$ �
is (BUDM ) . Using this natural (linear) correspondence between
completely positive operators and (BUDM ) , we will freely ”trans-
fer” properties of (BUDM ) to completely positive operators . For
example , a linear operator $ is called separable iff 
&�$ � is sep-
arable , i.e.

$ �'� � $���� ��'� �
�
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�
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Notice that 
&�$���� �� �  � �� ��� and $ ����� � � $����� .
(Components of vector �� are complex conjugates of corresponding
components of � ) .

Remark 1.6: In light of definition (1.5) , we will represent linear
subspaces � � ��	� 
� 
� 
 
� in (HMIP ) as images of
weakly separable (BUDM )  . And as the complexity measure we
will use the number of bits of (rational) entries of  .

The next definition introduces the quantum permanent �� � � , the
main tool to solve (HMIP ) . Though it was not our original inten-
tion , it happened that �� � ���� �� � ������ � .

Definition 1.7: We define quantum permanent, �� � � , by the
following equivalent formulas :
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Remark 1.8: The representation (6) is not unique , it follows di-
rectly from the Caratheodory Theorem that one always can choose
� � 	� in (6) . Thus , the set of separable (BUDM ) , de-
noted by ��*�	�	� , is a convex closed set . As it is known that
��*�	�	� has non-empty interiour , it follows from straigthfor-
ward dimensions counting that for the ”most” separable (BUDM )

at least � � ��

����
.

In the next proposition we summarize the properties of the quantum
permanents we will need later in the paper .

Proposition 1.9:

1.
�� � ���� �� � ������ � (12)

2.
�� � � ��  

��
'�' �� (13)

where  �� stands for a tensor product of 	 copies of  ,
� 
� 
 � is a standard inner product and
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if #
���
	 � �	����� � � � 	�� �	 � �� �� � �� �� and zero

otherwise .
( The equality (13) implies that if  � �  � � 	 then
�� � �� � �� � �� � 	 .)

3.

�� ���� 
��� ��� 
��� � ��������������� � �
(14)

4.
�� � ���� � �� � ���� (15)

Example 1.10: Let us present a few cases when Quantum Perma-
nents can be computed ”exactly ”. They will also illustrate how
universal is this new notion .

1. Let  ��� be a product state , i.e.  ��� � 
 
 � . Then
�� �
 
�� � ��!�
���!��� .

2. Let  ��� be a pure state , i.e. there exists a matrix �� �
���� #� � � � �� # � 	�

such that  ������� ��� #�� #�� � ����� �����#�� #�� .
In this case �� � ���� � 	 
���!����� .

3. Define blocks of  ��� as ���� � ���� #����
�
� .

Then �� � ���� � ��"��� .

The next definition introduces Quantum Perfect Matching.

Definition 1.11: Let us consider a positive (linear) operator $ �
��	� � ��	� , a map + � 
� � 
� , and the following
three conditions :

1. +��� � ���$ �����.

2. If ���� 


� ��� is a basis in 
� then �+����� 


� +����� is
also a basis, i.e. the map + preserves linear independence.

3. If ���� 


� ��� is an orthogonal basis in 
� then
�+����� 


� +����� is a basis .

. We say that map + is Quantum Perfect Matching for $ if it sat-
isfies conditions (1,2) above ; say map + is Quantum Semi-Perfect
Matching for $ if it satisfies conditions (1,3) above .
(As notion of positive linear operator as well notions of Quantum
Perfect (Semi - Perfect ) Matching can be similarly defined for a
real numbers case . )

In the rest of the paper we will address the following topics :

1. Characterization of Quantum Perfect Matchings in spirits of
Hall’s theorem .

2. Topological and algebraic properties of Quantum Perfect Match-
ings , i.e. properties of maps + in Definition (1.11).

3. Compelexity of checking whether given positive operator has
Quantum Perfect Matching . For weakly separable opera-
tors this problem is equivalent to the nonsingularity part of
(HMIP ) .

4. Quantum (or Operator ) generalizations of Sinkhorn’s itera-
tions (in the spirit of [24] , [32] , [30] ).

5. van der Waerden Conjecture for Quantum Permanents.

6. Connections between topics above and the Quantum Entan-
lement .

7. Complexity to check the separability .

� Necessary and sufficient conditions for Quantum Perfect
Matchings

Definition 2.1: A positive linear operator $ � ��	� � ��	�
called rank non-decreasing iff

�����$ ���� � ������� if� � 	� (16)

and called indecomposable iff

�����$ ���� � ������� if� � 	 and� � ������� � 	

(17)

A positive linear operator $ � ��	� � ��	� called doubly
stochastic iff $ ��� � � and $ ���� � � ; called , - doubly stochas-
tic iff ���$ � �� !"��$ ��� � ���� 
 !"��$ ���� � ���� � ,� .

The next conjectures generalize Hall’s theorem to Quantum Perfect
Matchings .

Conjecture 2.2: Assuming that the Axiom of Choice and the Con-
tinium Hypothesis hold, a positive linear operator $ has Quantum
Perfect Matching iff it is rank non-decreasing .

Conjecture 2.3: Assuming that the Axiom of Choice and the Con-
tinium Hypothesis hold, a positive linear operator $ has Quantum
Semi-Perfect Matching iff it is rank non-decreasing .

Remark 2.4: We realize that the presence of the Axiom of Choice
and the Continium Hypothesis in linear finite dimensional result
might look a bit weird . But we will illustrate below in this section
that for some completely positive entangled operators correspond-
ing Quantum semi-perfect matching maps + are necessary quite
complicated , for instance necessary discontinuos . Moreover Con-
jecture 1 is plain wrong , even for doubly stochastic indecompos-
able completely positive operators . In separable and even weakly
separable cases one does not need ”exotic axioms” and one can re-
alize Quantum perfect matching map it it exists as a linear nonsin-
gular transformation through a rather simple use of Edmonds-Rado
theorem .



The next Proposition(2.5) is a slight generalization of the corre-
sponding result in [24] .

Proposition 2.5: Doubly stochastic operators are rank non-decreasing
. If either $ ��� � � or $ ���� � � and ���$ � � 	�� then $
is rank non-decreasing . If ���$ � � ��	 
 ���� then $ is rank
non-decreasing .

Example 2.6: Consider the following completely positive doubly
stochastic operator ��� � ��������� :
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(18)
Here �������� � � � � # � �� is a standard basis in a linear
subspace of ���� consisting of all skew-symmetric matrices , i.e.

������ �� ���
�
� � ���

�
� and ���� � � � � �� is a standard orthonor-

mal basis in 
� . It is easy to see that for a non-zero �-dimensional
column vector � vector � � ��������

�� iff ����
����
���� �

	 or in other words �� � �� , where �� stands for orthogonal com-
plement of � . Notice that ������� � �.
Suppose that + is Quantum semi-perfect matching map ,

then +��� � �� and , at least , +��� is nonzero for nonzero vec-
tors �. By the well known topological result , impossibility to comb
the unit sphere in 
� , none of Quantum semi- perfect matchings
for ��� is continuous. It is not difficult to show that the operator
��� is entangled . A direct computation shows that

�� �
&������ � 	 (19)

An easy ”lifting” of this construction allows to get a similar ex-
ample for all 	 � �. From the other hand , for 	 � � all rank
non-decreasing positive operators have linear nonsingular Quan-
tum perfect matchings .

Proposition 2.7: Assuming that the Axiom of Choice and the Con-
tinium Hypothesis hold, ��� has a Quantum semi-perfect matching
.

Proof: (Sketch) Let us well order the projective unit sphere ���
in 
� : ��� � �!��% � �� in such way that for any - � � the
interval �!� � % � -� is at most countable . As complex con-
jugation does not affect linear independence , our goal is to build
�.� � ����% � � � .� �� 	� .� � !�� � such that if �!�� � !�� � !���
is orthogonal basis then �.�� � .�� � .�� � are independent .
As it usually happens in inductive constructions , we will induc-
tively force an additional property : .� �� !� if % � - .
Notice if this condition satisfied then the linear space ��.�� .��
generated by �.�� .�� is not equal to ��!�� !�� if � !�� !� �� 	
and % � - . Using the countability assumption , it is easy to show
that at each step of trasfinite induction the set of ’bad” candidates
has measure zero , which allows always to choose a ”good” guy .�
without changing already constructed �.��% � /�.

The next Proposition shows that ��� does not have Quantum
perfect matchings !

Proposition 2.8: ��� does not have Quantum perfect matchings

Proof: Suppose that +�
� is Quantum perfect matching for ��� .

Take any non-zero � and an orthogonal basis ��� 0� in �� such that
+��� � �	� ��� ��� in ��� �� 0� basis and �� �� 	� �� �� 	.

Let +��� � ���� 	� ���� +�0� � �1�� 1�� 	� (Recall that +��� �
�� ).
Suppose that 0 � ��+����+����� and � � ��+���� +�0��.
Then �� � 	 and 1� � 	 . This contradicts
to ��+����+���� +�0�� being a basis . Thus there exists

an orthogonal basis �2�� 2�� 2�� such that 2�

does not belong to ��+�2��� +�2���.

Take non-zero vector 3 such that 3� � ��+�2��� +�2��� .
As2��� �� ��+�2��� +�2��� thus � 3�2� ��� 	 and �2�� 2�� 3�
is a basis . But , clearly , there is no basis �+�2��� +�2��� 4� with

4 � 3� � ��+�2��� +�2��� .
We got a contradiction , hence there are no Quantum perfect match-
ing for ��� .

Next result shows that for weakly separable (and thus for sepa-
rable) operators the situation is very different.

Theorem 2.9: Suppose that $ � ��	� � ��	� is linear pos-
itive weakly separable operator , i.e. there exists a a family of

rank one matrices ������� 


� ����� � � ��	� such that for pos-
itive semidefinite matrices � � 	 the following identity holds :

���$ ���� � ���

��
���

���
�
�����

�
� � (20)

Then the following conditions are equivalent :

1. $ is rank non-decreasing .

2. The rank of intersection of two geometric matroids������ �
is equal to 	 .

3. The exists a nonsingular matrix � such that �������� �
���$ ������ � 	 .

If , additionaly , $ is completely positive then these conditions are
equivalent to existence of nonsingular matrix � such that operator
$ ���� � $ �������� is completely positive .
In this case �� �
&�$ �� � 	 
���!����� � 	 .

Proof: Recall Edmonds-Rado Theorem for ������ �:
Rank of ������ � is equal 	 iff

��������� � � �� 
 �������� � # � ��� � 	� (21)

where � � ��� �� 


� 5� and �� is a complement of �.
Suppose that rank of ������ � is equal to 	 . Then

����$ ��� � ��������� � � ��� where � �� �� � ������ �� 	�
As �������� � # � ��� � 4�����"���� � 	 � �������
hence , from Edmonds-Rado Theorem we get that ����$ ��� �
	 � �	 ��������� � ������� .
Suppose that $ is rank non-decreasing and for any � � ��� �� 


� 5�
consider an orthogonal projector � � 	 on ���� � # � ���� . Then

�������� � � � ��� � ����$ �� � � ������ � �

� 	 � �������� � # � ����


It follows from Edmonds-Rado Theorem that rank of ������ �
is equal to 	 .
All ”equivalencies” follow now directly .
The inequality �� �
&�$ �� � 	 
���!����� � 	 follows from
monotonicity of Quantum Permanents (Part 2 of Prop. 1.9 ) and
Part 2 of Example 1.10

Remark 2.10: Let us explain why Conjectures (2.2 - 2.3) general-
ize Hall’s theorem . Consider a square weighted incidence matrix
�	 of a bipartite graph � , i.e.�	��� #� � 	 if � from the first part
is adjacent to # from the second part and equal to zero otherwise.
Then Hall’s theorem can be immediately reformulated as follows
: A perfect matching , which is just a permutation in this bipartite
case , exists iff ��	��
 � ���
 for any vector � with nonnega-
tive entries , where ���
 stands for a number of positive entries of
a vector � . One also can look at Theorem(2.9) as a Hall’s like
reformulation of Edmonds-Rado theorem .
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So far , we got necessary and sufficient conditions for the existence
of Quantum Perfect Matchings for weakly separable operators and
presented an example of completely positive doubly stochastic en-
tangled operator which has a Quantum Semi-Perfect Matching (which
is necessary discontinuous ) , but does not have Quantum Perfect
Matchings .
These results provide new combinatorial - topological insights on
the nature of the Quantum Entanglement and hint that even the no-
tion of rank non-decreasing operator is beyound Matroids Theory
for entangled operators.
It is not clear to us how crucial are ”logical” assumptions
in Proposition (2.7) . As conditions in Definition 1.11 are semi-
algebraic , it seems possible to try to apply powerfull Tarski theory
.
Theorem(2.9) shows that in separable (even weakly separable) case
these assumptions are not needed . The next question , which we
study in the next sections , is about efficient , i.e. polynomial time
, deterministic algorithms to check the existence of Quantum Per-
fect Matchings . We will describe and analyse below in the paper a
”direct” deterministic polynomial time algorithm for weakly sepa-
rable case (which also solves the nonsigularity part of (HMIP ) ) .
A complexity bound for a separable case is slightly better than for
just weakly separable case . Our algorithm is an operator general-
ization of Sinkhorn’s iterative scaling . We conjecture that without
some kind of separability promise checking whether given positive
operator is rank non-decreasing is ”HARD” even for completely
positive operators.

� ������
�  
	!"
�	#� 
�����
�� ����
	�

Recall that for a square matrix � � ���� � � � �� # � 	� row
scaling is defined as

���� � � ����
�
���
� �

column scaling as 
��� � � ����
�
���
� assuming that all denomina-

tors are nonzero.
The iterative process 



�
���� is called Sinkhorn’s itera-

tive scaling (SI). There are two main , well known , properties of
this iterative process , which we will generalize to positive Opera-
tors.

Proposition 3.1:

1. Suppose that � � ����� � 	 � � � �� # � 	�. Then (SI)
convergess iff � is matching, i.e., there exists a permutation
6 such that ������� � 	 �� � � � 	�.

2. If � is indecomposable, i.e., � has a doubly-stochastic pat-
tern and is fully indecomposable in the usual sense , then
(SI) converges exponentially fast. Also in this case there ex-
ist unique positive diagonal matrices ��� ��� ������� � �
such that the matrix ���

� ����
� is doubly stochastic.

Definition 3.2: [Operator scaling ] Consider linear positive oper-
ator $ � ��	� � ��	� . Define a new positive operator ,
Operator scaling , �������$ � as :

�������$ ���� �� 
�$ �

�
��
��


�
� (22)

Assuming that both $ ��� and $���� are nonsingular we define
analogs of row and column scalings :

��$ � � �
� ���

� �

� ��
�$ �� 
�$ � � �

�������
� �

�

�$ � (23)

Operator Sinkhorn’s iterative scaling (OSI) is the iterative process




�
��$ �

Remark 3.3: Using Choi’s representation of the operator $ in
Definition(1.5) , we can define analogs of operator scaling (which
are exactly so called local transformations in Quantum Information
Theory) and (OSI) in terms of (BUDM ) :

������� ���� � 
� 

�� ����

�
� 



�
� �

�� ���� �  
� �

�

� 
 �� ���� 
� �

�

� 
 ��


� ���� � � 
  
� �

�

� � ����� 
  
� �

�

� 
 (24)

Let us introduce a class of locally scalable functionals (LSF ) de-
fined on a set of positive linear operators , i.e. functionals satisfying
the following identity :

7��������$ �� � ��!�
�

�
����!�
�


�
��7�$ � (25)

We will call (LSF ) bounded if there exists a function 8 such that
�7�$ �� � 8�!"�$ ���� . It is clear that bounded (LSF ) are natural
”potentials” for analyzing (OSI) . Indeed , Let $
� $� � $ be a
trajectory of (OSI) , $ is a positive linear operator . Then $���� � �
for odd � and $�����

� � �� � � � . Thus if 7�
� is (LSF ) then

7�$�
�� � ����7�$��� ���� � ��!�$ �� ����
��

if � is odd �

���� � ��!�$�����
��

if � � 	 is even
 (26)

As !"�$����� � !"�$ �� ���� � 	� � � 	 , thus by the ariph-
metic/geometric means inequality we have that �7�$�
��� � �7�$���
and if 7�
� is bounded and �7�$ �� �� 	 then ���$
� converges to
zero .

To prove a generalization of Statement 1 in Prop.(3.1) we need
to ”invent” a bounded (LSF ) 7�
� such that 7�$ � �� 	 iff operator
$ is rank non-decreasing . We call such functionals responsible
for matching . It is easy to prove that �� �
&�$ �� is a bounded
(LSF ) . Thus if �� �
&�$ �� �� 	 then ���$
� converges to zero
and , by Prop. (2.5) , $ is rank non-decreasing . From the other
hand , �� �
&������ � 	 and ��� is rank non-decreasing (even
indecomposable ). This is another ”strangeness” of entangled op-
erators , we wonder if it is possible to have ”nice” , say polynomial
with integer coefficients , responsible for matching (LSF ) ? We
introduce below responsible for matching bounded (LSF ) which
is continuous but non-differentiable .

Definition 3.4: For a positive operator $ � ��	� � ��	�, we
define its capacity as


�*�$ � � ������!�$ ���� � � � 	� ��!��� � �� 
 (27)

It is easy to see that 
�*�$ � is (LSF ) .

Since 
�*�$ � � ��!�$ ���� � � ���� ����
�

�� ,
hence 
�*�$ � is bounded (LSF ) .

Lemma 3.5: A positive operator $ � ��	� � ��	� is rank
non-decreasing iff 
�*�$ � � 	 .

Proof: Let us fix an orthonormal basis (unitary matrix)9 � �:�� 


� :��
in 
� and associate with positive operator $ the following positive
operator :

$ ��� ��
�

�����

$ �:�:
�
� �!"��:�:

�
� �
 (28)



(In physics words , $ is a decohorence respect to the basis 9 , i.e.
in this basis applying $ to matrix � is the same as applying $ to
the diagonal restriction of � . )
It is easy to see that a positive operator $ is rank non-decreasing iff
operators $ are rank non-decreasing for all unitary 9 .
And for fixed 9 all properties of $ are defined by the following
	 -tuple of 	 �	 positive semidefinite matrices :

��� �� �$ �:�:
�
��� 


� $ �:�:

�
� �
 (29)

Importantly for us , $ is rank non-decreasing iff the mixed dis-

criminant ��$ �:�:
�
��� 


� $ �:�:

�
� �� � 	.

Define capacity of��� ,


�*���� � ��

������!�
�

�����
$ �:�:

�
� �/�� � /� � 	�

�
�����

/� � ��


It is clear from the definitions that 
�*�$ � is equal to infimum of

�*���� � over all unitary 9 .
One of the main results of [30] states that

����� � �� ��$ �:�:
�
��� 


� $ �:�:

�
� �� � 
�*���� � �

� 	�

	 

��$ �:�:

�
��� 


� $ �:�:

�
� ��
 (30)

As the mixed discriminant is a continuous (analytic ) functional and
the group �9�	� of unitary matrices is compact , we get the next
inequality :

���
 �� ���

����� � � 
�*�$ � � 	�

	 

���

 �� ���
����� �

(31)
The last inequality proves that 
�*�$ � � 	 iff positive operator$
is rank non-decreasing.

So , the capacity is a bounded (LSF ) responsible for matching
, which proves the next theorem :

Theorem 3.6:

1. Let $
� $� � $ be a trajectory of (OSI) , $ is a positive
linear operator . Then ���$
� converges to zero iff $ is
rank non-decreasing .

2. Positive linear operator $ is rank non-decreasing iff for all
, � 	 there exists ,-doubly stochastic operator scaling of $
.

The next theorem generalizes second part of Prop. (3.1) and is
proved on almost the same lines as Lemmas 24,25,26,27 in [30] .

Theorem 3.7:

1. There exist nonsingular matrices
�� 
� such that������ �$ �
is doubly stochastic iff the infimum in ( 26) is attained .
Moreover , if
�*�$ � � ��!�$ �
��where 
 � 	� ��!�
� �
�
then �

� ���
��

� ��
�

�

�$ � is doubly stochastic .

Positive operator $ is indecomposable iff the infimum in (
27) is attained and unique .

2. Doubly stochastic operator $ is indecomposable iff
!"�$ ����� � � !"���� for some 	 � � � � and all trace-
less hermitian matrices � .

3. If Positive operator $ is indecomposable then ���$
� con-
verges to zero with the exponential rate , i.e. ���$
� �
��
 for some � and 	 � � � � .

$ %
&�� �	� ����� �
�	�� 
	 ���	��� �����	�	��

The next proposition follows fairly directly from the second part of
Prop.(1.9) and Cauchy-Schwarz inequality

Proposition 4.1: Suppose that  ��� is (BUDM ). Then

���
����

����������� 


� ��������� �
������� 


� ����� (32)

Corollary 4.2: If  ��� is (BUDM ) then

�� � ���� � 	 
������� 


� ���� � � 	 
��!� ��
 (33)

Permanental part of Example(1.10) shows that 	 
 is exact constant

in both parts of (32) , i.e. if blocks ���� � ���
�
� � � � �� # � 	

then �� � ���� � 	 
 and ������� 


� ���� � � ��!� �� � � .

The next proposition follows from the Hadamard’s inequality :

if � � 	 is 	 �	 matrix then ��!��� ���

���
���� ��.

Proposition 4.3: If � � 	 then the following inequality holds :

��!�

��
���

���
�
�����

�
� � �

��!��������� �
 (34)

Corollary 4.4: Suppose that separable (BUDM )  ��� is Choi’s
representation of completely positive operator $ .
Then for all � � 	 the next inequality holds :

��!�$ ���� � �� � ������!��� (35)

Since  � � $ ��� , hence �� � ���� � ��!� �� in separable
case .
(Notice that Corollary 4.2 provides an example of entangled (BUDM
) which does not satisfy (35) .)

Call (BUDM )  ��� doubly stochastic if it is Choi’s represen-
tation of completely positive doubly stochastic operator $ . I.e.
(BUDM )  ��� is doubly stochastic iff  � �  � � � . As we
already explained , the set of separable (BUDM ) is convex and
closed . Thus the set of doubly stochastic separable (BUDM ) ,
���� �	�	� , is a convex compact . Define

-�	� � ���
!�"�#$ �����

�� � �


Then it follows that -�	� � 	 for all integers 	 . The next con-
jecture is , in a sense , a third generation of the famous van der
Waerden conjecture . First generation is a permanental conjecture
proved by Falikman and Egorychev ([15] , [14]) in 1980 and second
generation is Mixed discriminants conjecture posed by R.Bapat [4]
in 1989 and proved by the author in 1999 [19]. Mixed discrimi-
nants conjecture corresponds to block-diagonal doubly stochastic
(BUDM ) . Any good lower bound on -�	� will provide simi-
larly to [30] deterministic poly-time approximations for Matroidal
permanents and new sufficient conditions for the Quantum Entan-
glement.

Conjecture 4.5:

-�	� �
	 


	�
� (36)

It is true for 	 � � .



' �
��	
�
�� �
�� ������
	
��
� ���
�
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� )HMIP *

We introduced Hidden Matroids Intersection Problem (HMIP ) as a
well posed computer science problem , which , seemingly , requires
no ”Quantum” background . Also , we explained that (HMIP )
can be formulated in terms of weakly separable (BUDM ) . Let us
consider the following three properties of (BUDM )  ��� . ( We
will view this  ��� as Choi’s representation of completely positive
operator $ , i.e.  ��� � 
&�$ � . )

P1 ��� ���� contains a nonsingular matrix .

P2 The Quantum permanent �� � ���� � 	 .

P3 Operator $ is rank non-decreasing .

We proved already that �� �� �� �� �� and illustrated that
that the implication �� �� �� is strict . In fact the implication
�� �� �� is also strict. But , our Theorem (2.9), which is just an
easy adoptation of Edmonds-Rado theorem , shows that for weakly
separable (BUDM ) the three properties ��� ��� �� are equivalent
. Recall that to check �� without the weak separability promise
is the same as to check whether given linear subspace of ��	�
contains a nonsingular matrix and it is very unlikely that this de-
sision problem can be solved in Polynomial Deterministic time .
Next , we will desribe and analyze Polynomial time deterministic
algorithm to check whether �� holds provided that it is promised
that  ��� is weakly separable .
In terms of Operator Sinkhorn’s iterative scaling (OSI) we need to
check if there exists � such that ���$
� � �

�
. If � �� ����� �

���$
� � �
�
� is bounded by a polynomial in 	 and number of

bits of  ��� then we have a Polynomial time Deterministic algo-
rithm to solve (HMIP ) . Algorithms of this kind for ”classical”
matching problem appeared independently in [24] and [32] . In the
”classical” case they are just another , conseptually simple , but
far from optimal , poly-time algorithms to check whether a perfect
matching exists . But for (HMIP ) , our , Operator Sinkhorn’s it-
erative scaling based approach seems to be the only possibility ?
Assume that , without loss of generality , that all entries of  ���
are integer numbers and their maximum magnitude is �. Then
��!� �� � ��	�� by the Hadamard’s inequality . If�� � ���� �
	 then necessary �� � ���� � � for it is an integer number. Thus

�� �
&�$��� �
�� �
&�$ ��

��!� ��
� ��	��� 


Each �!( iteration (� � � ) after the first one will multiply the
Quantum permanent by ��!����� , where � � 	� !"��� � 	
and !"��� � ���� � �

�
. Using results from [24] , ��!����� �

�� � �
��

��� �� Æ . Putting all this together , we get the follow-
ing upper bound on � , the number of steps in (OSI) to reach the
”boundary” ���$
� � �

�
:

Æ
% � �� �
&�$%��

��	���
(37)

It follows frm Prop.(4.2) and Cor.(4.4) that in weakly separable
case �� �
&�$%�� � 	 

and in separable case �� �
&�$%�� � � .
Taking logarithms we get that in weakly separable case

� �� �	�	 ���	� 
	����	� 
 ������� (38)

and in separable case

� �� �	�	����	� 
 ������
 (39)

In any case , � is polynomial in the dimension 	 and the number
of bits ������.

To finish our analysis , we need to evaluate a complexity of each
step of (OSI) .
Recall that $
��� � �
�$ ��

�

��
���

�



for some nonsingular matrices �
 and �
,
$
��� � �
�$ ��

�

�
���

�

 and $ �
��� � �
�$

����
�
���
�

 .

To evaluate ���$
� we need to compute !"��$�
�������� for odd
� and !"��$
���� ���� for even � .

Define �
 � ��
�
� �
 � ��

�
 . It is easy to see that the matrix

$
��� is similar to �
$ ��
� , and $ �
��� is similar to �
$
���
� .

As traces of similar matrices are equal , therefore to evaluate ���$
�
it is sufficient to compute matrices �
� �
.
But , �

� � �$ ��
��

�� and �

� � �$ ���
��
��.

And this leads to standard , rational , matrix operations with2�	��
per one iteration in (OSI) .
Notice that our original definition of (OSI) requires computation of
an operator square root . It can be replaced by the Cholesky fac-
torization , which still requires computing scalar square roots . But
our final algorithm is rational !

+ ,��! �������"
� ��
���� (
� � �
	��- �
����� ��� 
(
	
����
.�� �
����
�� ��������� ��	�
�� ����
��� 
� /�0
1�2�

One of the main research activities in Quantum Information Theory
is a search for ”operational” criterium for the separability . We will
show in this section that , in a sense defined below , the problem is
NP-HARD even for bipartite normalized density matrices provided
that each part is large (each ”particle” has large number of levels).
First , we need to recall some basic notions from computational
convex geometry.

+�� ���
�
�"�
� ������� 
( �
	��- ����

We will follow [18].

Definition 6.1: A proper ( i.e. with nonempty interior ) convex
set � � �
 called well-bounded �-centered if there exist ratio-
nal vector � � � and positive (rational ) numbers "� � such that
;��� "� � � and � � ;����� (here ;��� "� � �� � ��� �� �
"� and �
� is a standard eucleadian norm in �
 ) . Encoding length
of such convex set � is

� � �� �
 � " � 
 � � � 
 � � ��

where � " ��� � ��� � � are the number of bits of corre-
sponding rational numbers and rational vector .
Following [18] we define ���� Æ� as a union of all Æ-balls with cen-
ters belonging to � ; and �����Æ� � �� � � � ;��� Æ� � �� .

Definition 6.2: The Weak Membership Problem (<�������� Æ�)
is defined as follows :
Given a rational vector � � �
 and a rational number Æ � 	 either
(i) assert that � � ���� Æ� , or
(ii) assert that � �� �����Æ� .

The Weak Validity Problem (<=����� 1� /� Æ�) is defined as
follows :
Given a rational vector � � �
 , rational number / and a rational
number Æ � 	 either
(i) assert that � 1� � ��� 1�� � / 
 Æ for all � � �����Æ� , or

(ii) assert that 1�� � / � Æ for some � � ���� Æ� .

Remark 6.3: Define ���� 1� �� ���&�� � 1� � � . It is easy
to see that

���� 1� ��������Æ�� 1� ����� 1�� �1�Æ '
�
�

���� 1� ������� Æ�� 1� ����� 1� 
 �1�Æ



Recall that seminal Yudin - Nemirovskii theorem ([7], [18]) implies
that if there exists a deterministic algorithm solving <������ �� Æ�
in �)5��� � � 
 � � � 
 � Æ �� steps then there exists a de-
terministic algorithm solving <=����� 1� /� Æ� in �)5��� � �

 � 1 � 
 � Æ � 
 � / �� steps.
Let us denote as ��� ���	� a compact convex set of separable

density matrices  ��� � 
( 

� � 
( 

� , !"� ���� � �
, � � 	 . Recall that

��� ���	� �


2����� 
 ��� � � � 
( � � � 
� � ��� � ��� � ����
where 
2��� stands for a convex hull generated by a set � .
Our goal is to prove that Weak Membership Problem for��� ���	�
is NP-HARD . As we are going to use Yudin - Nemirovskii theo-
rem , it is sufficient to prove that <=������ ���	�� 1� /� Æ� is
NP-HARD respect to the complexity measure ��
 � 1 � 
 �
Æ � 
 � / �� and to show that � ��� ���	� � is polynomial
in � .

+�� 3�
����� 
( ��� ���	�

First , ��� ���	� can be viewed as a compact convex subset of

the hyperplane in �"� � �� 	���. The standard euclidean norm

in ��
�(�

corresponds to the Frobenius norm for density matrices
, i.e. � �) � !"�  ��. The matrix �

�(
� � ��� ���	� and

� �
�� � � ��� 
 ����) �

�
"
"��

� � for all norm one vectors

�� �. Thus ��� ���	� is covered by the ball ;� �
�(

��

�
"
"��

�
.
The following result was recently proved in [34] .

Theorem 6.4: Let � be a block hermitian matrix as in (5) . If

!"��� � 	 and ���) �
�

�
"�"���

then the the block matrix

�
"
� 
� is separable.

Summarizing , we get that for � � �	

;�
�

�
��



�

��� � ��
� � ��� ���	� � ;�

�

�
��



�

� � �
��

(balls are restricted to the corresponding hyperplane ) and conclude
that � ��� ���	� �� �)5���	�. It is left to prove that
<=������ ���	�� 1� /� Æ� is NP-HARD respect to the com-
plexity measure ��	
 � 1 � 
 � Æ � 
 � / �� .

+�� ��

( 
( 1���	���

Let us consider the following hermitian block matrix :


 �

�
��

	 �� 
 
 
 �(��

�� 	 
 
 
 	

 
 
 
 
 
 
 
 
 
 
 


�(�� 	 
 
 
 	

�
	
 � (40)

i.e. ��� #� blocks are zero if either � �� � or # �� � and ��� �� block
is also zero ; ��� 


� �(�� are real symmetric 	 �	 matrices .

Proposition 6.5:

���!��#$ �(��� !"�
 � �

�����'� ������

�
����(��

�������
�


Proof: First , by linearity and the fact that the set of extreme points

��!���� ���	�� �

���� 
 ��� � � � 
( � � � 
� � ��� � ��� � ��
we get that

���!��#$ �(��� !"�
 � �

���&&������&��� ����� 
�&������� !"�
���� 
 �����


But !"�
���� 
 ����� � !"��������� , where real symmetric
� �� matrix ���� is defined as follows :

���� �

�
��

	 �� 
 
 
 �(��

�� 	 
 
 
 	

 
 
 
 
 
 
 
 
 
 
 


�(�� 	 
 
 
 	

�
	
 � �� � !"�����

��� � � � ����


Thus

���!��#$ �(��� !"�
 � �

�������&&��&��� ����� 
�&������� !"�
 � �

�������� >��&����


(Above >��&���� is a maximum eigenvalue of ����)
It is easy to see ���� has only two non-zero eigenvalues �4��4� ,

where 4 �
�

����(��
�!"�����

���� .

As ��� � � � � 	 � � are real symmetric matrices we finally get
that

���
!��#$ �(���

!"�
 � � ���
��'� ��&���

�
�������

�������
�



Proposition(6.5) and Remark(6.3) suggest that in order to prove
NP-HARDness of
<=������ ���	�� 1� /� Æ� respect to the complexity measure
�
 � 1 � 
 � Æ � 
 � / � it is sufficient to prove that the
following problem of is NP-HARD :

Definition 6.6: (RSDF problem) Given � 5 � 5 real rational sym-
metric matrices ���� � � � � 5� and rational numbers �/� Æ� to
check whether

/ 
 Æ � ���&�'���&���8��� � /� Æ� 8��� ��
�
�����

�������
�



respect to the complexity measure
�5� 


�
�����

� �� � 
 � Æ � 
 � / �� .

It was shown in [6], by a reduction to the KNAPSACK , that RSDF
problem is NP-HARD provided

� � ������

�

 �.

We summarize all this in the following theorem

Theorem 6.7: The Weak Membership Problem for ��� ���	� is

NP-HARD if 	 �� � ������
�


 � .

Remark 6.8: It is easy exercise to prove that (BUDM )  ��� writ-
ten in block form (5) is real separable iff it is separable and all the
blocks in (5) are real symmetric matrices . It follows that , with ob-
vious modifications , Theorem 6.7 is valid for the real separability
too .
The construction (40) was inspired by Arkadi Nemirovski proof of
NP-HARDness to check the positivity of a given operator [2] .
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Many ideas of this paper were suggested by [30] . The world of
mathematical interconnections is very unpredictable (and thus is so
exciting) . The main technical result in a very recent breaktrough
in Communicational Complexity [33] is a rediscovery of particular
, rank one , case of a general , matrix tuples scaling , result proved
in [30] with much simpler proof than in [33] . Perhaps this our
paper will produce something new in Quantum Communicational
Complexity ?
We still don’t know whether there is a deterministic poly-time algo-
rithm to check whether given completely positive operator is rank
non-decreasing . And this question is related to lower bounds on

�*�$ � provided that Choi’s representation 
&�$ � is an integer
semidefinite matrix .
Theorem(6.7) together with other results from our paper gives a
new , classical complexity based , insight on the nature of the Quan-
tum Entanglement and , in a sense , closes a long line of research in
Quantum Information Theory . Still many open questions remained
(for the author) , for instance , is it still NP-HARD for ���	� bi-
partite systems wnen 	 is a fixed constant ?
We hope that the constructions introduced in this paper , espe-
cially Quantum Permanent , will have a promising future . The
”third generation” of van der Waerden conjecture we introduced
above will require the ”second generation” of Alexandrov-Fenchel
inequalities [1]. We think , that in general , mixed discriminants
and mixed volumes should be studied (used ) more enthusiastically
in the Quantum context . After all , they are noncommutative gen-
eralizations of the permanent ....
It is my great pleasure to thank my LANL colleagues Manny Knill
and Howard Barnum .
Finally , I would like to thank Arkadi Nemirovski for many enlight-
ening discussions .
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