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ABSTRACT

In this application of the statistical pattern recognition paradigm, a prediction model of a chosen feature is developed
from the time domain response of a baseline structure. After the model is developed, subsequent feature sets are tested
against the model to determine if a change in the feature has occurred. In the proposed statistical inference for damage
identification there are two basic hypotheses; (1) the model can predict the feature, in which case the structure is
undamaged or (2) the model can not accurately predict the feature, suggesting that the structure is damaged. The
Sequential Probability Ratio Test (SPRT) develops a statistical method that quickly arrives at a decision between these
two hypotheses and is applicable to continuous monitoring. In the original formulation of the SPRT algorithm, the
feature is assumed to be Gaussian and thresholds are set accordingly. It is likely, however, that the feature used for
damage identification is sensitive to the tails of the distribution and that the tails may not necessarily be governed by
Gaussian characteristics. By modeling the tails using the technique of Extreme Value Statistics, the hypothesis
decision thresholds for the SPRT algorithm may be set avoiding the normality assumption. The SPRT algorithm is
utilized to decide if the test structure is undamaged or damaged and which joint is exhibiting the change.

Keywords: Damage detection, time series analysis, sequential probability ratio test, extreme value statistics, statistical
pattern recognition, vibration test

1. INTRODUCTION

Structural Health Monitoring of building joints is motivated by both life safety and economic concerns. A monitoring
algorithm that can accurately disseminate deterioration in a building joint has the potential for saving time and money
in the inspection process of large buildings that have undergone stressful conditions. Such an algorithm implemented
in a constant monitoring fashion may also provide insight into the health of a building as it ages, alerting owners to
potentially dangerous changes in the joints of the structure and allowing maintenance before life threatening critical
failure.

Many current approaches to this problem involve methods that leave much to the interpretation of the system operator.
These methods may enable a trained eye to discern and locate damage but are not easily automated or quantified. In an
attempt to find approaches that can be automated and quantified, the Sequential Probability Ratio Test (SPRT) is
proposed to make a statistical decision on the health of a building joint. Such a test returns one of three results: the
feature is similar to the original condition, the feature has deviated significantly from the original condition, or that
there is not yet enough information to make a decision. Using time history analysis of vibration data, a SPRT is run on
a set of chosen features. In this case the features are extracted from the data sets by applying an Auto Regressive -
Auto Regressive model with Exogenous inputs (AR-ARX) and computing residual error terms.

Statistical tests, such as the SPRT, are often based on assumptions of normality for the parent distribution. This
normality assumption, however, may place misleading constraints on the extreme values of the distribution. These



extreme values are where most of the interesting features for damage detection are located, therefore it is important to
model them correctly. By re-formulating the SPRT to accurately model the extreme values of the data, accuracy and
quickness of the decisions may be increased.

Described within this report are the development of the sequential probability ratio test and the merger of sequential
testing with the field of extreme value statistics. Test data came from a three-story test structure with bolted
connections between floors and columns to simulate a building joint. The data are then analyzed using both a SPRT
formulated with normality assumptions and extreme value distributions. The two tests are then compared.

2. METHODOLOGY

2.1, Sequential test
A sequential statistical inference starts with observing a sequence of random variables {x;} (i=1,2,...). This
accumulated data set at stage 7 is denoted as:

X, = (X, %,) (1)

The goal of a statistical inference is to reveal the probability model of X ,, which is assumed to be at least partially
unknown. When the statistical inference is cast as a parametric problem, the functional form of X, is assumed known

and the statistical inference poses some questions regarding the parameters of the probability model. For instance, if
{x;} are independent and identically distributed (i.i.d.) normal variables, one may pose some statistical test about the

mean and/or the variance of this normal distribution.

A sequential test is one of the simplest tests for such a statistical inference where the number of samples required
before reaching a decision is not determined in advance. An advantage of the sequential test is that on average a
smaller number of observations are needed to make a decision compared to the conventional fixed-sample size test.
First, a simple hypothsis test containing only two distinct distributions is considered. Here, the interest is in
discriminating two simple hypotheses:

H,:0=6,, H, :0=6, 6,6 )

where @ is a particular parameter value in question, and it is assumed that € can take either 6, or &, only. A type I
error arises if H, is rejected when in fact it is true. Type II errors arise if H, is accepted when it is false. When a
sequence of observations {x;} are available, the purposes of any sequential test for the above hypotheses are (1) to
reach the correct decision about H, with the least probability of type I and II errors, (2) to minimize the sampling

number before the correct decision is made, and (3) to eventually terminate with either the acceptance or rejection of
H, as the sampling size n increases. When a sequential test satisfies the last condition, the test is defined closed.

Otherwise, an open test may continue infinitely observing data without reaching any terminal decision about H .

It turns out that the simultaneous achievment of all three goals is impossible by any test. Therefore, a reasonable
compromise among the these conflicting goals needs to be achieved. For the well-established fixed-sampling tests, the
sample size n is fixed, and an upper bound on the type I error is pre-specified. Then, an optimal fixed-sample test is
selected by minimizing the probability of type II error. On the other hand, a sequential test specifies upper bounds on
the probabilities of type I and II errors and minimizes the following average sample number, E(n|8) :

=

E(n|6)=> np(n|6) 3)

n=1



where p(n|@) is the probability mass function of n when @is the true value of the parameter. Note that for a closed
test p(n<e|@)=1 for 6 = 6, or 6, .

There exist a class of sequential tests, and sequential tests, which satisfy the following criteria are called valid (Ghosh,
1970):

The test is closed.
1-0@)<a for 6=6, 4)
Q)< p for 6=26,

where @ and [ are the preassined type I and II errors, respectively. Q(@) is the probability that any sequential test

accepts H, as n — oo . In other words,

Q(9)=i ff(Xn|9>an Q)

n=l X,e R}

The integral in Equation (5) is evaluated over the acceptance region of H, (X, € R;). The second criterion in
Equation (4) states that for all values of n, the true type I error, 1-Q(6,) , should be less than the pre-assigned risk o.
In a similar fashion, the third criterion indicates that the true type Il error Q(6,) should be less than 3. Among various

valid sequential tests, it can be proven that the SPRT minimizes on average the sample size required to make a
correction making it an optimal sequential test. Because of this extreme sensitivity of the SPRT to signal disturbance,
the SPRT has been applied for the surveillance of nuclear power plant components (Humenik and Gross, 1991).

When implementing the SPRT, a trade-off must be considered before assigning values for o and 3. When there is a
large penalty associated with false positive alarms (for example, alarms that shut down traffic over a bridge), it is
desirable to keep o smaller than 3. On the other hand, for safety critical systems such as nuclear power plants, one

might be more willing to tolerate a false positive alarm to have a higher degree of safety assurance. In this case, 3 is
often specified larger than o.

2.2. Sequential probability ratio test
A SPRT, S(b,a), for the hypothesis test in Equation (2) is defined as follows (Ghosh, 1970):

Observe a sequence of observations {x,} (i=1,2,...) successively, and at stage n ;
Accept H, if Z, <b
Reject H, if Z, =2 a 6)
Continue observing dataif b<Z, <a

where the transformed random variable Z, is the natural logarithm of the probability ratio at stage » :

n—1n—f(X"|9‘) f
f(X,16,)

or n>1 @)

thus, testing a probability ratio for sequential observations.



Without any loss of generality, Z, is defined zero when f(X,|6,)=f(X,|60,)=0. b and a are the two stopping

bounds for accepting and rejecting H ,, respectively, and they can be estimated by the following Wald approximations
(Wald, 1947):

B and azlnl_’b7
- a

®)

Although closed form solutions of a and b are available for several probability models, it has been a standard practice
to employ Equation (8) to approximate the stopping bounds in all practical applications. The continuation region
b<Z, <a is called the critical inequality of S(b,a) at stage n .

n —

In many practical problems, it is often more realistic to formulate the hypothesis test as discrimination between two
one-sided hypotheses:

H,:0<6,, H,:6026,, 6,6<0, 9)
The criteria in Equation (4) are now equivalent to

The test is closed.
1-0(0) <« for 8 <0, (10)
Q@) < B for 62 6,

Ghosh (1970) shows that the previous SPRT shown in Equation (6) also provides an optimal solution to this
hypothesis test defined in Equation (9).

2.3. Applications to Normal Distribution
In the damage detection problem presented, the main interest is to examine how the probability distribution function of

the residual errors broadens as data are recorded under a damaged condition of a system. Therefore, the following
hypothesis test is constructed using the standard deviation of the residual errors as the parameter in question:

H,:0<o0,, H;:020,, 0<0,<0 <> (11)

Here, when the standard deviation of the residual errors, G, is less than a user specified standard deviation value G, the
system in question is considered undamaged. On the other hand, when 6 becomes equal to or larger than the other user
specified standard deviation G, the system is suspected to be damaged. It should be noted that the selection of 6, and
o, is structure dependent, and it might be necessary to use signals from a few damage cases in order to establish these
two decision boundaries.

If modified observations {z;} (i =1,2,...) are defined as follows;

fXy o))

zy=In—————=-and z; =ln

fXilo,)

fX;ilopfXiy|o,)
fXilo)f(Xiy o)

12)

then, Z, becomes:

Z,=) 3 (13)



Assuming that X, has a normal distribution with mean // and standard deviation O, Z; can be related to X;:

L 5 2 o
 =—(0,"—0O P —In—
z; 2( 0 1 X — ) p (14)

o

In a graphical representation of a SPRT S(b,a), Z,, which is the cumulative sum of the transformed variable z;, is

continuously plotted against the two stopping bounds b and a. It should be noted that the mean # of the distribution is
assumed to be known. Even when / is unkown, the aforementioned procedure is still valid if x; is replaced by y;:

vi=| D= /i(i+1) fori=1,2,... (15)
j=1

It can be shown that now {y;} has i.i.d. normal distribution with zero mean and o .

2.4. SPRT combined with extreme value statistics

Now, the SPRT is extended to the extreme values of the parent distribution, the distribution of the residual errors. In
the previous section, the SPRT is formulated assuming that the residual errors have a normal distribution. However,
slight errors in the normality assumption of the parent distribution can lead to larger errors for the extremes resulting
in errneous false positive/negative indications of damage. To avoid this problem, the SPRT is reformualted using the
probability distributions of extreme values. There are only three possible choices for the distributions of the extremes
regardless the parent distrubution type: Gumbel, Weibull, or Frechet. Particulary, because the maxima of a normal
distribution are known to have a Gumbel distribution and the resiual errors of the experimental study presented later
are close to a normal distribution, the derivation presented here focuses on incorprating Gumbel distribution for
maxima values into the SPRT. The cumulative distribution function for a Gumbel distribution is (Fisher and Tippet,
1928):

x=A —c0 < x < oo
Gumbel Fyy (x) =exp| — eXp(—Tj for 550 (16)

Similar formualtion of the SPRT can be easily derived for the other types of extreme value distribution and for minima
values. For more information on extreme value statistics, please see Extreme Value Statistics for Damage Detection in
Mechanical Structures by Worden et al, 2002.

Similar to Equation (11), the following hypothesis test is constructed using the standard deviation of the maxima as the
parameter in question:

H,.0p<0,, H :0p20, 0<0,<0, < 17

Now, o, is the standard deviation of the residual error maxima, and the subscript “M” denotes a qunatity related to

the maxima. o, is a user specified lower limit of the standard deviation for the undamage contion, and o; is the other

user specified upper limit for the damage condition. It is observed that the change of the maxima distribution’s
standard deviation is monotomically related to the change of the parent distribution’s standard deviation. Here, an
indirect statitstical inference on the standard deviation of the parent distribution (the distribution of the residaul errors)
is conducted by examining the standard deviation of the maximum values.

It can be shown that the model parameters, 4 and o, of the Gumble distribution are related to its mean ,, and
standard deviation ¢, (Castillo, 1987):



5:£0M and A=y, —0.577726 e
T

If the distribution of the maxima is preprocessed such that the mean value is zero, Equation (12) can be rewritten in
terms of A and o :

z ZIHM and z. =In F&X |40 X4 14,,0,)
1 (X 14,.6,) i FX A, 0)F (X, | A4,6)

19)

If {x;} are independent and identically distributed (i.i.d.), f(X;|4,,d,) becomes f(x,|4,,0,) X f(x,|4,9,)
X-++X f(x;|4,8,) and Equation (19) can be further simplified as follows:

Z[=1HM fori=1,2,....n (20)
f(xi |ﬂ’0’50)

Next, the probability density function of the Gumbel distributionfor maxiam is obtained by differentiating the
cumulative density function presented in Equation (16).

fx)= % = % exp(— %} exp{— exp(— %H 21
By substituting Eqaution (21) into Equation (20), z; can be related to x;:
Z; = —lng—l + [xi ;‘0/1” J - [xi ;121 J + exp(— xi;f” ]— exp[— xi(;l;t] J (22)
By relating A and O to o, as shown in Equation (18), Equation (22) can be furhter simplied as follows:
SN ST ) exp(_ x, +04504 0, J_ exp[_ X +0.4504 0, ] o)
o, o J6 0'0/7: J6 0'1/7r

Finally, the cumulative sum of the transformed variable, Z;, is monitored against the two stopping bounds, a and b
calculated in Equation (8). A Z; value less than a is indicative of acceptance of the H, hypothesis, while a Z; greater
than b indicates an acceptance of the H; hypothesis.

3. TEST STRUCTURE

The structure tested is a three-story frame structure model as shown in Figure 1. The structure is constructed of
Unistrut columns and aluminium floor plates. The floors are 1.3-cm-thick (0.5 in) aluminium plates with two-bolt
connections to brackets on the Unistrut. The base is a 3.8-cm-thick (1.5 in) aluminum plate. Support brackets for the
columns are bolted to this plate and hold the Unistrut columns. The details of these joints are shown in Figures 2 and
3. Dimensions of the test structure are displayed in Figures 4 and 5. All bolted connections are tightened to a torque of
0.7 Nm (60 inch-pounds) in the undamaged state. Four Firestone air mount isolators, which allowed the structure to
move freely in horizontal directions, are bolted to the bottom of the base plate. The isolators are inflated to 140-kPa-
gauge (20 psig) and then adjusted to allow the structure to sit level with the shaker.



The shaker is coupled to the structure by a 15-cm-long (6 in), 9.5-mm-diameter (0.375-in) stinger connected to a
tapped hole at the mid-height of the base plate. The shaker is attached at corner D, so that both translational and
torsional motions can be excited.

Damage 2

Figure 2. Photo of a joint on the structure.

Figure 1. Photo of the full test structure.

Figure 3. Photo of the connection to the base plate.

3.1. Test Setup and Data Acquisition:

The structure is instrumented with 24 piezoelectric single-axis accelerometers, two spanning each joint as shown in
Figure 5. Accelerometers are mounted on the aluminum blocks that are attached by hot glue to the plate and column.
This configuration allows relative motion between the column and the floor to be detected. The nominal sensitivity of
each accelerometer is 1 V/g. A 10-mV/lb-force transducer is also mounted between the stinger and the base plate. This
force transducer is used to measure the input to the base of the structure. A commercial data acquisition system
controlled from a laptop PC is used to digitize the accelerometer and force transducer analog signals.

Two damage cases are investigated in this experiment. The first damage is introduced to corner A of the first floor
(Damage 1) and the second damage is placed at corner C of the third floor (Damage 2). These two damage locations are
shown in Figure 1. For each damage case, the bolts were loosened until hand tight, allowing the plate and column to
move slightly relative to one another. After the damage cases, all the bolts were tightened again to the initial torque of
0.7 Nm (60 in-pounds). Five time series are measured from the initial undamaged case, and these time series are used for
constructing the reference database, or training. Five time series are recorded under each damage case, and additional
five time series are obtained after tightening all bolts to the initial torque values. These time series are then used for
testing the proposed SPRT procedure. A total of 20 time series are used for this experiment.
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Figure 4. Basic dimensions of the three-story frame structure.

4.RESULTS

The time series analysis begins with the assumption that a “pool” of signals is acquired from a known structural
condition of the system. In this example, multiple time series are recorded from the undamaged structure. The collection
of these time series is called the “reference database” in this study. The construction of this reference database is shown
to be useful for normalizing data with respect to varying operational and environmental conditions. The applications of
this time series analysis to data normalization are presented in Sohn and Farrar (2001) and Sohn et al. (2001).

Instead of independently analyzing 24 time histories from each accelerometer, the point-by-point difference between
time series from the two adjacent accemeroters at a joint is first computed. Then, the resulting 12 time series
corresponding to each joint are used for the AR-ARX modeling. The order r in the AR model is set to 25, and the p and
q orders for the ARX model are set to 20 and 5, respectively. Satisfactory prediction errors mostly less than 10% error
are achieved for all the reference signals indicating that the selected AR-ARX model aprropriately characterizes the
underlying dynamic system of each signal readings.

A linear prediction model combining AR and ARX models is employed to compute the damage-sensitive feature, which
in this case is the residual error between the prediction model and measured time series.

Next, the SPRT-N (normal distribution formulation) and SPRT-G (Gumbel distribution formulation) are applied to the
residual errors obtained from the AR-ARX modeling. The type I & II errors are set to 0.001. The formulation of the
sequential probability test here is based on the premise that, when a system being monitored undergoes a structural
change such as damage, a signal measured under the new structural condition will be significantly different from the
signal obtained from the initial undamage case. Therefore, when a time prediction model is constructed using the
baseline undamaged time signal, the prediciton error of the newly obtained signal, which is again from the dacasmage
case, will departure from that of the baseline signal. Particularly, the prediction error of the new singal is expected to
increase. Based on this observation, the sequential hypothesis test is cast as follows for SPRT-N:



H,:0<0,, H, 020, 0<0,<0< 24)
In this particular example, 6, and G, are set to 0.40 and 0.42, respectively. Note that the establishment of the 6, and G,
values is based on the observation of actually damage cases. That is, changes of the standard deviation should be first
monitored for the corresponding damage cases to select the appropriate 6, and &, values. This selection of the 6, and G,
values categorizes the proposed method as a supervised learning method. In a similar fashion, the sequential hypothesis

test for SPRT-G is cast as follows:
H,:.0p<0,, H:0y 20, 0<0,<0< (25)
Gy and G, are set to 0.24 and 0.26 based on the similar obervations as before.

The results of damage classification using SPRT-N and SPRT-G are reported in Table 1 and 2. To briefly summarize the
results, both methods illustrate comparable performance. SPRT-N and SPRT-G do not show any false-positive
indications of damage for all five undamaged cases. For the first damage case (Damage 1), the damaged joint is located
at the corner A on the first floor, and this joint is associated with sensor readings from channels 17 and 18. Using SPRT-
N and SPRT-G, the correct damage location is correctly revealed for all five cases of Damage 1. For the second damage
case (Damage 2), where the bolts at the corner C on the third floor is hand tight and this joint corresponds to channel 5
and 6 readings, SPRT-N indicates that the adjacent joint at the corner D on the same floor is most likely damaged.
SPRT-G also suggests the existance of damage at the same adjacent joint but correclty identifies the actually damaged
joint 3 times out of the five exampled time series.

Table 1: Damage classification results using SPRT-N (normal)

Test | Chl- Ch3- Ch5- Ch7- Ch9- Chll- Chl3- Chl5- Chl7- Chl9- Ch2l- Ch23-
Case | Ch2 Ch4 Ch6 Ch8 Chl0 Chl2 Chl4 Ch6 Chl8 Ch20 Ch22 Ch24
3 0 0 0 0 0 0 0 0 0 0 0 0
& 0 0 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0
= 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 1 0 0 0
o 0 0 0 0 0 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 0 1 0 0 0
g 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
o 0 0 0 1 0 0 0 0 0 0 0 0
o 0 0 0 1 0 0 0 0 0 0 0 0
S 0 0 0 1 0 0 0 0 0 0 0 0
g 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

*The zero ‘0’ denotes that the null hypothesis is accepted indicationg no damage is present at that joint, and the unity ‘1’
denotes that the null hypothesis is rejected and the corresponding joint is damaged. The shaded areas represent the
locations of the acutally damaged joints, and the hypothesis results in these shadded ares should ideally correspond to 1.
The hypothesis results should be zero otherwise.

** For each undamaged and damage cases, five time series are recorded, and the corresponding damage classification
results are shown.



Table 2: Damage classification results using SPRT-G (Gumbel)

Test | Chl- Ch3- Ch5- Ch7- Ch9- Chll- Chl3- Chl5- Chl7- Chl9- Ch2l- Ch23-
Case | Ch2 Ch4 Ch6 Ch8 Chl0 Chl2 Chl4 Ch6 Chi8 Ch20 Ch22 Ch24
o 0 0 0 0 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 0 0 0 0 0
= 0 0 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0 0 0
= 0 0 0 0 0 0 0 0 0 0 0 0
_ 0 0 0 0 0 0 0 0 1 0 0 0
° 0 0 0 0 0 0 0 0 1 0 0 0
s 0 0 0 0 0 0 0 0 1 0 0 0
g 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
o 0 0 1 1 0 0 0 0 0 0 0 0
o 0 0 0 1 0 0 0 0 0 0 0 0
g 0 0 0 1 0 0 0 0 0 0 0 0
8 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0

*The zero ‘0’ denotes that the null hypothesis is accepted indicationg no damage is present at that joint, and the unity ‘1’
denotes that the null hypothesis is rejected and the corresponding joint is damaged. The shaded areas represent the
locations of the acutally damaged joints, and the hypothesis results in these shadded ares should ideally correspond to 1.
The hypothesis results should be zero otherwise.

** For each undamaged and damage cases, five time series are recorded, and the corresponding damage classification
results are shown.

S.CONCLUSIONS

In an effort to find an automated and quantitative method for damage identification, a unique integration of time series
analysis, statistical inference, and extreme value theory is explored. Time series analysis techniques, solely based on the
measured vibration signals, are first employed to extract damage sensitive features from a structure for damage
classification. While there has been increasing interest in the filed of structural health monitoring, the decision as to
whether a structure is damaged or not tends to be made on the basis of exceeding some heuristic threshold. In this study,
the sequential probability ratio test (SPRT) is employed to provide a more principled statistical tool for this decision-
making procedure, excluding unnecessary interpretation of the measured data by users. Finally, the performance and
robustness of damage classification is improved by incorporating extreme values statistics of the extracted features into
the SPRT. The applicability of the SPRT to structural health monitoring is demonstrated here using measured time
signals from a three-story frame structure tested in a laboratory environment. The framework of the proposed SPRT
method is well suited for developing a continuous monitoring system, and can be easily implemented on digital signal
processing (DSP) chips automating the damage classification process.
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