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ASSESSING PERFORMANCE AND VALIDATING FINITE
ELEMENT SIMULATIONS USING PROBABILISTIC
KNOWLEDGE

RONALD M. DOLIN, EDWARD A. RODRIGUEZ

Los Alamos National Laboratory

ABSTRACT

Two probabilistic approaches for assessing performance are presented.
The first approach assesses probability of failure by simultaneously
modeling all likely events. The probability each event causes failure along
with the event’s likelihood of occurrence contribute to the overall
probability of failure. The second assessment method is based on
stochastic sampling using an influence diagram. Latin-hypercube
sampling is used to stochastically assess events. The overall probability of
failure is taken as the maximum probability of failure of all the events.
The Likelihood of Occurrence simulation suggests failure does not occur
while the Stochastic Sampling approach predicts failure. The Likelihood
of Occurrence results are used to validate finite element predictions.

KEY WORDS: Likelihood-of-Occurrence, Stochastic Sampling, Model
Validation, and Probability Theory.

PROBLEM DESCRIPTION

A metal encased explosive charge is placed inside a hollow containment vessel as shown
in Figure 1. Following detonation, metal fragments travel outward impacting with the
vessel wall. Fragment geometry, orientation, and velocity, and the minimum velocity
necessary for a given fragment geometry to perforate the vessel thickness are the
parameters dominating failure.[1] The two approaches used to assess the safety of the
containment vessel follow the same logical framework. They first determine probable
fragment geometries. Then for each independent fragment, the probability it is properly
orientated is computed. Next, the probability properly orientated fragments travel with
sufficient velocity to perforate the containment vessel is ascertained. From these
calculations, the system’s probability of failure is assessed. Each approach assesses
failure differently.

Theory and empirical evidence is used to generate the distributions shown in Figures 2, 3,
4, and 5. Fragment thickness is assumed constant and diameter is the smaller of either
non-thickness dimension. Mott [2] developed equations for predicting fragment mass
and geometry. The probability a fragment has mass M is P(M). The probability a
fragment has diameter D is P(D). Given a fragment has mass M and diameter D, the
conditional probability it has a given length to diameter ratio is, P(L/D|D). The
probability a given fragment occurs is expressed as
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Figure 1: Schematic of experimental set up and fragment geometry.

P(fragment) = P(L/ D | D)- P(D) = P(L/ D | D)- P(D | M) P(M) 1)

Combining theory with engineering judgment, a velocity distribution is generated [3].
Each unique fragment has a critical velocity (ve;) necessary to perforate. When a
fragment travels faster than it’s critical velocity it is a candidate for failure. Theory
predicts the maximum probable velocity is 2 km/s and the minimum probable velocity is
1.4 km/s. Engineering judgment is that these values are three sigma events. A
cumulative distribution is used to assess the likelihood a fragment travels with at least
some specified velocity. This distribution does not take into account velocity’s complex
dependency on geometry. However, making velocity independent provides conservatism
because it allows larger heavier fragments to be assessed with higher velocities than they
actually achieve. '

As a fragment travels toward the confinement vessel it spins and tumbles. Hydro-
dynamic calculations predict the critical angle of attack a fragment’s leading edge must
be within in order for perforation to occur is 0=20 radians. Because this requirement
exists for both pitch and yaw rotations the critical attack angle forms a cone. Since all
fragment orientations are equally likely a uniform distribution is used allowing pitch and
yaw rotations to be combined. The amount of vessel material the fragment has to
penetrate for perforation to occur is minimal when ¢ is perpendicular to the vessel wall,
hence, treating all impacts within the a-cone as normal is conservative and can be
represented deterministically [4]. The probability of being within the critical attack
angle, P(0), is
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LIKELIHOOD OF OCCURRENCE ASSESSMENT MODEL

Knowing the probability a given fragment perforates the vessel is of marginal utility
without additionally knowing the likelihood the fragment occurs. Additionally, knowing
the impact of a single fragment provides only limited insight into the probability the
containment vessel survives an experiment. To determine a vessel’s overall probability
of failure the contributions of each fragment event is assessed. The Likelihood of
Occurrence (LoO) model assesses all fragments simultaneously. The amount of
explosive coupled with the mass and shape of the explosive casing account for the
number of the fragments generated, their probable geometries, and their velocities. Many
fragments possess similar geometry and can be grouped into discrete fragment
configurations. The LoO model considers a 4x10 matrix of discrete Dx(L/D) fragment
configurations. For each fragment configuration the number of fragments likely to be
generated is the number of such fragments that could be formed from the case times the
probability such fragments could exits. This can be expressed as

3
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The P(M) is normalized w.r.t. the number of discrete fragment geometries. Perforation
occurs if these candidate fragments move at or above the minimum speed a fragment of
dimensions LxD has to travel to perforate a target of thickness T, [4]. The probability a
fragment perforates the containment vessel is expressed as

P(perforation)L, 1/ p = #candidates - P(Vagment > Ver) (5)

The containment vessel’s overall probability of failure is the sum of the discrete fragment
configuration probabilities of perforation. For N=40 discrete fragment configurations the
overall probability of failure becomes

N
P(failurey = Y, P(perforation) =123x10" (6)

1=l

This probability of failure represents a cumulative rather than maximum value. The LoO
model treats all fragment events as happening simultaneously. This approach is akin to a
Bayesian probability problem using the Law of Total Probability, [5S]. The method of
maximum likelihood was used to obtain a point estimate for the (I/D) (T/L) ratios most
likely to be involved in a perforation, [6]. The fragment most likely to perforate the
containment vessel has D =0.75cm and L=11.75cm. This fragment has a probability of
perforation of 1.614x10™.

STOCHASTIC SAMPLING ASSESSMENT MODEL

The Stochastic Sampling (SS) model assesses probability of failure by determining the
frequency at which fragment penetrations occur. The primary difference between the SS
model and the LoO model is the SS model defines an event as a single fragment
response. The logic is modeled using an influence diagram. The stochastic sampling
model uses Latin Hyper-Cube to randomly select different combinations of D and (L/D),
[7]. The model assumes all fragment orientations are equally probable and fragments
whose angle of attack is within the o-cone angle are assumed perpendicular to the
containment vessel wall. The SS model’s approach is analogous to reaching into a bin of
randomly shaped fragments and throwing them one at a time with random velocity and
then counting how many fragments perforate. As the number of samples increases the
mean response approaches the true mean. However, what happens in the tail regions is
more difficult to determine and it is the tail region that drives failure estimates.

TABLE 1. RESULTS OF FORTY UNIQUE STOCHASTIC SAMPLING SIMULATIONS
MEASURED WITH RESPECT TO THEIR WORST PROBABLE POINTS (WPP).

WPP upper
" Mean of Standard
Minimum Maximum ﬁ,,fp devri]ati;n 95% confidence
WPP WPP X s point
1.35E-09 2.96E-09 2.57E-09 3.42E-10 3.25E-09

One way to measure the probability of failure is to take the maximum probability of
perforation for all the individual fragments. A shortcoming of this Worst Probable Point
(WPP) measure is it does not take into account net contributions from other less probable



fragment events. Nonetheless, the WWP, along with the 95% confidence value were
used. The stochastic process converged at thirty thousand events using a Minimal
Standard Randomizer method and a fixed seed. Table 1 shows the results of forty
simulations using different sampling seeds. Each simulation used 30,000 stochastic
samples, [4]. For the forty simulations 95% of the maximum WPPs are less than or equal
to 3.25E-9. .

COMPARING RESULTS OF THE TWO MATHEMATICAL MODELS

While knowing the probability of failure is paramount to decision-making, having a
measure of the overall quality of the containment vessel relative to performance is also
useful. Margin and Safety are industry measures for the “goodness” of an engineered
product relative to performance requirements. Generally based in statistical process
control, margin is used to convey how near a product is to having a significant decrement
in performance, [8]. Safety assessments invoke margin by measuring performance
relative to acceptable risk, [9]. Margin and Safety provide a way to compare results of
the two assessment methods. The capability ratio (Cp), is a ratio of the allowable
performance spread to the actual performance spread relative to the statistical mean and
standard deviation of the assessed fragment performance

allowable performance spread USL-pu USL-Xx '
C = = = @)
actual performance spread Ko} 3s

where USL is the upper statistical limit. For the LoO assessment, Cppoc=19,963,
indicating a lot of margin in the vessel’s performance. For the SS assessment,
Cpss=7.823 which means while the bulk of the fragment events perform successfully as
we approach the tail region the margin diminishes.

A product’s performance can also be measured as a function of risk where risk is as a
probability of failure times some perceived consequence. Determining appropriate
values for failure and consequence is a matter of subjective interpretation often referred
to as establishing risk criteria, Wirsching (1992). Since failure of the containment vessel
is defined as a single fragment perforation, the desired probability of failure is the same
for a single fragment event as it is for the entire system, i.e., po = PoLoo = Poss = 1x107.
This results in a desired safety index of 5.998. The LoO assessment has a computed
safety index of 7.32, indicating the containment vessel is safe. The SS assessment has a
computed safety index of 5.85, which is slightly less than the desired safety index
indicating the containment vessel is slightly unsafe.

USING RESULTS TO VALIDATE FINITE ELEMENT PREDICTIONS

The probabilistic assessments can be used to validate finite element (FE) predictions.
While the probabilistic models assess performance within domains of empirical
knowledge and expert judgment, there remain other domains of interest. The goal is to
use probabilistic models to validate FE predictions within domains of existing knowledge
and once validated, use FE predictions to assess performance outside the domain of
existing knowledge. With this strategy in mind, several issues immerge. For instance,



how are the results of a numerical prediction to be compared with probabilistic
predictions? How accurate are the predictions made by a FE tool outside the domain for
which it was validated? While many other issues remain, only these two are considered
here.

The LoO assessments are based on physical test information and can be used to validate
the accuracy of the numerical tool for discrete parameter scenarios. The FE analysis
predicts if a given fragment geometry traveling with a specific velocity and orientation
perforates the vessel. The results are deterministic — the fragment either does or doesn’t
perforate. The FE predictions were in good alignment with the probabilistic assessments.
However, the FE analysis cannot be used to say if the vessel is safe for operation without
knowing the likelihood of occurrence for any failure prediction. The fact that a
perforation may be predicted in an FE analysis is really only one piece of information
necessary to make a performance assessment. For example, a fragment having
dimensions D=0.5cm and L=8cm is predicted to perforate when traveling at a velocity of
1.5km/s. However, this fragment has only a 2.58x10™® probability of occurring and when
it does occur it needs to travel at 10km/s to perforate. To conclude from the numerical
analysis that the vessel is unsafe would be an overstatement, highlighting the need to.
think beyond simply a numerical result.

CONCLUSIONS

Two different approaches were presented for probabilistically assessing a product’s
performance. The LoO method considered all probable fragments simultaneously
assessing their combined contributions to failure. The SS method found the fragment
event having the highest probability of failure. The LoO model assessed the vessel to be
safe for use while the SS model assessed the vessel to be slightly unsafe. Results from
the LoO assessment were used to validate FE predications. While the responses were
consistent more comparisons are necessary before the FE code can be declared validated.
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