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ASSESSING PERFORMANCE AND VALIDATING FINITE 
ELEMENT SIMULATIONS USING PROBABILISTIC 

KNOWLEDGE 

RONALD M. DOLIN, EDWARD A. RODRIGUEZ 
Los Alamos National Laboratory 

ABSTRACT 

Two probabilistic approaches for assessing performance are presented. 
The first approach assesses probability of failure by simultaneously 
modeling all likely events. The probability each event causes failure along 
with the event’s likelihood of occurrence contribute to the overall 
probability of failure. The second assessment method is based on 
stochastic sampling using an influence diagram. Latin-hypercube 
sampling is used to stochastically assess events. The overall probability of 
failure is taken’as the maximum probability of failure of all the events. 
The Likelihood of Occurrence simulation suggests failure does not occur 
while the Stochastic Sampling approach predicts failure. The Likelihood 
of Occurrence results are used to validate finite element predictions. 

KEY WORDS: Likelihood-of-Occurrence, Stochastic Sampling, Model 
Validation, and Probability Theory. 

PROBLEM DESCRIPTION 

A metal encased explosive charge is placed inside a hollow containment vessel as shown 
in Figure 1. Following detonation, metal fragments travel outward impacting with the 
vessel wall. Fragment geometry, orientation, and velocity, and the minimum velocity 
necessary for a given fragment geometry to perforate the vessel thickness are the 
parameters dominating failure.[ 13 The two approaches used to assess the safety of the 
containment vessel follow the same logical framework. They first determine probable 
fragment geometries. Then for each independent fragment, the probability it is properly 
orientated is computed. Next, the probability properly orientated fragments travel with 
sufficient velocity to perforate the containment vessel is ascertained. From these 
calculations, the system’s probability of failure is assessed. Each approach assesses 
failure differently. 

Theory and empirical evidence is used to generate the distributions shown in Figures 2,3, 
4, and 5 .  Fragment thickness is assumed constant and diameter is the smaller of either 
non-thickness dimension. Mott [2] developed equations for predicting fragment mass 
and geometry. The probability a fragment has mass M is P(M). The probability a 
fragment has diameter D is P(D). Given a fragment has mass M and diameter D, the 
conditional probability it has a given length to diameter ratio is, P(L/DID). The 
probability a given fragment occurs is expressed as 
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Figure 1 : Schematic of experimental set up and fragment geometry. 

P(fiugment) = P ( L / D  I D).P(D) = P ( L / D  I D).P(D I M ) - P ( M )  

Combining theory with engineering judgment, a velocity distribution is generated [ 31. 
Each unique fragment has a critical velocity (vcr) necessary to perforate. When a 
fragment travels faster than it’s critical velocity it is a candidate for failure. Theory 
predicts the maximum probable velocity is 2 W s  and the minimum probable velocity is 
1.4 km/s. A 
cumulative distribution is used to assess the likelihood a fragment travels with at least 
some specified velocity. This distribution does not take into account velocity’s complex 
dependency on geometry. However, making velocity independent provides conservatism 
because it allows larger heavier fragments to be assessed with higher velocities than they 
actually achieve. 

Engineering judgment is that these values are three sigma events. 

As a fragment travels toward the confinement vessel it spins and tumbles. Hydro- 
dynamic calculations predict the critical angle of attack a fragment’s leading edge must 
be within in order for perforation to occur is a=20 radians. Because this requirement 
exists for both pitch and yaw rotations the critical attack angle forms a cone. Since all 
fragment orientations are equally likely a uniform distribution is used allowing pitch and 
yaw rotations to be combined. The amount of vessel material the fiagment has to 
penetrate for perforation to occur is minimal when a is perpendicular to the vessel wall, 
hence, treating all impacts within the a-cone as normal is conservative and can be 
represented deterministically [4]. The probability of being within the critical attack 
angle, P(a), is 

2a P(a) = C P ( Q , , ) l a z o 2 *  = P(a 2 Q, 2 0) f P(0 2 Q, 2 -a) = - 
7c 
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Figure 2. Probability Distribution for Mass. Figure 3. Conditional Probability Distribution for P(D/L I D). 
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Figure 4. Probability Distribution for Velocity. 
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Figure 5.  hobability Distribution for Diameter 

LIKELIHOOD OF OCCURRENCE ASSESSMENT MODEL 

Knowing the probability a given fragment perforates the vessel is of marginal utility 
without additionally knowing the likelihood the fragment occurs. Additionally, knowing 
the impact of a single fragment provides only limited insight into the probability the 
containment vessel survives an experiment. To determine a vessel's overall probability 
of failure the contributions of each fragment event is assessed. The Likelihood of 
Occurrence (LOO) model assesses all fiagments simultaneously. The amount of 
explosive coupled with the mass and shape of the explosive casing account for the 
number of the fragments generated, their probable geometries, and their velocities. Many 
fragments possess similar geometry and can be grouped into discrete fiagment 
configurations. The Lo0 model considers a 4x10 matrix of discrete Dx(L/D) fragment 
configurations. For each fragment configuration the number of fragments likely to be 
generated is the number of such fragments that could be formed from the case times the 
probability such fragments could exits. This can be expressed as 

/ 

r 1 

The number of fragments likely to be within the a-cone orientation is 

r 1 

(3) 

(4) #candidates = P(a) * #j?agments = 



The P(M) is normalized w.r.t. the number of discrete fragment geometries. Perforation 
occurs if these candidate fragments move at or above the minimum speed a fragment of 
dimensions LxD has to travel to perforate a target of thickness T, [4]. The probability a 
fragment perforates the containment vessel is expressed as 

Minimum 
WPP 

P(perforation)L, L I D = #candidates - P(vfiogment > vcr) (5) 
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The containment vessel’s overall probability of failure is the sum of the discrete fragment 
configuration probabilities of perforation. For N=40 discrete fragment configurations the 
overall probability of failure becomes 

N 
P(fai1ure) = P,(perforation) = 123x1 0-13 

/=I 

This probability of failure represents a cumulative rather than maximum value. The Lo0 
model treats all fragment events as happening simultaneously. This approach is akin to a 
Bayesian probability problem using the Law of Total Probability, [ 5 ] .  The method of 
maximum likelihood was used to obtain a point estimate for the (LD) (T/L) ratios most 
likely to be involved in a perforation, [6]. The fragment most likely to perforate the 
containment vessel has D =0.75cm and L=l 1.75cm. This fragment has a probability of 
perforation of 1.614~10-’~. 

STOCHASTIC SAMPLING ASSESSMENT MODEL 

The Stochastic Sampling ( S S )  model assesses probability of failure by determining the 
frequency at which fragment penetrations occur. The primary difference between the S S  
model and the Lo0 model is the SS model defines an event as a single fragment 
response. The logic is modeled using an influence diagram. The stochastic sampling 
model uses Latin Hyper-Cube to randomly select different combinations of D and (LD), 
[7]. The model assumes all fragment orientations are equally probable and fragments 
whose angle of attack is within the a-cone angle are assumed perpendicular to the 
containment vessel wall. The SS model’s approach is analogous to reaching into a bin of 
randomly shaped fragments and throwing them one at a time with random velocity and 
then counting how many fragments perforate. As the number of samples increases the 
mean response approaches the true mean. However, what happens in the tail regions is 
more difficult to determine and it is the tail region that drives failure estimates. 

TABLE 1. RESULTS OF FORTY UNIQUE STOCHASTIC SAMPLING SIMULATIONS 
MEASURED WITH RESPECT TO THEIR WORST PROBABLE POINTS (WPP). 

I 1.35E-09 I 2.96E-09 I 2.57E-09 I 3.42E-10 I 3.25E-09 I 

One way to measure the probability of failure is to take the maximum probability of 
perforation for all the individual fragments. A shortcoming of this Worst Probable Point 
(WPP) measure is it does not take into account net contributions from other less probable 



fragment events. Nonetheless, the WWP, along with the 95% confidence value were 
used. The stochastic process converged at thirty thousand events using a Minimal 
Standard Randomizer method and a fixed seed. Table 1 shows the results of forty 
simulations using different sampling seeds. Each simulation used 30,000 stochastic 
samples, [4]. For the forty simulations 95% of the maximum WPPs are less than or equal 
to 3.25E-9. 

COMPARING RESULTS OF THE TWO MATHEMATICAL MODELS 

While knowing the probability of failure is paramount to decision-making, having a 
measure of the overall quality of the containment vessel relative to performance is also 
usefbl. Margin and Safety are industry measures for the “goodness” of an engineered 
product relative to performance requirements. Generally based in statistical process 
control, margin is used to convey how near a product is to having a significant decrement 
in performance, [8]. Safety assessments invoke margin by measuring performance 
relative to acceptable risk, [9]. Margin and Safety provide a way to compare results of 
the two assessment methods. The capability ratio (Cp), is a ratio of the allowable 
performance spread to the actual performance spread relative to the statistical mean and 
standard deviation of the assessed fragment performance 

(7) 
USL - x - - allowable performance spread - USL - p 

c p  = - 
actual performance spread 30 3s 

where USL is the upper statistical limit. For the Lo0 assessment, Cpw=l9,963, 
indicating a lot of margin in the vessel’s performance. For the S S  assessment, 
Cpssz7.823 which means while the bulk of the fragment events perform successfblly as 
we approach the tail region the margin diminishes. 

A product’s performance can also be measured as a function of risk where risk is as a 
probability of failure times some perceived consequence. Determining appropriate 
values for failure and consequence is a matter of subjective interpretation often referred 
to as establishing risk criteria, Winching (1 992). Since failure of the containment vessel 
is defined as a single fragment perforation, the desired probability of failure is the same 
for a single fragment event as it is for the entire system, Le., PO = POLOO = POSS = 1~10’~ .  
This results in a desired safety index of 5.998. The Lo0 assessment has a computed 
safety index of 7.32, indicating the containment vessel is safe. The SS assessment has a 
computed safety index of 5.85, which is slightly less than the desired safety index 
indicating the containment vessel is slightly unsafe. 

USING RESULTS TO VALIDATE FINITE ELEMENT PREDICTIONS 

The probabilistic assessments can be used to validate finite element (FE) predictions. 
While the probabilistic models assess performance within domains of empirical 
knowledge and expert judgment, there remain other domains of interest. The goal is to 
use probabilistic models to validate FE predictions within domains of existing knowledge 
and once validated, use FE predictions to assess performance outside the domain of 
existing knowledge. With this strategy in mind, several issues immerge. For instance, 



how are the results of a numerical prediction to be compared with probabilistic 
predictions? How accurate are the predictions made by a FE tool outside the domain for 
which it was validated? While many other issues remain, only these two are considered 
here. 

The Lo0 assessments are based on physical test information and can be used to validate 
the accuracy of the numerical tool for discrete parameter scenarios. The FE analysis 
predicts if a given fragment geometry traveling with a specific velocity and orientation 
perforates the vessel. The results are deterministic - the fragment either does or doesn’t 
perforate. The FE predictions were in good alignment with the probabilistic assessments. 
However, the FE analysis cannot be used to say if the vessel is safe for operation without 
knowing the likelihood of occurrence for any failure prediction. The fact that a 
perforation may be predicted in an FE analysis is really only one piece of information 
necessary to make a performance assessment. For example, a fragment having 
dimensions D=O.Scm and L=8cm is predicted to perforate when traveling at a velocity of 
lSkm/s. However, this fragment has only a 2.58xlO-’ probability of occurring and when 
it does occur it needs to travel at lOkm/s to perforate. To conclude from the numerical 
analysis that the vessel is unsafe would be an overstatement, highlighting the need to 
think beyond simply a numerical result. 

CONCLUSIONS 

Two different approaches were presented for probabilistically assessing a product’s 
performance, The Lo0 method considered all probable fragments simultaneously 
assessing their combined contributions to failure. The SS method found the fragment 
event having the highest probability of failure. The Lo0 model assessed the vessel to be 
safe for use while the SS model assessed the vessel to be slightly unsafe. Results from 
the Lo0 assessment were used to validate FE predications. While the responses were 
consistent more comparisons are necessary before the FE code can be declared validated. 
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