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Abstract 

Methods to include automatic grid adaptation tools within the Arbitrary 
Lagrangian Eulerian (ALE) method are described. Two main developments 
will be described. First, a new grid adaptation approach is described, based 
on an automatic and accurate estimate of the local truncation error. Sec- 
ond, a new method to remap the information between two grids is presented, 
based on the MPDATA approach. 

Introduction 

The Arbitrary Lagrangian Eulerian (ALE) [2] method solves hyperbolic 
equations by splitting the operators is two phases. 

First, in the Lagrangian phase, the equations under consideration are writ- 
ten in a Lagrangian frame and are discretized [6]. In this phase, the grid 
moves with the solution, the velocity of each node being the local fluid 
velocity. 

Second, in the Eulerian phase, a new grid is generated and the information 
is tranderred to the new grid. The advantage of considering this second 
step is the possibility of avoiding mesh distortion and tangling typical of 
pure Lagrangian methods. 

The second phase of the ALE method is the primary topic of the present 
communication. In the Eulerian phase two tasks need to be completed. 
First, a new grid need to be created (we will refer to this task as rezoning). 
Second, the information is transferred from the grid available at the end 
of the Lagrangian phase to the new grid (we will refer to this task as 
remapping). 

New techniques are presented below for the two tasks of the Eulerian phase: 
rezoning and remapping. 



Rezoning 

The rezoning task of the ALE method requires to generate a new adaptive 
grid that best describes the system and minimizes the local truncation error 
for the discretized equations. Below, we describe a new approach to grid 
adaptation based on an accurate estimate of the local truncation error. 

Operator Recovery Computation of the Local Trunca- 
tion Error 

We have recently proposed an accurate technique for approximating the 
local truncation error [4]: the operator recovery method. Our aim is to 
derive an error indicator, not a mathematically rigorous a-posteriori error 
estimator (i.e. an error definition that converges to the actual truncation 
error). 

The operator recovery method can be descibed for a general multi-dimensional 
non-linear partial differential equation (PDE): 

N q )  = Wq) (1) 

Equation (1) summarizes the most general PDE for an unknown function 
q(x) defined on the multidimensional space x .  The operator X summarizes 
all the spatial operators, of any degree and possibly non-linear; the operator 
A summarizes all other terms, such as time dependent terms, source terms 
or linear and non-linear homogeneous terms. 

Equation (1) is discretized in space on a grid with N nodes xi: 

4 = X i ( q l , . . . , q n )  (2) 

The two sides of the equation are evaluated at xi; to achieve this goal, the 
operator A is simply evaluated in xi, while the operator X, differential in 
space, is discretized using a suitably chosen discretization scheme to obtain 

From the discretized field qi and from the discretized operator Xi  applied to 
qi defined only on the grid points, it is possible to reconstruct two functions 
defined everywhere in the continuum space x: 

where L is the operator representing the multilinear (e.g., linear in lD,  
bilinear in 2D) interpolation from the grid points. 



The local truncation error is defined as the residual of the application of 
the exact operators upon the interpolation reconstruction of the solution of 
the discretized equation: 

e = A(f(x)) - %f(x) (4) 

Recalling that the operator A commutes with any spatial operator and 
particularly with the linear interpolation operator C, it follows: 

A ( W >  = a x >  (5) 

e = %(XI - %~((x)  

Using eq.(5), the definition of the local truncation error becomes: 

(6) 

which defines the local truncation error as the difference between the linear 
interpolation of the discretized operator applied to the discretized field 
%(x) and the exact differential operator applied to the linear interpolation 
of the discretized field f(x). 

The local truncation error in each cell i is defined as the L2 nrom: 

where ec is the average local truncation error over cell i and 
volume. 

is the cell 

Variational Grid Adaptation Based on Error Indicators 

We have recently proposed a new approach to variational grid adaptation 
based of the local truncation error computed above [4]. The method can 
be constructed starting from the following theorem proven in Ref. [4] 

THE0REM:In a optimal grid, defined as a grid that minimizes  the local trun- 
cation error according t o  the minimzat ion principle 

the product of the local truncation error in any  cell i by the cell volume vi 
(given bv the Jacobian J = 4) is constant: 

eiVi = const (9) 



The equitlistribution 1,heorem is applied solving the following Euler-Lagrange 
ecluations: 

This approach creates a grid where eiVi is constant. Note that the equa- 
tions above are identical to the equations used by the Winslow's variable 
diffusion method. The primary innovation is that the monitor function is 
now directly linked with the local truncation error instead of being left un- 
defined. In the typical implementations of the Winslow's variable diffusion 
method, the merit function is defined heuristically by the user. The use 
of the operator recovery error indicator proposed here results in a more 
accurate scheme [4]. 

Remapping 

The remapping phase can be considered simply an advection step [l], where 
the interpolation between two grids is modeled with an advection equation. 
Below we present the advection equation equivalent to the interpolation 
task of the remapping phase. Then the MPDATA [7] method is used to di- 
cretize the remapping equation. The application of the MPDATA method 
requires some relevant modifications and extension to the formalism pub- 
lished in [7]. 

Remapping: Formulation of the Problem 

One can assume that the grid moves from the old grid xo to the new x1 
as: x(<,t) with a constant velocity: v = @. We assume further that the 
mapping from physical to natural coordinates changes as the grid moves. 
The cell volume, which is defined as: G(4,t) = det(%), changes in time 
also. 
In the derivation below we limit the scope to lD,  the extension to 2D being 
tedious but straightforward. The correct equation for remapping based on 
advection is: 

This is the equation that we need to solve using MPDATA, It differs from 
all the models considered in the review paper [7] in two ways: 

1. The determinant of the metric tensor of the mapping G is time de- 
pendent, a case not considered before. The time dependence is very 



benign, as the grid velocity is assumed to be constant in time. For 
example in 1D the variation of G in time is linear. Taylor series in 
time are therefore convergent. 

2. The determinant of the metric tensor of the mapping G is not partic- 
ularly smooth in space, as grid spacing can jump arbitrarily from cell 
to cell. The assumption of analiticity of G is unacceptable, requiring 
special care in handling Taylor series in space. Only within a cell, 
they do converge. 

In the 1D case, the application of the donor cell to eq.(12) is straightforward: 

dG; = @:G? + (ui+1/2$i+1/2(upwind) 0 - ui- l /2$ i - l / z (upwind))  0 (12) 

where 

and F is defined as in [7]: 
ui+l/Z$i+l/2(upwind) = q$: i I -'%+l/21 (13) 

U$L if U > 0 
F($JL, $R, U) U$R if U < 0 (14) { 0 otherwise 

Note that we have used the fact that the velocity in eq.( 12) has the opposite 
sign than usual advection, as appropriate for remapping. 

Equation (13) includes two sources of second order errors: one is coming 
from the explicit Euler discretization of the time derivative and one from 
the upwind discretization of the spatial derivative. The two errors can be 
treated separately, in a dividi et impera approach. 

Modified Equation Approach - Spatial Error 

For simplicity, we assume here that the system is 1D. If we consider the 
spatial error alone, we have: 

-- aG+ - F 
at 

where F = a$./&. We then proceed to discretize F in space: 

note that eq.(17) is second order accurate, until we introduce upwinding to 
approximate F+~.lp. The exact expression of F i f l p  would be: Fi*1/2 = 



ui*1/2$i*lp but the upwind method approximates: 

Fi+l/2 = 4$; 1 I@+:,, -Ui+1/21 (17) 

and similarly for Fi- . l /2 .  Consequently an error is committed: 

m * 1 / 2  = Ui+1/2Wif1/2 (18) 

where d@i&1/2 = $i&1/2 - $i*l/Z(upwind)* 

To fix the ideas, let us consider i+ l /2  and assume ui+1/2 > 0; the expression 
for 6$1+1/2 is: 

Now we apply the crucial MPDATA machinery, the modified equation ap- 
proach, but with a new twist. We Taylor series expand around i + 1/2, 
instead of the usual i. The reason is that G is potentially non-analytic re- 
quiring special care in dealing with the Taylor series expansion. Centering 
around i and using it beyond cell i would be forgetting that G might jump 
from cell to cell. Furthermore, we can approximate first derivatives better 
in i + 1/2 than in i. Finally, we need to center in i + 1/2 because that is 
the exact value we assume as reference. 

Performing the Taylor expansion, it follows : 

W i + l / 2  = $i+1/2 - $i+l (19) 

recalling that Gi+l =: 2(xi+l - Z ~ + ~ / Z ) ,  it follows: 

which provides the final result for the expression of the error as provided 
by the modified equation approach. 

The derivative can be approximated using the cell centered values of $: 

gli+l,2 = ( $ i + ~  - $ i ) / ( ~ i + l  - xi). Note that this approximation is per- 
fectly justified, m $(%) is analytic (it is G that is not). Recalling again the 
definition of G, the final expression, generalized for any sign of the node 
velocity ui+1/2 is 



that provides the approximation to the correction that we have to introduce 
in the second step of MPDATA, coming from the spatial truncation error 
alone: 

@i+l - @i 

Gi+i +Gi dFi+1/2 = -2 (W+l /2( upwind) 1 (23) 

where Gi+l/Z(upwind) = F(Gi, Gi+l, -sign(w+l/d. 
As usual to make the MFDATA correction similar to the donor cell step, 
we divide and multiply by $i+l /2(upwind) ,  and replace it in the denominator 
with the averaged value. Following that procedure, the contribution of the 
spatial error to the correction velocity for the second step of the MPDATA 

Note that the contribution V A  is related to, but differs from, the corre- 
sponding expression in eq.(8) or in eq.(29a) of [7] for the presence of the 
factor: Gi+l/~(~~~i~d)/O.5(Gi+l+ Gi) that becomes crucially important for 
very non-smooth grids. 

Of course, the complete expression will need also the contribution of the 
truncation error due to the discretization of the time derivative. 

Modified Equation Approach - Time Error 

The computation of the truncation error coming from the explicit Euler 
discretization of the time derivative in eq.(12) is much simpler and more 
closely related to the usual derivations in Ref. [7]. 

Basically the task is simple: to generalize the derivation in section 3.1 of 
Ref. [7] to the case where v is constant in time (but not in space) but G is 
variable both in space and time (time variation of G was never considered 
within the MPDATA. approach). But the procedure follows closely eqs.(20- 
25) of Ref. [7]. Here is the algebra: 

We discretize eq.(12) using explicit Euler: 

G1ql - Go$' aulC, -- 
dt - at 

Expanding in Taylor series around time level 0 (an harmless task since G 
is analytic in time, while it was not in space), with trivial straightforward 
algebra, one gets the following modified equation: 



Next step is to eliminate the time derivatives transforming them in spatial 
derivative using the modified equation itself. To eliminate the second order 
derivative, we derive the equation above in time: 

a DG+ a au+ a 
at2 at at '7g- at 
-- a2'G - - (=) = - ( ) -I- O(6t) = - (us) -t e)(&) (27) 

Using fwthermore that: 

Now a crucial algebraic step, that is peculiar to remapping. The derivative 
of G with respect of time can be expressed in an interesting way. Recalling 
that G = ax f a[: 

8G 8 ax au 
(30) ------_ - 

at at at - a< 

Using this result, eq.(30), the modified equation becomes: 

This equation is the final result, to be compared with eq.(25) of Ref. [7]. 
Indeed, it is identical, exept for the absence of the V . u term. This lead 
directly to the correction in the second MPDATA step coming from the 
time truncation error: 

where 6t can be assumed to be 1. This contribution ought to be added to 
the spatial contribution to get the complete expression. 

Summary of the MPDATA Scheme for 7 D Remapping 

In the first step, the donor step is applied: 

$tG; = 4$'G -I- q$~: , +:+I, - ~ + 1 / 2 ]  - q+:-i 7 $:, -ui-1/2] (33) 



Next the correction velocity is computed as: 

Note that the choice of the time level in the equation above is somewhat 
arbitrary. To second order, it does not change the error, but practical 
examples have shown that the choice above, which it is to use the original 
grid values everywhere is best. 

The the final step in the MPDATA remapper is another donor step: 

QtG: = $rG: - q+iT, +;+I, Vi+1/2I + qQiT-1, Icli", Vi-1/21 (35) 

The approach followed above does not appear to have any problem to be 
extended to 2D or 3D. We shall see. 

Resu I ts 

We consider the classic spherical 1D implosion test proposed by Noh [5]. 
The gas initially has p = 1, e = lo-* and uniform velocity u = -1 (except 
in the center where U(T = 0) = 0). The gas has 7 = 5/3. The problem 
represents a serious challenge for Lagrangian calculations and the solution 
is known to suffer from serious wall heating due to the use of artificial 
viscosity to capture shocks. Note that we are not using artificial heat con- 
duction (Noh, 1987), a tool to remove the wall heating problem, precisely 
to highlight the trouble of Lagrangian calculations for the present case . 
The results of an ALE calculation using the adaptive grid is compared with 
a reference standard Lagrangian calculation. 

Figure 1 show the density at the end of the Lagrangian and ALE calculation. 
The use of adaptive grid results in a much improved solution. The reason for 
the improvement is explained by the better description of the shock achieved 
by the adaptation. As noted in Dorfi's benchmark, the adaptation results 
in a sharper shock. In the present case this sharper resoluition results also 
in a considerable reduction of the wall heating, as explained in the original 
paper by Noh (Noh, 1987). Such reduction explains why the improvement 
in the present case is more relevant than in the previous case shown (Dorfi's 
benchmark). 
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Figure 1. Gas Dynamics - Noh’s spherical benchmark: comparison of the 
density at the end ( t  = 0.6), for a Lagrangian (dashed) and ALE (solid 
line) calculation, The exact solution is also shown (dotted line). 
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