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Abstract

Methods to include automatic grid adaptation tools within the Arbitrary
Lagrangian Eulerian (ALE) method are described. Two main developments
will be described. First, a new grid adaptation approach is described, based
on an automatic and accurate estimate of the local truncation error. Sec-
ond, a new method to remap the information between two grids is presented,
based on the MPDATA approach.

Introduction

The Arbitrary Lagrangian Eulerian (ALE) [2] method solves hyperbolic
equations by splitting the operators is two phases.

First, in the Lagrangian phase, the equations under consideration are writ-
ten in a Lagrangian frame and are discretized [6]. In this phase, the grid
moves with the solution, the velocity of each node being the local fluid
velocity.

Second, in the Eulerian phase, a new grid is generated and the information
is transferred to the new grid. The advantage of considering this second
step is the possibility of avoiding mesh distortion and tangling typical of
pure Lagrangian methods.

The second phase of the ALE method is the primary topic of the present
communication. In the Eulerian phase two tasks need to be completed.
First, a new grid need to be created (we will refer to this task as rezoning).
Second, the information is transferred from the grid available at the end
of the Lagrangian phase to the new grid (we will refer to this task as
remapping).

New techniques are presented below for the two tasks of the Eulerian phase:
rezoning and remapping.



Rezoning

The rezoning task of the ALE method requires to generate a new adaptive
grid that best describes the system and minimizes the local truncation error
for the discretized equations. Below, we describe a new approach to grid
adaptation based on an accurate estimate of the local truncation error.

Operator Recovery Computation of the Local Trunca-
tion Error

We have recently proposed an accurate technique for approximating the
local truncation error [4]: the operator recovery method. Our aim is to
derive an error indicator, not a mathematically rigorous a-posteriori error
estimator (i.e. an error definition that converges to the actual truncation
error).

The operator recovery method can be descibed for a general multi-dimensional
non-linear partial differential equation (PDE):

Alg) =X(q) (1)

Equation (1) summarizes the most general PDE for an unknown function
g(x) defined on the multidimensional space x. The operator X summarizes
all the spatial operators, of any degree and possibly non-linear; the operator
A summarizes all other terms, such as time dependent terms, source terms
or linear and non-linear homogeneous terms.

Equation (1) is discretized in space on a grid with N nodes x;:

A = Xi(q1,...,qn) (2)

The two sides of the equation are evaluated at x;; to achieve this goal, the
operator A is simply evaluated in x;, while the operator X, differential in
space, is discretized using a suitably chosen discretization scheme to obtain
X;.

From the discretized field ¢; and from the discretized operator X; applied to
g: defined only on the grid points, it is possible to reconstruct two functions
defined everywhere in the continuum space x:

g(x) = L{ai} 3)
Xo(x) = L{Xi(q1,-..,qn)}

where £ is the operator representing the multilinear (e.g., linear in 1D,
bilinear in 2D) interpolation from the grid points.



The local truncation error is defined as the residual of the application of
the exact operators upon the interpolation reconstruction of the solution of
the discretized equation:

e = A(F(x)) - X(x) (4)

Recalling that the operator A commutes with any spatial operator and
particularly with the linear interpolation operator £, it follows:

A(G(x)) = X,(x) (5)
Using eq.(5), the definition of the local truncation error becomes:
e = Xg(x) - Xg(x) (6)

which defines the local truncation error as the difference between the linear
interpolation of the discretized operator applied to the discretized field
X,¢(x) and the exact differential operator applied to the linear interpolation
of the discretized fleld g(x).

The local truncation error in each cell 7 is defined as the L; nrom:

1 ) 1/2
€ = ("-/: /w T dV) (7)

where e; is the average local truncation error over cell ¢ and V; is the cell
volume.

Variational Grid Adaptation Based on Error Indicators

‘We have recently proposed a new approach to variational grid adaptation
based of the local truncation error computed above [4]. The method can
be constructed starting from the following theorem proven in Ref. [4]

THEOREM:In a optimal grid, defined as a grid that minimizes the local trun-
cation error according to the minimzation principle

/vleld”w, (®)

the product of the local truncation error in any cell © by the cell volume V;
(given by the Jacobian J = /g) is constant:

e;V; = const 9)



The equidistribution theorem is applied solving the following Euler-Lagrange

equations: .
0 oz’
ij < =\ =
% (eaef) ° o

This approach creates a grid where ¢;V; is constant. Note that the equa-
tions above are identical to the equations used by the Winslow’s variable
diffusion method. The primary innovation is that the monitor function is
now directly linked with the local truncation error instead of being left un-
defined. In the typical implementations of the Winslow’s variable diffusion
method, the merit function is defined heuristically by the user. The use
of the operator recovery error indicator proposed here results in a more
accurate scheme [4].

Remapping

The remapping phase can be considered simply an advection step [1], where
the interpolation between two grids is modeled with an advection equation.
Below we present the advection equation equivalent to the interpolation
task of the remapping phase. Then the MPDATA [7] method is used to di-
cretize the remapping equation. The application of the MPDATA method
requires some relevant modifications and extension to the formalism pub-
lished in [7].

Remapping: Formulation of the Problem

One can assume that the grid moves from the old grid x° to the new x!
as: x(&,t) with a constant velocity: v = %. We assume further that the
mapping from physical to natural coordinates changes as the grid moves.
The cell volume, which is defined as: G(£,t) = det(%’é), changes in time

also.

In the derivation below we limit the scope to 1D, the extension to 2D being
tedious but straightforward. The correct equation for remapping based on
advection is:

oGy _ 2
B T % (u)) (11)

This is the equation that we need to solve using MPDATA., It differs from
all the models considered in the review paper [7] in two ways:

1. The determinant of the metric tensor of the mapping G is time de-
pendent, a case not considered before. The time dependence is very



benign, as the grid velocity is assumed to be constant in time. For
example in 1D the variation of G in time is linear. Taylor series in
time are therefore convergent.

2. The determinant of the metric tensor of the mapping G is not partic-
ularly smooth in space, as grid spacing can jump arbitrarily from cell
to cell. The assumption of analiticity of G is unacceptable, requiring
special care in handling Taylor series in space. Only within a cell,
they do converge.

In the 1D case, the application of the donor cell to eq.(12) is straightforward:

¥iG} = ¢{G] + (ui+1/2¢?+1/2(upwind) - Ui—1/2¢?—1/2(upwmd)) (12)

where
Ui+1/21/)i+1/2(upwmd) = FW? ) ¢?+1, —Ui+1/2] (13)
and I is defined as in [7]:
Uy if U>0
Flypr, vg,U) = Uypg if U<O0 (14)

0 otherwise

Note that we have used the fact that the velocity in eq.(12) has the opposite
sign than usual advection, as appropriate for remapping.

Equation (13) includes two sources of second order errors: one is coming
from the explicit Euler discretization of the time derivative and one from
the upwind discretization of the spatial derivative. The two errors can be
treated separately, in a dividi et impera approach.

Modified Equation Approach - Spatial Error

For simplicity, we assume here that the system is 1D. If we consider the
spatial error alone, we have:

oGy
—_— 1
B (15)
where F = Oyu/O€. We then proceed to discretize F in space:
oG
ZL| = (Fiaga — Fioags) (16)
i

note that eq.(17) is second order accurate, until we introduce upwinding to
approximate Fii;/2. The exact expression of Fiyy/; would be: Fiiy/s =



Ui+1/2%ix1/2 but the upwind method approximates:

Fipaye = B0, 00, 1, i1 o] (17)

and similarly for F;_,/. Consequently an error is committed:
0Fit172 = Uig1/20%iz1/2 (18)

where 09;11/2 = Yiz1/2 — Yix1/2(upwind)-
To fix the ideas, let us consider i+1/2 and assume u;11/2 > 0; the expression

for 6¢1+1/2 is:
0iy1/2 = Yigrye = Vit (19)

Now we apply the crucial MPDATA machinery, the modified equation ap-
proach, but with a new twist. We Taylor series expand around ¢ + 1/2,
instead of the usual 7. The reason is that G is potentially non-analytic re-
quiring special care in dealing with the Taylor series expansion. Centering
around ¢ and using it beyond cell ¢ would be forgetting that G might jump
from cell to cell. Furthermore, we can approximate first derivatives better
in 4+ 1/2 than in 4. Finally, we need to center in i + 1/2 because that is
the exact value we assume as reference.

Performing the Taylor expansion, it follows :

o
0ir1y2 = Yigry2 — [¢i+1/2 + ?9%

(Tit1 — Tig1/2 )] (20)
i+1/2

recalling that Giy1 = 2(@i41 — Ziy1/2), it follows:

oy

G.
Oigp1/2 = Bz — (21)

2

i+1/2

which provides the final result for the expression of the error as provided
by the modified equation approach.

The derivative can be approximated using the cell centered values of .

%‘f s (i1 — ¥5)/(xi+1 — ;). Note that this approximation is per-
fectly justified, as 9(z) is analytic (it is G that is not). Recalling again the
definition of G, the final expression, generalized for any sign of the node

velocity u;y1/2 i8

bix1se = _HGHI/Z(WWM@ (22)



that provides the approximation to the correction that we have to introduce
in the second step of MPDATA, coming from the spatial truncation error

alone: " "
0Fi 10 = _25:’3?;‘%(ui+1/2Gi+1/2(upwind)) (23)

where Git1/2(upwind) = F(Gi) Git1, —sign(uiy1/2)-

As usual to make the MPDATA correction similar to the donor cell step,
we divide and multiply by ;41 /2(upwind), and replace it in the denominator
with the averaged value. Following that procedure, the contribution of the
spatial error to the correction velocity for the second step of the MPDATA
method is:

VA = [Uir1/2|Giv1/2(upwind) Yit1 — i (24)
it+1/2 0.5(Giy1 + Gi) Wi + Yip

Note that the contribution V4 is related to, but differs from, the corre-
sponding expression in eq.(8) or in eq.(29a) of [7] for the presence of the
factor: Giy1/2(upwind)/0-5(Git1 +G;) that becomes crucially important for
very non-smooth grids.

Of course, the complete expression will need also the contribution of the
truncation error due to the discretization of the time derivative.

Modified Equation Approach - Time Error

The computation of the truncation error coming from the explicit Euler
discretization of the time derivative in eq.(12) is much simpler and more
closely related to the usual derivations in Ref. [7].

Basically the task is simple: to generalize the derivation in section 3.1 of
Ref. [7] to the case where v is constant in time (but not in space) but G is
variable both in space and time (time variation of G was never considered
within the MPDATA approach). But the procedure follows closely eqgs.(20-
25) of Ref. [7]. Here is the algebra:

We discretize eq.(12) using explicit Euler:
Gl,wl —- GO’IPO _ au,‘/)
5t T
Expanding in Taylor series around time level 0 (an harmless task since G

is analytic in time, while it was not in space), with trivial straightforward
algebra, one gets the following modified equation:

G _ duy _ _418°Gy
ot o 2 o

(25)

(26)



Next step is to eliminate the time derivatives transforming them in spatial
derivative using the modified equation itself. To eliminate the second order
derivative, we derive the equation above in time:

8%yG 8 (8G¢> 9 (amp oY
o2~ ot T ot

(%) 2 -55-) +oen =2 (u—éz) Lo (@)

Using furthermore that:

oy _oup  9G
Gor =3¢ ~Var + O (28)

it follows :

G _gu_ gt [uow_wic) 9

ot ot 20t |G ot T G ot

Now a crucial algebraic step, that is peculiar to remapping. The derivative
of G with respect of time can be expressed in an interesting way. Recalling

that G = Oz/0¢:
oG _ 80z Ou (30)

Using this result, eq.(30), the modified equation becomes:

OYG Ouyp Gt 0 [u O
o " oE T 20¢ [5“5‘5 (81)
This equation is the final result, to be compared with eq.(25) of Ref. [7}.
Indeed, it is identical, exept for the absence of the V - u term. This lead
directly to the correction in the second MPDATA step coming from the
time truncation error:

u? Vir1 — i
V-B - i+1/2 i+1 ] 32
172 0.5(Gis1 + Gi) ¥i+ i (32)

where dt can be assumed to be 1. This contribution ought to be added to

the spatial contribution Vij‘_l /2 tO get the complete expression.

Summary of the MPDATA Scheme for 1D Remapping

In the first step, the donor step is applied:

VG = "/’gG? + M‘p? ’ '¢?+1, "“z‘+1/2] - IF["/)'?—I ’ "p?, —Ui—1/2] (33)



Next the correction velocity is computed as:

V. — |ui+1/2|Gg+1/2(upwind) - uf+1/2 ?/’?+1 — 9
/2 0.5(G2,; + GY) W+ ¥

(34)

Note that the choice of the time level in the equation above is somewhat
arbitrary. To second order, it does not change the error, but practical
examples have shown that the choice above, which it is to use the original
grid values everywhere is best.

The the final step in the MPDATA remapper is another donor step:
PiGi = $IGF — Ty, iy, Vigrye] + T, 9], Vieya) (35)

The approach followed above does not appear to have any problem to be
extended to 2D or 3D. We shall see.

Results

We consider the classic spherical 1D implosion test proposed by Noh [5].
The gas initially has p = 1, e = 10™* and uniform velocity u = —1 (except
in the center where u(r = 0) = 0). The gas has v = 5/3. The problem
represents a serious challenge for Lagrangian calculations and the solution
is known to suffer from serious wall heating due to the use of artificial
viscosity to capture shocks. Note that we are not using artificial heat con-

duction (Noh, 1987), a tool to-remove-the wall-heating problem, precisely

to highlight the trouble of Lagrangian calculations for the present case .

The results of an ALE calculation using the adaptive grid is compared with
a reference standard Lagrangian calculation.

Figure 1 show the density at the end of the Lagrangian and ALE calculation.
The use of adaptive grid results in a much improved solution. The reason for
the improvement is explained by the better description of the shock achieved
by the adaptation. As noted in Dorfi’s benchmark, the adaptation results
in a sharper shock. In the present case this sharper resoluition results also
in a considerable reduction of the wall heating, as explained in the original
paper by Noh (Noh, 1987). Such reduction explains why the improvement
in the present case is more relevant than in the previous case shown (Dorfi’s
benchmark).
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