LA-UR- 6/-6904

Approved for public releasse;
distribution Is unfimited.

Title: | ALGORITHM REFINEMENT FOR STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

Author(s): | Francis J. Alexander Z# 110216, CCS-3

Alejandro L. Garcia LLNL
Daniel M. Tartakovsky Z# 120304, T-7

Submitted to: | \nnistier Conference Centre
Whistler, British Columbia
July 20-25 2002

Los Alamos

NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative actionfequal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under cantract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free ficanse to publish or reproduce the published form of this contribution, or to allow others to do so, forU.S.

Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
ngly supports academic freedom and a researcher’s right to

auspices of the U.S. Department of Energy. Los Alamos National Laborat
publish; as an institution, however, the Laboratory does not endorse the v int of a publication or guarantee its technical correctness.
Form 836 (8/00)


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact:



Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM  87544

Phone:  (505)667-4448

E-mail:  lwwp@lanl.gov


Algorithm Refinement for
Stochastic Partial Differential Equations

Francis J. Alexander®, Alejandro L. Garcia', and Daniel M. Tartakovsky*

*C'C8-38, Los Alamos National Laboratory, Los Alamos, NM 87545,
t Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551
and Department of Phystcs, San Jose State University, San Jose, Calf. 95192
* Theoretical Division, Los Alames National Laboratory, Los Alamos, NM 87545

Abstract. A hybrid particle/continuum algorithm is formulated for Fickian diffusion in the fluctuating

hydrodynamic limit. The particles are taken as independent random walkers; the fluctuating diffusion

equation is solved by finite differences with deterministic and white-noise fluxes. At the interface between

the particle and continuum computations the coupling is by flux matching, giving exact mass conservation.

This methodology is an extension of Adaptive Mesh and Algorithm Refinement [J. Comp. Phys. 154 134

(1999)] to stochastic partial differential equations. A variety of numerical experiments were performed for -
both steady and time-dependent scenarios. In all cases the mean and variance of density are captured

correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic

continuum fluxes) the mean density is correct, but the variance is reduced except within the particle region,

far from the interface. Extensions of the methodology to fluid mechanics applications are discussed.

A promising computational strategy for multi-scale and multi-physics problems is to apply a detailed micro-
scopic model only where it is necessary, coupling this computation to a simpler, less expensive method in the
rest of the domain. Such “hybrid” methods, also known as Algorithm Refinement, typically couple two struc-
turally (physically and algorithmically) different computational schemes, which are used in different regions
of the problem (e.g., interior and exterior of a shock wave). An important class of hybrids involves matching
particle methods, such as Direct Simulation Monte Carlo (DSMC), to continuum partial differential equation
(PDE) solvers (see [2] and references therein).

An important question is whether the coupling of two algorithms affects the accuracy of either method.
Until recently, the testing of hybrid schemes only checked mean values such as average density, temperature,
etc. Yet for simulations of microscopic systems, one is also interested in the variations of these quantities
due to spontaneous fluctuations. This issue is especially important when modeling phenomena where the
fluctuations themselves drive (or initiate) a large scale process, such as the onset of instabilities, the nucleation
of phase transitions, and the ignition of combustion. Nonequilibrium fluctuations are correctly reproduced
by conventional DSMC simulations [6] but coupling with a continuum algorithm could possibly affect these
fluctuations.

The present work addresses the issué of fluctuations in hybrid schemes that combine a particle algorithm with
a partial differential equation solver. Since our interest is in fluctuations, we consider both deterministic partial
differential equations (DPDEs) and stochastic partial differential equations (SPDEs). Spontaneous fluctuations
may be introduced into the hydrodynamic equations by including stochastic components to the fluxes, as first
proposed by Landau [5]. Our investigation focused on the problem of simple diffusion since much is known
about solving the linear diffusion equation (LDE) in both its deterministic and stochastic forms. Moreover,
there is a microscopic particle process, namely independent random walkers, that rigorously converges to the
LDE in the hydrodynamic scaling limit. {4]

Our numerical experiments simulated a one-dimensional system divided into two parts with a particle region
between x =3D 0 to I; elsewhere the continuum density is specified at discrete grid points (see Figure 1). The
particle and continuum computations are coupled by flux matching with exact conservation, as described in
[2]. At the beginning of each time step, the “handshaking” region is randomly filled with particles according



to the density of the underlying grid point. All particles, in the handshaking region and elsewhere, are then

displaced as random walkers, i.e., by a distance V2DAtRY, where D is the diffusion coefficient, At is the

time step and RV is a uniformly distributed random number in [0,1). The number of particles crossing the

interface gives the number flux at the interface, this flux is recorded and used in the continuum portion of the

computation. Any particles that end their move outside the particle region are removed from the simulation.
Once the particle update is complete, the number density, p, on the continuum grid is updated as

B -
pilt -+ Ot) =30(H) — (T) At,

where the total and stochastic fluxes, respectively, are

F* =3D iﬂ:l(ti; m(t)> +fE, f =3 g =3‘V{D(Pi(2:ﬁ+1(t)) RS,

where Az is the grid spacing and RS are independent, Gaussian distributed, random variables with zero mean
and unit variance. The right and left number fluxes, F'*, for each continuum grid point are computed by the
above expressions except for the grid points adjacent to the particle region. For those points, the number flux
recorded during the particles’ motion is used. If we set fii =3D 0 then we recover the forward-time centered-space
(FTCS) scheme [1] for the deterministic diffusion equation. Note that the coupling by fluxes ensures exact
mass conservation for both the DPDE and SPDE versions of the hybrid. The continuum SPDE portion of
this hybrid is essentially the same as that presented in [3] but for mass diffusion instead of the Fourier (heat)
equation, which has a slightly different form for the stochastic flux.

Qur numerical experiments show that this hybrid, constructed to solve the stochastic diffusion. PDE and
the random walk particle model, produces the correct equal-time density fluctuations in a variety of scenarios,
including equilibrium, nonequilibrium steady-state, and time-dependent problems. We also find that the mean
density is given correctly by the particle/PDE hybrid using either stochastic or deterministic PDE solvers.
However, when the continuum solver does not contain stochastic fluxes (i.e. FTCS scheme) the variance is
near zero in the continuum region and suppressed within the particle region near the coupling interface. This
reduction of the density fluctuations in the particle region when coupled with a deterministic PDE necessitates
placing the interface further away from regions where accurate fluctuations are required.

The talk will present these results in more detail and discuss the extension of this methodology to hybrids
coupling DSMC and the fluctuating Navier-Stokes equations.
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Figure 1 Algorithm Refinement for simple diffusion. A random walk simulation is performed in the region
on the left and a PDE solver is used on the right. The methods are coupled at the interface I; new particles
(open circles) are generated in the “handshaking” region (right) and at the Dirichlet boundary (left).



