LA-UR-01-6417

Approved for public release;
distribution is unlimited.

Quantum Decision Trees and Semidefinite
Programming

Title:

Author(s): | Howard Barnum, Michael Saks, and Mario Szegedy

Submitted to:

http://lib-www.lanl.gov/cgi-bin/getfile?00818934.pdf

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the

viewpoint of a publication or guarantee its technical correctness.
FORM 836 (10/96)

Quantum Decision Trees and Semidefinite Programming

Howard Barnum,'? Michael Saks?, Mario Szegedy?

LCCS-8, MS B256, Los Alamos National Laboratory
Los Alamos, NM 87545
2DIMACS Center and Department of Mathematics, Rutgers University
96 Frelinghuysen Road, Piscataway NJ 08854-8018 USA
3 Department of Computer Science, Rutgers University, Piscataway NJ 08854-8018 USA

email: barnum@lanl.gov, saksOmath.rutgers.edu, szegedy@cs.rutgers.edu
May 23, 2002

Abstract We reformulate the notion of quantum query complexity in terms of inequalities and
equations for a set of positive matrices, which we view as a quantum analogue of a decision tree. Using
the new formulation we show that: 1. Every quantum query algorithm needs to use at most n quantum
bits in addition to the query register. 2. For any function f there is an algorithm that runs in polynomial
time in terms the truth table of f and (for € > 0) computes the e-error quantum decision tree complexity
of f. 3. Using the dual of our system we can treat lower bound methods on a uniform platform, which
paves the way to their future comparison. In particular we describe Ambainis’s bound in our framework.
4. The output condition on quantum algorithms used by Ambainis and others is not sufficient for an
algorithm to compute a function with e-bounded error: we show the existence of algorithms whose final
entanglement matrix satisfies the the condition, but for which the value of f cannot be determined from
a quantum measurement on the accessible part of the computer.)

1 Introduction and summary of results

The bounded-error quantum query model is both relevant to understanding powerful explicit non-
query quantum algorithms such as Shor’s factoring algorithm [1],[2], and theoretically important as the
quantum analogue of the classical decision tree model. Quadratic speedups over the best probabilistic
decision trees have been shown for some functions (notably OR of n variables with O(y/n) queries [3],
[4], for which there is a matching lower bound [5]) and examples also exist where only a linear speedup is
possible. For partial functions, examples of exponential speedups exist, but for total functions, the gap
is known to be at most a degree-6 polynomial [6], while the best gap that has been established for an
explicit function is quadratic. It is suspected that the 6th-degree bound on the gap can be considerably
strengthened. Many other interesting questions about quantum query complexity, involving both lower
and upper bounds, remain open as well.

A computation in a deterministic classical query complexity model may be viewed as a decision tree,
in which the k-th level of the tree represents the result of the k-th query, and the two branches from
each node on the k — 1Ist level to its daughters on the k-th level are labeled by the value of the bit
queried in step k of the computation. A computation computes a function if at each leaf of the tree,
the known bits of the input determine the function’s value. In a probabilistic query model, each level
has, preceding the binary branching on bit-value, a branching on the index of the bit queried, with each
branch labeled by the probability of querying that bit.

In this paper, we provide a view of quantum query computation that we believe is as close as one
can come to the decision tree view of classical query complexity, and use it to establish several general
results about quantum query complexity, including a bound on the space required to implement a
computation in the model, and an algorithm for computing the query complexity of functions. We
believe that approaching query complexity from this point of view can also help in establishing new
upper and lower bounds. The analogy to classical decision trees is very imperfect, roughly because in a
quantum computation the computer state deriving from a particular sequence of queries may interfere

with that derived from another sequence of queries. Nevertheless, the structure we find on this approach
yields several interesting results. In particular, we:

1. express the condition that a query algorithm computes f with bounded error in terms of the
matrix Mz, y] = (V,|¥,) of inner products (“Gram matrix”) of final states of the computer after
running the algorithm on inputs = (y);

2. show that the workspace of the computer can be limited to at most n qubits without losing the
computational power of the model (as part of Theorem 3).

3. give an algorithm that for € > 0 computes DQ(f) of any f :{0,1}" — {0,1} in DTIME(C") for
some fixed C' (in Section 7).

4. formulate the quantum query algorithm as an evolution of Gram matrices (“quantum decision
tree”) which gives us a nice and compact definition of the quantum decision tree depth (query
complexity). This allows us to formulate the existence of a depth-d decision tree as the feasibility of
a semidefinite program. We derive the corresponding dual program, which naturally encompasses
possible lower bounds for the primal.

5. find an analogue of what is called “branching according to the value of a variable” in the classical
case (see the discussion following Theorem 3).

2 Mathematical preliminaries and notation

Pure quantum states, such as those in a mathematical model of a quantum computer, are vectors in
a complex linear space. We use Dirac notation |i) for orthonormal vectors of a “standard” basis of a
register, labeled by strings i. Expressions like |7)|z) are the tensor products of these vectors, |i)®|z). For
general vectors we omit the bra or ket notation, although we write the inner product of vectors ¥ and
Z as (V|E) (this is is anti-linear in ¥, linear in Z, and is defined by (¥|Z) := 3, (¥)x(¥)g, the overbar
denoting complex conjugation. (We generally use * to denote the hermitian conjugate (“adjoint”) of a
matrix; M*’s elements are the complex conjugates of those of M’s transpose.)

A complex n x n matrix M is called positive semidefinite if M z* > 0 for every complex row vector
. Any positive semidefinite matrix can be written as a Gram matriz: a matrix whose i, j entry is the
inner product of the i-th and j-th vectors of a list of n vectors. And any such matrix of inner products
is positive semidefinite. If the vectors are normalized, their Gram matrix satisfies M., = 1, |M,| < 1.
If we write the components of the vectors ¥; as the columns of a matrix ¥ (whose elements are thus
;i := (¥;);, then we may express their Gram matrix as ¥*W. Two such systems of n vectors, arrayed
in 7 x n and s X n matrices ¥ and ® respectively (note this means the vectors in ¥ are of length r,
while those in ® are of length s), have the same Gram matrix precisely when there is an s x r partial
isometry I' taking the ¥ vectors to the ® vectors: I'

Iy = &. (1)

A maximal partial isometry is an s x r matrix I' which satisifes that I'*I' = II is a projector. This
implies that I'T'* is a projector of the same rank. If this rank is maximal, i.e. equal to min s, r then the
partial isometry is called maximal. Thus a maximal s X r partial isometry satisfies

rr=1I, (2)
if r < s, and if s < r satisfies

I =1,, (3)

where I, is the r X r identity matrix. If r < s, I' may be viewed as the matrix of an inner-product-
preserving (isometric) linear mapping from the row space of ¥ (the space in which the vectors of the
system ¥ live) to an r-dimensional subspace of the s-dimensional row space of ®, while if s < r, it
projects onto an s-dimensional subspace of the row space, and then isometrically maps this onto the
column space. The point is, this is precisely the sort of map that takes a set of vectors from one space to
another of possibly different dimension, without changing their inner products (and hence their Gram
matrix) if they are in its domain.
An important application of the notion of partial isometry is:

Proposition 1 Let z; be n (unnormalized) complex r-vectors such that
szx;‘ =1, .
12

Then there exist an r X s partial isometry I' with s < n, and orthonormal s-vectors e; such that
Fei =T .

A corollary is a finite-dimensional case of the Naimark extension theorem: that any resolution of unity
into positive matrices: X; > 0: >, X; = I, may be “lifted” to a resolution of unity into orthonormal
projectors P;, whose ranks are those of the X;, in a space of dimension s no greater than the sum of
the ranks:

X; =TPT, (4)

with I" an r X s partial isometry as before. (Apply Proposition 1 to the eigenvectors of X; normalized
to have norm equal to the square root of the associated eigenvalue.) Such resolutions of unity are called
“generalized measurements” in quantum mechanics; for such a measurement the probability of outcome
X; in state w is given by tr ww*X;, and the conditions on the X; enforce that these are normalized,
positive probabilities. The corollary ensures that such measurements correspond to ordinary quantum-
mechanical “von Neumann”measurements of complete sets of projectors, with the usual probabilities
||Pe||> when the state vector is e, on some larger space into which the space containing the state w is
embedded as a subspace, with w embedded as e.

3 Quantum query complexity: definitions

Consider an arbitrary f: {0,1}* — {0,1}*. A d-query computation for f in the quantum query model
consists of a sequence of d unitary operators and a particular complete set of orthogonal projection
operators P, acting on the query register and workspace of a quantum query computer. The query
register is a complex vector space spanned by orthonormal “standard” basis states |i),7 € {0,...,n}
(meant to represent “which bit of the input z € {0,1}" is to be queried at the next query step”), while
the workspace is a complex vector space spanned by 2™ standard basis states |z),z € {0,1}"™ labelled
by the m-bit strings z, where m may be any nonnegative integer. Each U in the sequence acts on the
n - 2M-dimensional tensor product of the query register and workspace, i.e. the space spanned by the
pairs |i)|z). We will call this the “accessible space” of the quantum computer. Completeness of the
projectors P, means that), P, = I, I being the identity operator on the accessible space. Thus,
defining H, as the space onto which P, projects, H as the accessible space, that H = @we{m}k H,.

While this specifies, mathematically, what we mean by a quantum query computation for f, we
need to interpret it further, specifying how the algorithm is run to get a result, and how this result
is interpreted as a value for f. This will also enable us to quantify the success of the algorithm in
computing f.

Besides the accessible space, the computer in our formulation of quantum query computation includes
an “input register” spanned by a standard orthonormal basis |z),z € {0,1}". The full computer state
space is the tensor product of this input register with the accessible space, and thus is spanned by the
n2™" orthonormal vectors |z)|i)|z). The unitaries and measurements specifying the algorithm do not
act on the input register; it is accessible only by a special type of unitary, the query or oracle operator,
described below.

A quantum query computation proceeds as follows: the initial state is |x)[|0)|0). It is acted upon
sequentially by the unitaries Uy, O, U1, Oy, Us, O ... Uy. O, is a phase change operator associated with
the “queried” input x € {0,1}", whose action on the basis vectors is described by:

Ozli)|2) = (=1)"i)|2). (5)

Thus, as mentioned above, the the standard basis vector |i) of the query register specifies which bit of
is queried if the query unitary O, is applied to the state. In the subspace of the computer space where
the query register is set to zero, the query acts as the identity (i.e. the query is “turned off”). For every
input z € {0,1}" the computation leads to the result vector

‘;[fx = Ude...UngUloxU0|x>|0>|0>. (6)
The output is a random variable W with a distribution 7, : {0,1}* — R given by:
o (w) = ||Py ¥yl

The set of projectors onto these subspaces constitutes a standard “von Neumann” quantum measurement
on the accessible space of the computer, and the probabilities are the standard quantum-mechanical
probabilities for the outcomes of this measurement.

We note a few equivalent (with respect to query complexity defined as number of queries) variants
of our definition of a quantum query algorithm. First, we could have specified that the orthonormal
projectors P, be onto subspaces specified by a partition A of the standard basis. However, the final
pre-measurement unitary U, in our definition of the algorithm can convert any desired complete set of
projectors into a measurement in the standard basis, so this is not a restriction. In a circuit complexity
setting, it is critical that the final measurement giving the computer output be in the standard basis—
indeed, more is required, namely that the output be encoded in a standard way in a register of the
computer; we have equivalence here only because we do not care about the complexity (in terms of
number of local gates) of the unitaries such as Uz 1, or indeed of the processing necessary to associate
the elements of the partition of the standard basis with a pointer we can directly interpret as the value
of W. We could also have allowed any “positive operator valued measurement” on the accessible space.
However, since we are going to bound the space (in qubits) required to implement query algorithms, we
do not make this simplification, because we want to make explicit, and count, the extra space required
to implement a POVM as a standard measurement of projectors.

We are interested in computations that compute a function f of the input z, with bounded error.
For such computations, the output distribution 7, satisfies:

me(f(z)) 21 —€ (7)

for all and some fixed error parameter 0 < e < 1/2. That is, the probability of getting the right
answer f(x) is no less than 1 — €, for all inputs 2. The complexity of the quantum query algorithm
defined above is the number of queries, d. The minimal d for query algorithms satisfying (7) for f is
defined to be the quantum query complexity of f, denoted DQc(f).

4 The geometry of the output vectors

Consider the 2" x 2" matrix M whose elements are
Mz, y] = (¥,],) s)
a.) M is positive semidefinite and Hermitian.
b.) For all z,y € {0,1}", |[M[z,y]| < 1.
c.) Forall z M, , = 1.

Let H be the accessible space associated with a quantum query algorithm. Let H,, be the mutually
orthogonal subspaces H = @« {0,1y+ Hy corresponding to the final measurement. We express condition
(7) as:

(PyUy|Py¥y) > 1 —¢€ (9)

for every x with f(z) = w. Conversely, if the output vectors (depending only on the sequence of unitaries
U;) ¥, of a quantum algorithm are such that there exists a complete set of P, satisfying Equation (9),
we can modify our algorithm (by using these projectors for the final measurement) so that for the new
algorithm (7) is satisfied. Therefore, if we wished, we could define a quantum query algorithm as a
sequence of unitaries, and e-computation of f by the algorithmn as the existence of a set of projectors
for which (9) is satisified—a step in reducing the our description of a quantum algorithm to the one in
terms of positive matrices. In other words, as part of our move towards a semidefinite programming
formulation, we have changed the role the projectors P, from variables describing an algorithm, to
objects whose existence is part of a constraint on the remaining variables (the U;) specifying that they
constitute a successful e-bounded errror computation of f.

In order to further simplify expression (9) let ¥ denote the (rectangular) matrix whose columns are
the elements of the system {¥,[z € {0,1}"}. Since we have 3, c¢1}x Pw = I, where I is the identity
of H,

M=UvT= Y UPPY= > M, (10)
we{0,1}F we{0,1}F

where the last equality defines the matrices M,, (which are thus the Gram matrices of the P,-projected
output vectors). Condition (9) is equivalent to the requirement that if f(x) = w then the (z,x) entry
of M, is at least 1 —e. All M,, are positive. Therefore M satisfies

Condition O (Output condition): M can be decomposed into positive matrices: M = 2we{o,1}k Muw,
such that the (x,x) entry of My, is at least 1 — e whenever f(x) = w.

Having shown that for any quantum query algorithm computing f with e-bounded error, the matrix
M of inner products of output vectors satisfies O, we now show that for any d x d matrix M satisfying
Condition O, there exists a system of d vectors {®,} and projectors P,, such that M is the inner product
matrix of the system {®,} and for all w, M, is the inner product matrix of the vectors {P,®,}.

This follows from a general proposition.

Proposition 2: Let M = Efuzl My, M, > 0 be n X n matrices. Let M be the Gram matrix of n
d-vectors, so that M = U*W for ¥ a d x n matrix. Then there are an nd X n matrix ® and nd x nd
projectors P, such that M, = ®*P,® (and so M = ®*®). Thus, there are also an nd x n partial
isometry I', and projectors P, such that M,, =3, ®*I"*P,I'®.

In other words, any decomposition of a positive semidefinite matrix representable as a Gram matrix
of n length-d vectors as a sum of n positive matrices, can be obtained from n vectors of greater length
(nd), projected via the P, onto orthogonal subspaces, and then projected onto a d-dimensional subspace;
the inner products of the resulting vectors will give M,,.

Proof: Define X,, := M~'Y2M,M~/2. Then X,, > 0, > wXw = I, and by Naimark’s theorem there
are projectors P, and an s x n partial isometry I' such that X,, = I'P,I'*. s < ld, since there are [

M,,’s each with rank no greater than d. Hence M,, = V*I'* P, P,,I'*¥*, so the matrices ® := [V and
projectors P, are those required by the Proposition.

The use of this proposition is that if condition 0 tells us there is a POVM measurement for which
outcome X,, has probability greater than 1 — € whenever f(z) = w, the proposition supplies us with
an isometry and a set of final computer state vectors in a larger state space, such that the same M
and M,, correspond to measurement outcomes of a set of orthogonal projectors on a larger space. If we
have an algorithm A that satisfies 0, we can supply enough auxiliary qubits of workspace to implement
the isometry I' from A’s accessible space to a larger space (extended to be a unitary whose domain
includes the auxiliary qubits along with A’s accessible space) as a non-query step. In particular, if the
workspace and query register contain d = 2™ qubits, and the function f has range {0,1}*, so [= 2,
then s < Id = 2™F is the dimension of the space required for the projectors P, and vectors (row
space) of ®, so we need no more than £ auxiliary bits of workspace to realize the final measurement by
standard-basis projectors instead of POVMs.

We have proven:

Theorem 1 For every quantum query algorithm that computes a function f and satisfies the output
condition (7) of the first section with result vectors {¥,} there is an algorithm of the same length,
whose system of result vectors {®,} satisfies O. Also, V*V = &*®. Similarly, for any quantum query
algorithm whose system of result vectors satisfies O, we can find one of the same length, using no more
than k qubits more accessible space, satisfying (7) with orthogonal projectors measured on the output.

In the section after next, we wil Iproceed to find conditions on a matrix M that, along with M
a.)-c.) and Condition O, imply the existence of a d-query quantum algorithm or f with e-bounded
error. The relationship between this algorithm and M will be the obvious one: M will be the matrix
of inner products of output vectors of the algorithm. And we will be able to bound the amount of
workspace needed by this algorithm. However, in the next section, we digress to consider a different
output condition on the inner-product matrix, which has been much used in deriving lower bounds on
quantum query complexity.

5 Ambainis’ output condition

If the computation producing M computes f with bounded error (satisfies (7)), then M necessarily
satisfies the following condition connecting it with f:

Condition A: For all z,y € {0,1}" with f(z) # f(y) we have

|Mz,y]| <21/€(1 —€) (Ambainis [7]) (11)

This necessary condition has been useful in obtaining lower bounds on quantum query complexity.
Here we show that (considered with properties a.)-c.)) condition A is not sufficient to ensure the
existence of orthogonal projectors P, such that (7) is satisfied: Condition O on the output matrix is
strictly stronger than Condition A.

Theorem 2 There is a function f :{0,1}" — {0,1} and a matriz M that satisfy a.)-c.) and A but
do not satisfy O.

We leave the proof of this theorem to the appendix.

Remark 1 Since A and O are different output conditions, we may define a new notion of quantum
decision complexity based on a.)-c.) and A. This we call DQA((f). Clearly,

DQA(f) < DQc(f),

and equality probably does not hold. On the other hand, Ambainis’s bound is also a lower bound on
DQA(f). It would be interesting to exhibit an f that distinguishes between the two complexity measures.
(Theorem 3 does not establish a strict separation between them, because while it does show that there exist
computations satisfying the Ambainis output condition for f but not computing f, one could imagine
that for every such computation there existed another of the same length computing f.)

6 Space efficient computations and a positive matrix representation
of query algorithms

In this section we use the idea of representing algorithms in terms of positive matrices to bound the
number of qubits of workspace required so for a d-query algorithm attempting to compute a function
f- The bound is a function of the number of queries and the number of bits of f’s arguments and
values. The space bound is important not only because we are interested in space resources used by
query algorithms, but because, by describing query algorithms in terms of a bounded number of positive
matrices of bounded size, it allows us, in the next two sections, to formulate the calculation of the query
complexity of a given function as the feasibility of a well-defined semidefinite program.
Specifically, this section proves the following theorem.

Theorem 3 For every r-step quantum query algorithm for f:{0,1}"™ — {0,1}* there exists an array
of real matrices MU0 j =0, ...,r,i = 1,...n, with the following properties:
1. S, M) = E, where E is the all-ones matriz.
2. % ML) = Yico Di MDD, where Dy is the identity matriz and for 1 < i < n Dj; is the diagonal
matriz whose (x,x) entry is (—1)%:.

If in addition the algorithm computes f with e-bounded error, then
3. M) =, M)
satzsﬁes C’ondztwn 0.
4.Conversely, for any sequence of matrices MUY satsfying 1,2, there exists a quantum query algorithm
for f such that MU%) are the inner-product matrices of the components ‘I/()
register, of the states at time j of a computer whose quantum workspace contams at most n qubits and
whose query register contains [logn + 1| qubits. If also 3. holds, the algorithm e-computes f.

having i in the query

Proof:
For every x € {0,1}" define:

5O~ Tplo)) (12

Note that the state |0)|0) in (12) refers to computer starting with the standard initial state |0...0) of
the workspace, and the standard initial state |0) of the query register. Also note that (13) defines the
(sub-normalized) states \IISCJ 2 These are the components of the computer state at time j, having 7 in
the query register.
We define the system of vectors ES?) via
=0y = ¥ - ¥ e (14)
7:=0 OR x(i)=0 t,2(i)=1

These are the computer states, on inputs x, just after the J + 1st query.
Let M) denote the matrix whose elements are (| ‘I/ > Here and in the sequel the elements
of all matrices will be indexed by {(z,y) | =,y € {0,1}”}. Notice that for 1 < j < r the matrix

M) equals the matrix whose elements are (E;(EJ -1 Eéj 71)), since in the non-query step we perform a

unitary transformation of the state space, which leaves the inner product of any two states invariant.
For 0 < j <d, 0 <i <n we define:

) \Il(j)->.

MU%) o be the matrix whose elements are (U ’,

It is obvious that all entries of M(©) are 1, since in the beginning all vectors ‘I/;(,;O) are the same. That

M) = YoM (@4 and MU+ are all positive matrices follows from the orthogonality of the components
of the sum in Equation (13). 2. of the theorem is essentially a restatement of Equation (14). If complex
matrices M satisfy 1 — 3 of the theorem, so do the real matrices (M + M7*/2). With Theorem 1, this
implies that for every quantum query algorithm (and for every quantum query algorithm computing f)
there is a sequence of matrices of the form described in the theorem.

We now prove the converse, namely that for any set of matrices described by the theorem, we can
find vectors \If&?), \Il:(]:j 2, Eéj) and unitary transformations Uy, ...,Uy, that produce these matrices via
(12), (13) and (14). "We prove this by induction on j. In the beginning, for every input, the state
is set to |000), and the matrix of scalar products is clearly all 1’s. Also, by Equation (14) the query
step, as defined by the sign change operation, automatically satisfies the required transformation of
the decomposition (item 2 of the theorem), and the only claim that remains to be proven is that no
)

matter what decomposition M) = YoM (G40) we give, there are always vectors W ;.

transformation U; such that

and a unitary

1. M(j’i)[x,y] _ (q,(j)|q,(j)>;

x0T a,
2. \Ilggj) = UEggj_l) for every z.

Here we keep Definitions (13) and (14), where we interpret the leftmost and rightmost sides of Equation

(13) as the definition for ‘I/;(,;J). The first item of the claim follows from the positivity of the matrices
MG and the fact that the dimension of the workspace is large enough (2™) that any 2" by 2™ positive
matrix can be represented as the Gram matrix of some system of vectors in it. By Proposition 2, we
can represent these vectors indexed by = € {0,1}",i € {0,...n} as the projections, from a [logn + 1]2"-
dimensional into a 2™-dimensional space, of the i-th component of some vectors indexed only by z.
These i-th components are obtained by projecting with an orthogonal set of projectors P;, i € {1,...,n}.
Each P; has rank no greater than 2”. The total space may thus be realized as the space of an n-qubit
workspace register and a [logn + 1]-qubit query register. It immediately follows that the Gram matrix
of the {\115,?)} system is 3% o M) = M) je. the same as that of the {E&?””} system. The latter
has Gram matrix M), because, as we noted, the query step changes the Gram matrix according to
our rules. Then we use the fact that if in a Hilbert space two systems of vectors have the same pairwise
scalar products, there is a unitary transformation of the space that takes one system into the other. The
role of this unitary is to ensure that the new positive matrices M () and MU are realized, as required
in a a quantum algorithm, as inner products of vectors in the workspace register |¥(J)zi) that are
projections of the (acessible) computer statevector onto the subspaces S; of all vectors with a definite
value 7 in the query register. In other words, the projectors P; corresponding to the Naimark lifting of
the new decomposition are transformed from arbitrary projectors (with respect to the vectors {E&? 71)})
to projectors onto subspaces defined by definite values of the query index. This is the U; required as
part of the algorithm whose existence is part 4. of the thoerem. |

7 Computing the quantum decision tree complexity

The conditions 1.-3. and O on the entries of the matrices M%) are all linear, the only non-linear
conditions being that these matrices are positive. Therefore, these conditions, which are equivalent

to the existence of an r-query quantum algorithm that e-computes f, are feasibility conditions for a
semidefinite program in the variables M), The matrices have dimension 2" by 2", which gives a 2°(")
theoretical running time for computing the e-bounded quantum decision tree complexity by semidefinite
programming.

To be more explicit, there is a semidefinite program II, whose feasibility is equivalent the existence
of a g-query algorithm that e-computes f. We may compute the D.(f) by checking the feasibility of II,
for 1 < g < n. Weak feasibility of such a program may be checked in time polynomial in the number
of entries of the matrices involved. Each matrix has (27)? entries, ignoring inconsequential duplications
due to symmetry), for a total of 22" [logn + 1] = 29" so the time to check all n of these programs is
also no more than 20", Weak feasibility means that, for our choice of fixed §, our algorithm returns 0
if the program is farther than ¢ from a feasible program, and 1 if the program is farther than ¢ from an
infeasible one; it may return either answer if the program is within ¢ of the feasible/infeasible boundary.

I think we should do a very careful analysis here. The question should be, whether we can genuinely
compute the DQ.(f) for any fixed €, or rather, whether we can bound it tightly enough so that we can
exhibit an algorithm that will get within a (hopefully, known!) linear factor of it asymptotically (we
need to formulate this precisely). The latter is more or less what we are interested in for applications
to determining asymptotic bounds on the e-query complexity of classes of functions, for we are mainly
interested in the asymptotic complexity up to a linear factor, which is e-independent; the e-dependent
multiplicative constant is usually not of interest, and I suspect our method will not give it efficiently.

For zero-error query complexity Dy, the complexity can still be effectively computed but the efficiency
of the computation is less clear, because only in special cases are polynomial algorithms known for exact
feasibility of semidefinite programs.

8 The Dual Problem

Let M;jri, dijg (1 <i,j5 < N;1 <k <t;1<1<s) be fixed positive real numbers with the property
that M; ;1 = M;; 1 and d; j; = d;;; for evey setting of [. Try to find positive symmetric N x N real
matrices X1, Xo,...,X; such that for every i <i,7 < N, 1< <s:

t
> Xpli, j1M; ey relign dija, (15)
k=1

where rel;jj1 € {=, >}, and rel;j; = rel; 1, for evey setting of k& and /.

Lemma 1 The the above system is infeasible if and only if there is a system of N X N real symmetric
matrices Y, ...,Ys such that

1. For 1 <k <t the N x N matrices (37— Yi[i, j1M; j 1), . are all positive;

Y]
2. Whenever relj; is >, we have Yi[i,i] < 0.
8. Lijadiga¥ili 5] <0

Proof: We use the following form of the duality principle: Let C C R*¥ and D C R™ be closed
convex cones, with dual cones C* and D*. Let M be a real valued k x m matrix and let ¢ € RF and
d € R™. Then by a variant of [7]:

{z|zelCd—MzeD}=0 +— {y|yM €C*,y e D*,yd <0} # 0 (16)

In our case the primal variables are {X[i,j] | 1 <k <t¢; 1 <i<j < N}, and the dual variables are
{W[i,j] |1 <1<s 1<i<j< N} ConeC is the set of all evaluations of the primal variables, that
correspond to positive X1, Xo,..., X;. Cone D is the set of those evaluations of the dual variables for

which Yj[i, j] = 0 if rel;j; is the equality, and ¥;[i, 7] < 0 if rel;;; is >. To the proof of the lemma one
needs to observe that C* = C, and that D* is the set of those evaluations of the dual variables for which
Yi[i,j] <0 if reljj; is >, and the other variables are unrestricted. By dualizing the original conditions
and applying the above remarks we get the lemma. We omit any further detais.

We use this lemma to write down the dual of the semidefinite programming description (criterions
1-3 in Theorem , and output condition O, or alternatively A) of the quantum query complexity. In
this section we assume that f (the function the decision tree computes) is a function from {0,1}" to &k
different output values (k is an arbitrary fixed number). The inverse images of every output value of f
we call a group or an input group. (Thus if f is Boolean we have exactly two groups.)

First we get rid of simply indexed M (g by observing that it is sufficient to write down that:

MR oLt b = M0 4 Dy M Dy 4.+ D, MY D, (17)
for 0 < i < d— 1. Output condition O is written as:
MY+ DM Dy + ...+ D,M*"D, =1 + S5 + ... + I, (18)

where A;%3; > (1—e€)A;. Here * means the element-wise multiplication of two identical-shaped matrices,
the result of which is a matrix with the same shape. In order to express the coefficient matrices of our
equations we introduce:

1. F is the all 1 matrix of size 2" by 2";
2. E% = D;ED;.

3. A; are (variable) partial diagonal matrices, with non-zeros only in the diagonal entries correspond-
ing to the i*" input group.

4. A; are partial diagonal matrices, with ones in the diagonal entries corresponding to the i*" input
group.

We have that A x E = A for every matrix A. Also, A x E¥ = D;AD;. A x /A; is a partial diagonal
matrix with non-zero entries in the diagonal entries corresponding to the i*" input group and equal to
the corresponding elements of A. The next table summarizes these equations, and indicates the names
of the primal and the dual variables. Above the horisontal separating line the left hand side equals to
the right hand side, and below it the left hand side is greater or equal than the right hand side.

| MO oy | oy |yt -t gy L0 8, | RHS
By E ... E E
By -E ... —E® E ... E 0
B, -E ... —E* 0
Byt E .. E 0
By -E ... -E* |E ... E 0
A1 Al (l—G)Al
Ak Ak (l—G)Ak

The primal variable matrices M/ (0 <i < d;0 < j < n) and 3; are constrained to be non-negative.

10

Lemma 2 The primal system is infeasible if and only if there are By, ...,Bg and Ay, ..., A such that
the positivity conditions

By — By, By — D1B1 Dy, ..., Bg—D,B1D, e S;

B1 — B, Bi1 — D1Bs Dy, ..., B1—D,BsD, e S;
. (19)

Bqg1— B4, Bg1—D1ByD1, ..., Bg1—Di1BsD1 € S;
Bg+ A1,...,Bg+ A € S; (20)

as well as the input-output condition
I0.: > Bolz,y]+ (1—€)> tr(A;) <O. (21)
x,Yy 12

It is also required that each A; has negative entries.

The proof of the lemma easily comes from Lemma 1. Next we are going to work on rephrasing

the constrains of Lemma 2. We first start with some minor changes. We denote: Yy = —By, Y1 =
—Bg_1,...,Yy = —By. Then by working on the output conditions the following dual formulations can
be obtained:
Dual System (zero error): The primal system is infeasible if and only if there are Yp,...,Y; € S
such that:

D;YoD; — Y, €P for every 0 < i < n;

D;Y1D; — Y, €P for every 0 <1 < m; (22)

D;Y; 1D;—Y;€P for every 0 < i < n;
and the input-output conditions:

I0g/a: The diagonal blocks of Y that correspond to each input group are identically zero;

I0(/b: The sum of the entries of Yy is positive.

Example: Consider f = 21 A z2. We how that the (zero-error) quantum decision tree complexity of
this function is greater than 1 (i.e. it is 2) by giving a Y and Y; that satisfies the conditions in (22) as
well as I0g/a and 10¢/b:

0 00 -2 6 0 0 5

0 00 2 0 -6 0 5
Yo=19 00 2 |' 1N 0 0 -6 5

2.2 2 0 5 5 5 —115

Here the rows and columns of the matrices correspond to inputs 00, 01, 10, 11 in this order.

Dual System (e-error with output condition A): The primal system is infeasible if there are
Yo, ..., Yy € S that satisfy System (22) and the conditions

I0 4/a: The diagonal blocks of Yy that correspond to each input group are identically zero;

I104/b: 3, Yalz,y] — 2¢/e(1 =€) 32, , Yolz,y] > 0

Remark: Notice that all we claim is that the feasibility of the latter system is sufficient for the infeasibility
of the primal system. This is because the new system comes from the dualization of a system that is
slightly stronger than the original primal, namely we changed the output condition for that of Ambainis.
We did so to simplify IO, which is the true condition in the e-error case. We have seen in Section 3
that, at least isolated from the entire algorithm, the Ambainis output condition is strictly weaker than
that of the original model. One can easily verify using Lemma 1 that IO s indeed corresponds to output
condition A.

11

8.1 Ambainis’s bound revisited

In order to see how restrictive the lower bound method of Ambainis, we reformulate it into our dual
setup, where it gains an elegant form. We will see that the restriction we are looking for is that there
is a fixed matrix A and reals A1,...\; (the later turns out to be an arithmetic sequence) such that
Y; = A+ M\ for every 0 < i < d. In the sequel we denote the smallest eigenvalue of a matrix M by
sev(M).

Theorem 4 Let f be a function on {0,1}" A be an 2™ by 2" matriz whose diagonal blocks corresponding
to the input groups of f are all zeros. Define

o = (1 —2y/€(l — e)) ZA[:L’,y];
.y
v = max—sev(D;AD; — A).

Then QD(f) > 5.

Proof: We show that Y; = A + v satisfy (22) and IO4 as long as d < 5. First, IO obviously
holds, since the sum of the entries of Yy = A+ dvl is 32, Apy —dv2" >3, Ay, — 0, and so

ZYd[x,y] —2¢/€(1 —¢) ZYo[x,y] > ZA[x,y] — 0+ 2¢/e(l —¢) ZA[x,y] =0.
.y .y .y .y

We also need to show (22). Since every positivity constraint is of the form
Dl(A—]l/I)Dl—A—F(]—Fl)Z/IES,

what we need to show is that the matrix D;AD; — A + vI is positive for 1 < i < n, which follows from
the fact that the smallest eigenvalue of the matrix is greater than or equal to 0.l

Example: In the example below we use Theorem 4 for a promise problem related to Grover’s
algorithm. We show that if we are promised that input z has a single 1 in it, i.e. if it is of the form
0..010..0, then we need (y/n) quantum queries to determine the position of the 1 in the e-error setup.
After obvious adjustments in Theorem 4 to promise problems, we realize that we can use the n by n
matrix A, which is the all 1 matrix minus the unit matrix. The entry-sum of this matrix is n? —n. The
matrix D;AD; — A is of the form

0 -2 0
—2

2 ...—=2 0 -2... =2 |,
-2 0

0 -2

and its smallest eigenvalue is —6(y/n). This gives us an (%) = Q(y/n) lower bound.

9 Trees and Branching

The notion of classical (deterministic) decision tree is inseparable from the notion of branching. Is there
an analogue of branching for the quantum case? The best answer may be that M) = YoM (5:)
of Theorem 3 can be viewed as an expression for quantum branching, and it is unlikely that we get a
substantially better notion.

12

In order to understand how classical and quantum decision trees relate to each other, we describe
classical (deterministic) decision trees in terms of the matrices in Theorem 3. Without loss of generality
we can assume that a decision tree of depth d is a complete binary tree of depth d. With every node
of the tree we associate the set of inputs that arrive at that node. For a fixed level j these subsets are
disjoint, and their union is the entire input set, {0,1}". We can define M) such that

1. The (x,y) entry of M) is 1 if input & and input input y arrive at the same node on level j.
2. The (z,y) entry of MU) is 0 if input # and input input y arrive at different nodes on level j.

Clearly, M) has a diagonal block structure, where each block is the all 1 matrix corresponding to some
node at level j. The decomposition M) = % MU+ is this:
1. MU0 = %M(J')’

2. MU ig % times the sum of those blocks that are associated with those nodes, where we branch
on variable x;.

One can easily see, that M) and M) gatisfy the conditions of Theorem 3. Conversely,

Lemma 3 If a quantum algorithm satisfying the conditions of Theorem 3 also satisfies that each M)
has a diagonal block structure, where the blocks are all one matrices, and the blocks of MUY are
contained in the blocks of M9), then the quantum decision tree is really classical.

References

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” Proc. 37th
ann. symp. on the foundations of computer science, pp. 56—65, 1994.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer,” SIAM J. Comp., pp. 1484-1509, 1997.

[3] Lov Grover, “A fast quantum mechanical algorithm for database search,” Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing (STOC), pp. 212-219, May 1998.

[4] L. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Physical Review
Letters, pp. 325—328, July 1997.

[5] C. H. Bennett, G. Brassard, E. Bernstein, and U. Vazirani, “Strengths and weaknesses of quantum
computing,” SIAM Journal on Computing, vol. 26, pp. 1510-1523, 1997.

[6] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf, “Quantum
lower bounds by polynomials,” FOCS ’98, pp. 352-361, 1998.

[7] A. Ambainis, “Quantum lower bounds by quantum arguments,” Proceedings of the 32nd Annual
ACM Symposium on the Theory of Computing (STOC), pp. 636-643, 2000.

13

10 APPENDIX

Proof of Theorem 2: We will set e = 1/3. Let m = n®, where a > 1 is a sufficiently large constant to
be determined later. Select 2" points randomly on the surface of the unit sphere of the m dimensional
Hilbert space, and identify the system of U,s with those vectors. a.)—c.) are of course satisfied. It is
perhaps a surprising aspect of the multi-dimensional geometry that if « is a sufficiently large constant,
then with high probability all angles in between the above unit vectors are very close to 90 degree. Fix
such a choice of a and vectors. When the angles are close enough to 90 degrees, the matrix M = U*¥
satisfies Condition A for any f:{0,1}" — {0, 1}.

We will show by a counting argument that there is an f for which O does not hold. The argument
hinges on fact that for the decomposition M = My + M; we can assume that

My = WU*ASAUT (23)
My, = WU*AIAUV. (24)

Here U, Ay and A; are m dimensional square matrices, U is unitary, Ay and A; are real diagonal,
and AjAg + AJAy = I. The positive operators with matrices U*AgAoU and U*AJA1U form what is
called in quantum theory a generalized measurement, that is, a set of positive operators that sum to the
identity.

Remark 2 We defined our decompositions of M into positive operators by

My = U*Z*PiPyZ¥ (25)
My, = U*Z*P;PZ0, (26)

where Z is a mazximal partial isometry into some (large) space, and Py and Py are orthogonal projectors
of that space. This decomposition would not be sufficient for our purposes, because there is no a priori
limit on the dimension of the image space of Z. But by introducing “generalized” or “positive operator
valued” measurements instead of the projectors of (2), we are able to work in the m-dimensional space
where all V,s lie. The Naimark extension theorem assures us that the decomposition (23-24) using a
generalized measurement may also be expressed in the form (25-26). In (23-24) we also used the fact
that, since the measurement has only two outcomes, the corresponding two matrices are diagonalizable
with the same U.

Let N > 12m5 be an integer, called the precision parameter. We will approximate the entries of
U and Ay with Gauss-rationals, whose denominator is N. We call the matrices with the approximated
entries U™ and Ay’. Recall that for each function f, if the computation with result-vectors ¥, computes
the function, with error bounded by €, then there exists a decomposition M = My + M; that satisfies
Condition O. Given M, any such decomposition is determined by U and Ag, If f and g are different
Boolean functions, and a computation with result vectors ¥, computes both functions, then Condition
O requires that two decompositions exist, M = Mg + MfC and M = M§ + M{, with properties specified
by O. Our argument proceeds by showing that:

1. If f and g are different Boolean functions of n Boolean variables, then the best rational approxi-
mation (U~(f), Ay (f)) to the U, Ay pair giving the decomposition for f, is different from the pair
(U~ (g), A5 (9)) best approximating the decomposition for g.

2. The number of distinct (U™, A§’) pairs are less than 22", the number of Boolean functions with n
input bits.

To see 1. notice that for two different Boolean functions, f and g, there is an = € {0,1}" such that
f(z) # g(z). Say, f(z) =0 and g(x) = 1. For the (U, Ag) pair of f we have ||[Ag fUT,[% > 1 —¢,

14

while for the same pair of g we have ||Ag U, V..||? < e. If, nevertheless, the corresponding approximating
pairs were the same, at least one of the formulae in which we replace U with U™~ and Ay with Ay would
deviate from the original formula by at least 1/6. We show, however, that we have chosen the precision
parameter N high enough that the approximation error of the above formulae is always less than 1/6.
Since all entries of the elements of W,, U, Ay are less than 1, if we compute the difference

AU 4|1 = [|AG U™ Ty |2

the sum we obtain will have the property that each term is at most 2/N (we are dealing with complex
numbers, and only 2/N approximation is guaranteed). The number of summands is at most mS%, and
our claim follows.

To verify 2., notice that since the elements of U and Ay have modulus at most one, U~ and Ay
can be described with 2m? + m integers in the range [~ N, N| (two integers for each of the m? complex
entries of U™, and one for each of the m real diagonal elements of Ay). Thus the number of different
(U, Ap) pairs is at most

(2N)2+m « 92",

15

	Quantum Decision Trees and Semidefinite Programming
	Abstract
	Introduction and summary of results
	Mathematical preliminaries and notation
	Quantum query complexity: definitions
	The geometry of output vectors
	Ambainis' output condition
	Space efficient computations and a positive matrix representation of query algorithms
	Computing the quantum decision tree complexity
	The Dual Problem
	Trees and Branching
	References
	Appendix

