LA-UR-01-6406

Approved for public release;
distribution is unlimited.

Improved Results for Stackelberg Scheduling

Title: Strategies

Author(s): | V.S. ANIL KUMAR and MADHAV V. MARATHE

Submitted to:

http://lib-www.lanl.gov/cgi-bin/getfile?00818905.pdf

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the

viewpoint of a publication or guarantee its technical correctness.
FORM 836 (10/96)

Improved Results for Stackelberg Scheduling Strategies

V.S. ANIL KUMAR? MADHAV V. MARATHE?

November 12, 2001

Abstract

We continue the study initiated in [Ro01] on Stackelberg Scheduling Strategies. We are given a set of
n independent parallel machines or equivalently a set of n parallel edges on which certain flow has to be
sent. Each edge e is endowed with a latency function I..(-). The setting is that of a non-cooperative game:
players choose edges so as minimize their individual latencies. Additionally, there is a single player who
control as fraction « of the total flow. The goal is to find a strategy for the leader (i.e. an assignment of
flow to indivual links) such that the selfish users react so as to minimize the total latency of the system.
Building on the recent results in [Ro01, RT00], we show the following:

1. We devise a fully polynomial approximate scheme for the problem of finding the cheapest Stackel-
berg Strategy: given a performance requirement (1 + €), our algorithm runs in time polynomial in
n and e and produces a Stackelberg strategy s, whose associated cost is within a 1 + € factor of the
optimum stackelberg strategy s*.

The result is extended to obtain a polynomial-approximation scheme when instances are restricted
to layered directed graphs in which each layer has a bounded number of vertices.

2. We then consider a two round Stackelberg strategy (denoted 2SS). In this strategy, the game consists
of three rounds: a move by the leader followed by the moves of all the followers folowed again by a
move by the leader who possibly reassigns some of the flows. We show that 2SS always dominates
the one round scheme, and for some classes of latency functions, is guaranteed to be closer to the
global social optimum. We also consider the variant where the leader plays after the selfish users
have routed themselves, and observe that this dominates the one-round scheme.

Extensions of the results to the special case when all the latency functions are linear are also presented.
Our results extend the earlier results and answer an open question posed by Roughgarden [Ro01].

'Basic and Applied Simulation Science (D-2) Los Alamos National Laboratory, P. O. Box 1663, MS M997, Los
Alamos NM 87545. The work is supported by the Department of Energy under Contract W-7405-ENG-36. Email:
anil,marathe@lanl.gov.

1 Introduction and Motivation

The dynamic behavior of large scale networks can often be modelled by non-cooperative games, with agents
acting in a selfish manner. The fixed points of such dynamical systems often correspond to Nash equilibrium
of the corresponding non-cooperative game. Although Nash equilibria are adequate from the standpoint of
user optimium, these operating points are usually inefficient as measured by the way system resources are
used (a.k.a. system/social optimum) [Ro01, KLLO97a, KLO97b]. The inefficient use of a system can be
overcome by a number of possible strategies that aim to bring the operating point of the system closer to a
social or a system optimum. Examples of this include:

1. Pricing: Use pricing mechanisms that lead to strategies by players with equilibria that are more effi-
cient [CS+93, FPS00, SMGO1]

2. Algorithmic Mechanisms: Network wide rules on how commodities are stored, routed and scheduled
[NR99, CS00].

3. Network Design: Designing networks in which Nash equilibria are close to global optimum [KLO97b,
RoO1a].

The above approaches demand either the addition of a new component to the networking structure, such
as price or apriori design decisions regaring the network topology or policies used. Here we consider an
alternative approach motivated by the earlier work of [KLO97a, Ro01]. In this setting, we have two types
of players: set of selfish players who wish to minimize the latency they experience and a manager whose
aim is to optimize the overall system and is aware of the selfish players use (called manager/leader). This
property allows the manager (leader) to predict the response of the selfish users and thus can help guide the
final equilibrium point that is more closer to the system optimum (in terms of the global objective function
under consideration). This is an instance of a class of games wherein there is an exogeneously defined order
of players such that the first player (called the leader) declares his strategy first and enforces it on the other
player (the follower). Such games are referred to as Leader Follower games or alternatively as Stackelberg
games.

Our original motivation to study such games arose in the context of developing large scale simulations
of socio-technical systems and Strategic force planning problems. Such simulations include: TRANSIMS:
a large transportation simulation project and large scale simulations of deregulated power markets. See
[Web, AP+01] for more details on these projects. Game theoretic analysis in the context of transportation
systems has been carried out extensively [DS69, BMW56, Wa52]. It is likely that understanding the game
semantics of these problems would lead to faster and more scalable simulations.

Here we consider a particular Stackelberg game. This game has been studied extensively in the past
[KP99, KLO97a, KLO97b, MSO01, Ro01]. We have a single source destination pair joined by m parallel
links from the source to the sink. Latency functions are specified for the links, and they are required to
be non-decreasing. This can also be viewed as a machine scheduling problem. Each agent is assumed to
constitute an infinitesimal fraction of the flow, and the total flow to be set up is denoted by r. In addition,
there is one distinguished player called the leader (or manager). The leader controls « fraction of the flow r.
The protocol of the game is as follows: First, the leader chooses an assignment s = (g, ... , S;,,) of flows on
the links, taking into account that remaining players are going to play selfishly. Next, all the selfish players
route their flows so that the system reaches a Nash equilibrium, ¢. The assignment chosen by the leader is

called a stackelberg strategy and it satisfies) ; s; = ar. The goal is to minimize the cost of the flow s + ¢.
In this paper, that the time it takes to reach the unique Nash equilibrium is not of interest. But, we will be
interested in the computational cost of finding a Stackelberg strategy. We will say more about this later.

As argued in [KP99, KLO97a, KLO97b, MS01, Ro01], despite its simplicity, the above setting models a
number of practical situations that arise in the design of communication networks and machine scheduling.
For example, as noted in [KLO97a], in broadband networks, bandwidth is separated among different virtual
paths resulting effectively, in a system of parallel and non-interferring links. Moreover, recent IP specifica-
tions provides the option of choosing a particular paths to route their packets [CR+93, DH95]. Similarly, as
noted in [BPS99], many ISPs have chosen to increase their network capacity by placing a set of parallel fiber
optic links between consecutive switching centers. In this setting, the ISPs as owners of the infrastructure
can reserve certain amount of bandwidth for itself and allow the remainder of the bandwidth to be used by
the customers. See [KP99, KLO97a, MS01, Ro01] for other examples of such a setting.

2 Our Contributions and Related Work

We continue the study initiated in [Ro01] on finding polynomial time computable Stackelberg strategies that
improve upon the cost of Nash equilibria obtained without the presence of any leader. In our setting, we have
a total of r units of flow to route and the leader controls « - r units of flow. The main results of this paper
include the following:

1. Given a set of n parallel links with latency functions represented as polynomials with non-negative
coefficients, we devise a family of algorithms that for a given ¢ > 0, output a Stackelberg Strategy
1SS, with the following property: The cost of the solution induced by 1SS§ is no more than (1 + ¢)
times the cost of the solution induced by an Optimal Stackelberg strategy. The algorithms run in
time that is polynomial in the size of the network and the € and thus constitute a fully polynomial
time approximation scheme for computing Optimal Stackelberg Strategies. Note that as shown in
[Ro01], the problem of computing the optimal Stackelberg strategies is Weakly NP-hard even for
instances consisting of n paralle links between a given source destination pair, even when restricted
to linear latency functions on each edge. Roughgarden [Ro01] as such is interested in the quality of
Stackelberg induced solution as compared to a system optimal strategy. Nevertheless, his results imply

a é approximation algorithm for the case when no restrictiorf is placed on the latency functions and a

4
3+«
the question of designing approximation algorithm with a better performance guarantee

approximation algorithm for the case of linear latency functions. The author in [Ro01] left open

Can we do better with more sophisticated algorithms? Indeed the results do not rule out the
possibility of a fully polynomial-time approximation scheme for the problem.

Thus our results answer the above question affirmatively.

2. We then cosider slightly more complicated topologies. Extending the first set of results, we devise
polynomial time approximation schemes for computing computing Optimal Stackelberg Strategies,
when instances are restricted to be layered directed graph of bounded width (i.e. bounded number of
nodes per layer). The result infact hold when we have a constant number of multiple source destination

*Throughout this paper and the earlier work of [Ro01, RT00], it is assumed that all latency functions are non-negative, continuous
and non-decreasing.

pairs and the Stackelberg leader has control over a fraction « of the flow requirement for each pair.
Moreover, the only requirement on latency functions is that they are polynomials with positive coeffi-
cients. The result also holds when we are allowed polynomially many parallel edges between any pair
of nodes. Thus the result can be viewed as a strict generalization of the first result. However in contrast
to the first result, the algorithm is only a PTAS as opposed to FPAS.

3. We then consider two variants of the basic Stackelberg Strategy. the first variant can be viewed as
a repeated Stackelberg strategy. A natural, well known, generalization of the stackelberg strategy is
to allow the manager to change his assignment. Thus the game has three basic rounds: In round 1,
the leader assigns certain flow s to each of the links. In round 2, the selfish players then assign the
remaining (1 — «)r flow (denoted by ¢) such that the flow (s + t) is a Nash equilibrium. Finally, in
round 3, the leader is allowed to reroute some of the ar flow it controls. Call this assignment §. Thus
the resulting assignment is & +t. We call this the 2-round Stackelberg Strategy. It is straightforward to
define a k-round Stackelberg in a similar fashion. The first observation is that more than 2 rounds do
not help any more. Second, we show that 2 round Stackelberg Strategy strictly dominates the 1 round
Stackelberg Strategy, i.e. the cost of assignment is no more than the cost of 1 round Stackelberg. For
some special classes of latency functions, we obtain better facors. An interesting aspect of the problem
is that in the instances where one and two round stackelberg strategies guaranty only aé, even the
Nash equilibrium is within é of the optimum.

4. Finally, we consider the case when the remaining agents first choose their assignment (denoted ¢) that
yields a Nash equilibrium for the (1 — «)r units of flow and then the manager chooses s. We show that
this actually is better than one round Stackelberg 155, though in general the asymptotic factor is still
é. The result points out the relative importance of two different factors. On one hand, when the leader
plays first, it imposes its strategy over the followers.

On the other hand, the leader can wait to see what the selfish users play and then try and route the
remaining flow so as to minimize the total latency.

3 Basic Model and Preliminaries

For sake of consistency, to the extent possible, we use the notation used in [Ro0O1]. In general, we have a
directed network G(V, E), with latency functions 4() specified on each edge e. A vector 7 specifies the flow
requirement between different pairs of nodes in G. For a function f, we use f(x) to denote the derivative
of f at z. Here we will be concerned with latency functions 4() that are continuous, differentiable and
non-decreasing’ .

Byx = OPT(G,r) andy = Nash(G,), we denote the optimum flow assignment and the Nash flow as-
signment, respectively, when the flow requirements are specified by r. Let as defined above x = (g,... ,z,)
be the (system or social) optimal assignment (i.e., a feasible assignment that minimizes) _, z;¢;(z;)). Order
the links so that ¢;(z;) < ¢;(z;),Vi < j. Gievn a flow assignment u to the links the cost associated with u is
measured as C'(u) =), u;¢;(u;). Sometimes, we will need to consider a subset of links rather than all the
links. To do this, let X C FE denote a subset of links. Then given an assignment u of flows to E¥ we use

e uy to denote the projection of uon X,

3The conditions assumed are identical to those in [RT00].

o C(uy) =Y ;cx uili(u;) to denote the cost of the assignment restricted to X and

e u(X) =), x u; to denote the sum of flows on links restricted to X

In general, we will use u and ug interchangeably.

For the most part, this paper deals with networks consisting of two nodes,y and v;, with m parallel links,
1,...,m,between them. Thus the graph G(V, M) consists of V' = {w, v;} and edge set M = {ey,... ,en}
with each e; = (vg, v;). In this setting, 7 units of flow have to be sent from 1 to v;. Throughout this paper
we will use z to denote a vector of flow values assigned to edges and use 7 to denote the flow on edge .

Definition 1 A Stackelberg Strategy is an assignment vector s such that) ; s; = ar and the Nash equilib-
rium t* induced by s is a vector satisfying the following properties.

1LY ti=(1—a)r

2. Ui(si +ti) < Lj(sj+t;) forall i, j such that t; > 0.

From the definition above, given the Stackelberg assignment s, the induced Nash assignment t is well
defined, and the cost induced by s is defined as C(s+t) or C(s) and is given by C'(s) =) _.(s;+1t;)4i(si+1i).

An instance of the Stackelberg Routing problem is given by (G, a,). Here G is the graph consisting of
parallel links, « is the fraction of the flow can be chosen by the leader and r is the total flow to be routed.
Thus (1 — «)r units of flow are routed by selfish players and each controls an insignificantly small quantity
of the this flow. The game is played in two steps:

1. In Step 1, the Stackelberg player (leader) chooses a flow vector s such that) _, s; = ar.

2. In Step 2, the selfish users route the remainder of flow i.e. choose an assignment t of (1 — «)r units of
flow to the links to reach a Nash equilibrium induced by s.

The cost of the game is C'(s) =, (s; + t;)¢;(s; +t;). Let s* be the optimal Stackelberg strategy, and ¢ the
(unique) Nash equilibrium induced by s*. Thus

s* = argmin{C(s) : sis a Stackelberg Strategy }

As shown [Ro01], finding an s with the minimum associated cost is NP-complete. Thus it is natural
to look for a strategy s having cost as close as possible to the optimal strategy. We define the notion of an
approximation algorithm for such problems.

Definition 2 An p-approximation algorithm for the Stackelberg Routing problem is a polynomial time algo-
rithm that outputs a Stackelberg strategy s such that its induced cost C(s) is no more than a multiplicative fac-
tor p more than the cost of the assignment induced by the optimal Stackelberg Strategy §, i.e. C(s) < pC(s*).
A polynomial time approximation scheme for the Stackelberg Routing problem is a family of algorithms that
on a given performance requirement €, run in time polynomial in € and problem specification and output an
assignment vector s, such that C(s¢) < (1 + €)C(s*).

Finally, we recall the results in [Ro01, RT00] that will be used in the rest of the paper.

*Technically ¢ should be indexed by s; but in the current setting this will be clear from context and will thus be omitted.

Lemma 1 ([Ro0l, RT00]) Suppose M is a set of machines (parallel links) with continuous, nondecreasing
latency functions. Then:

1. For any rate r > 0 of job traffic, there exists an assignment of jobs to M at Nash equilibrium

2. Ifx and x’ are assignments at Nash equilibrium for (M, r), then Vi € M, }(z;) = l;(z}).

)

Lemma 2 ([Ro01, RT0O0]) Suppose M is a set of machines (parallel links) with differentiable latency
function l. Furthermore assume that x;l;(x;) is a convex function for each machine i. Then an assignment x
to the machines M is optimal iff Vi,j € M, if z; > 0, then

Moreover, the optimal assignment can be computed in polynomial time.

In other words, all machines with positive flow assignment have the same marginal cost function.

4 A Fully Polynomial Approximate Scheme for Stackelberg Strategies

4.1 Properties of s*

We first isolate certain invariants of the optimal strategy, and show that the knowledge of these invariants re-
duces the problem of finding s* to solving a mulidimensional knapsack instance. To get a (1+¢€)-approximate
solution, it is sufficient to guess these invariants, and this is demonstrated in the next section.

Let M—g = {i : t7 = 0} and M~ = {3 : tf > 0}. The cost induced by s* + ¢* is the sum of the cost of
assignments on M—j and on M~g. Then:

e Since t* is a Nash equilibrium, by Lemma 1, the latency on all ¢ € MK is the same. Let us denote this
latency by L*.

e Second, since s* is an optimal Stackelberg strategy, by lemma 2, the marginal costs of increasing cost
on any ¢ € M—g are the same. We will denote this by D*.

e Finally, since Vi € M—g, t; = 0 it must follow that Vi € M—,, ¢;(s;) > L* (otherwise, the Nash

13
assignment would choose to add some flow on link 7).

The following observation shows that the assignment of ¢ to M~ is not unique.

Observation 1 Let 5 be any assignment such that § = s;,¥i € M—q and 5; < s} +t;,Vi € Mo, while
satisfying » . 8; = Y ,; si. Let t; = s; +t; — 3;,Vi. Then, t is a Nash equilibrium induced by the stackelberg
strategy § and 5 + t has the same cost as s* + t*.

4.2 Reduction to Multidimensional Knapsack

Assume now that we know L* and D*, and S5 = s*(M—p). Then U%, = r — Sj is the total assignment
on M~q by s* + t*. Also assume that we can solve for the roots of the latency functions exactly. All these
assumptions will be relaxed within a 1 4 e factor when we look for an approximate solution in the next
section.

For each link i, the basic difficulty is deciding whether it must belong to M.y or to M~g. Once this
decision is made, the assignment on it is easily fixed: if i € M., solve for v; in ¢;(u;) = L*; if i € M—,
solve for s; in (s;¢;(s;))’ = D*, where the prime denotes the derivative. The assumptions that the latency
functions are polynomial and non decreasing imply that the roots are unique.

*

For each link i, we associate the tuple (s, w)) where 4;(u}) = L* and s is defined as follows: let y be

the solution to (z¢;(z))" = D*. If ¢;(y) > L*, define s} = y, otherwise s} = co. LetU* =)" u}.

Lemma 3 Let X be a subset of links that minimises) ;. s;;(s}), while satisfying » ., s; = Sg and
Yicx uj = U* = UZ,. Consider the stackelberg strategy 4 defined as s; = s;,Vi € X and sj = 0,Vi ¢ X.
Then C(s') = C(s*).

Proof: Consider the assignment # defined as: #; = 0,Vi € X and t; = u},Vi € X. We first show that ¢ is
the Nash assignment induced by ¢. By construction, 4(s;) > L*,Vi € X and ¢;(s} + t}) = L*,Vi € X.
This implies that 4;(s} 4+ ¢;) = L* for all 4 such that #/ > 0. By choice of X, §'(X) = S} < ar and

t'(X) = UZy =1 — S;. Thus, t' satisfies all the constraints of the Nash equilibrium induced by 4.
Recall that C(s') = C(s' +1') = 37, x sili(s)) + D izx tili(t]). Since ¢;(t]) = L*,Vi & X, we have

)

Yigx tili(t;) = ULoL* = C,o(s¥). Since X is a feasible set minimizing), ¢ s7¢;(s7), it follows that
Cx (s") < Cur_y(s*). Together, these two observations imply C(4) = C(s*). R

Note that the stackelberg assignment does not need to assign anything onX. The problem of finding
such an X is a variation of the standard knapsack problem, and can be solved in pseudopolynomial time by
dynamic programming, which is sketched here briefly. The next section will modify it to obtain a polynomial
time approximation.

As mentioned before, each link ¢,4 = 1,... ,m, is associated with a pair (§,u}) and cost ¢; = s}¢;(s}),
and we are given Sj, U;. We need to compute the cheapest subset, X, satisfying §(X) = Sj and v*(X) =
U* — UZ,. We describe the dynamic program for a slightly more general problem here: given bounds
Ay, Az, By, Bs, determine the cheapest subset X satisfying $(X) € [A1, Ao],u*(X) € [By,B2]. Such a
dynamic program can be used for the current case by setting 4 = A; = Sj and By = By = U* — U%, but
will be useful when we consider the approximate version in the next section.

Let S(I, Ay, A, By, Bs) denote a subset of the links {1,... ,/} which minimizes the cost

C(S(l, Ay, Ay, By, By)) = >, G
i€8(1,A1,A,B1,Bs)

while satisfying the two constraints
S*(S(Z,AI,AQ,Bl,BQ)) S [Al,AQ] and u*(S(l,Al,AQ,Bl,BQ)) € [BI,BQ].

The cost is 0 when [= 0 and is defined to be oo if S() is empty, i.e, if no feasible subset exists. The
recurrence equation is now defined as follows:

If

C(S(m — 1,A1 — S:n,AQ — 8 B1 — uﬁn,Bg — U’jn)) +cm < C(S(m — I,Al,AQ,Bl,Bz)),

3
m
then

S(m,Al,Ag,Bl,Bg) == S(m - 1,A1 - STn,AQ - an,Bl - ’U,:n,Bg - ’U,:n) U {’ITL}

else
S(m, Ay, Az, By, By) = S(m — 1, Ay, Ay, By, Ba).

The former is relevant if m is chosen to be in the subset, and the latter if m is not). This immediately
suggests the dynamic program, with a total storage of at most m - . - U;j, which is pseudopolynomial.

4.3 Finding an Approximate Solution

In the previous section, we showed that if we knew the invariants I, D*, S; exactly, we could compute the

optimum stackelberg strategy. We cannot expect to know these quantities exactly, but can guess them within

a factor of 1 + 4§, simply by trying all possible powers of 1 + §. If these quantities are polynomially bounded,
logn

the number of trials is bounded by a polynomial inw. We show now that with this slack, we can still

obtain an approximate solution.

We assume here that all the latency functions are rational functions of polynomials with polynomially
bounded integral coefficients and exponents. This allows us to estimate the assignments on the links, given
the latencies on them (which we guess, as mentioned above) and also ensures that when the assignment on
a link is increased by a small factor, the latency does not blow up. We will have a fixed parameter d, which
depends on ¢, and another parameter, &, is chosen so that 4 ((1 + 2§)z) < (1 + 61)¢;(x) for any 4, z. For
our purposes, § will be chosen to be inverse polynomial.

Following the discussion above, assume that we have guessed L, D, S),Usq so that L € [L* (1 +
02)L*],D € [D*, (1 + 62)D*], So € [S5, (1 + 02)S3] and Usg € [UZg, (1 + 62)UZ,] for a parameter dy to
be specified below. For each link i, s, u; are defined as in the previous section. For each link %, solve for
¢i(xz;) = Land (y;¢;(y;))" = D so that the estimates are at least as large as the exact roots of these equations,
but not exceeding by a factor of 1 + &. By choosing d2 < 0 appropriately, we can ensure that v = x;
satisfies u; € [u}, (1 + &)ul]. If £;(y;) > (1 — 0)L, define s; = y;°, otherwise s; = co. This gives us a tuple
(84, u;) for each link 4.

As before, s; is intended to be the assignment to link 4 if it is in M.y and w; is the assignment to link
1 if it is in M. The extra complication we will face is that even if + € M_g, we may have ¢; > 0 in the
approximate stackelberg solution we find.

The next lemma — a refinement of Lemma 3, shows how the problem of approximating the Stackelberg
strategy can be viewed as an approximation to the knapsack problem.

Lemma 4 Let X C E be a subset satisfying the following conditions.
LY ex si € [(1—0)Sg, (14 6)Sg]
2 Yy i € (1= 8)(r — S5), (1+6)(r — ;)
3. X minimizes the cost) ;. x 5i{;i(s;)-

Consider the following stackelberg strategy ¢ induced by X : if s(X) < ar/(1424), s, = (14+20)s;,Vi € X
and if s(X) > ar/(1 +20), s, = 0y Si- Then, C(s") < (1+¢)C(s%)

The proof of Lemma 4 is based on the following proposition

This ensures that if s is finite and £; (s}) > L*, £;(s;) > (1 — §)L*

Proposition 1 Ler t' be the Nash assignment induced by 4 and v' = s' + t'. Let L' be the common Nash
latency on all edges i such that €, > 0. Then the following hold:

I Vi€ X, s, < (1+20)s;.
2. §'(X) > 55.
3.0 < (1+6)L.

Proof: The proof of Part 1 is Obvious.

Part 2:

If s(X) < ar/(1+20), s'(X) = s(X)(1 +20) > (1 —0)(1 +20)S; > S5. Next, suppose s(X) >
ar/(1 + 2J). By construction, §'(X) = ar. Now recall that Sj is the fraction controlled by the stackelberg
strategy, and is bounded by ar, by definition.

Part 3:

To show this, we construct a Nash assignment v on X such that s'(X) + v(X) > r, and the Nash latency
L, induced by v satisfies L, < (1 + d;)L. Now, suppose L' > L,. This implies that u, > v;,Vi €
X, which leads to a contradiction because 4(X) + u/(X) would then exceed r. This leaves us with the
specification of the assignment v. By Part 2,, §(X) > Si. Define v = Nash(X,u(X)(1 + 2§)). Since

w(X) > (1 —&)(r — S§), we have v(X) > r — 5§, and §'(X) + v(X) > r, the property we required
above. Also, there exists i € X such that v; < (1 + 20)u;, since v(X) = (1 + 26)u(X), and this gives
Ly =4i(v;) = 4;((L +20)u;) < (1+6;)L1

Proof of Lemma 4: As in Proposition 1, let # be the Nash assignment induced by ¢ and v/ = s’ +¢'. Let L'

be the common Nash latency on all edges i such that £ > 0.
We bound the cost of § + t', by considering the cost over sets X and X separately. First, consider set X

Cg(s) = Z uil! = u' (X)L
i€X

Next, consider the cost restricted to set X, ;- x(s; + t;)¢;(s; + t;). We argue in the following steps.
1. We first show that whenever #, > 0, ¢;(s; + t}) is close to £;(s}).

2. Second, using this and the fact that 4 is not much larger than s;, we show that)" s/¢;(s + ¢}) is not
much larger than), s;¢;(s;) which in turn is close to Cys_,(s*) because of the choice of set X.

3. This leaves us with the part_, #£;(s; + t;) = #'(X)L'. We will show that #'(X) + «/(X) is not much

bigger than u(X), and this allows us to bound the sum of ¢(X)L’" + «'(X)L'.

From Part 3 of Proposition 1, if #f > 0 for some i € X, ¢;(s; +t,) = L' < (1 + é;)L. By construction,

Vi€ X Lils) > (1—0)L > (1-0)L'/(L+8) = (1—8)(sh+8)/(1+5),
and using Part 1 of Proposition 1, we get

D sili(si+t) < (L4207(1401) Y sili(si).

1€X 1eX

Next, since X is the cheapest set satisfying the feasibility conditions, we have

D sili(si) <Y siti(si) < (L4 0)(L+ 61)Chy(s7).

1€X 1€ M=o

Together, this gives us

D siti(si+ 1) < (14 26)%(1 + 61)2Chr_y (5%).

=
Finally, we bound the part #(X)L'. Note that #/ (X) = r—s'(X)—u'(X) < 285" (X)+(1+28)u(X) —u'(X),
because s'(X) + u(X) > (1 — d)r. Since s'(X) < s(X)(1 +2d) and L' < (1 + 1)L, we have s'(X)L' <
(14+20)(1+01)s(X)(1 =)L < (1 +20)(1 +61) D ey sibi(si) < (1 + 20)2(1 + 01)2Cp_, (s*), where
the second inequality holds because 4(s;) > (1 —0)L,Vi € X.

Putting all this together, we have

D (st +t)llsi+ 1) + > uibi(ul)
ieX ieX
(1+26)3(1 +61)2Ch_y (%) + 26(1 +20)2(1 4+ 61)Crr_y(s*) + (1 + 20)u(
(1+40)°(1+61)*Cro (") + (1+28)(1 + 61)u(X)L.

C(s")

< X)L/
<

Using the fact that L < (1 + §;)L* and that u(X) < (1 4 0)(r — S5), we get u(X)L < (1 +9)(1 +
61)Chss o (s*). Therefore, C(s') < (1 + €)C(s*), where € is chosen so that 1 + € = (1 +456)*(1 + 26,)*®
Recall that we have estimates S € [S§, (1 + d2)Sg] and Usg € [UZ, (1 4 d2)UZ,] for appropriate
d3 < 0. Since we do not know Sj,UZ exactly, we will actually find the cheapest subset X such that
s(X) € [(1—02)So, (1+d2)So] C [(1—0)S5, (140)S5] and u(X) € [U— (1+62)Uso, U —(1—02)Uso] C

U - (1+0)U%,,U — (1 —0)U%,] (which automatically ensures that u(X) € [(1 — 0)UZ,, (1 + 6)UZ,).
This leaves us with the problem of finding an approximate solution and this is solved in the following steps.

1. Scaling Let m; = max;{s; : s; < oo} and m, = max;{u;}. Define §; = Lj;gzj U; = L;“Tmuj

Sy = {So—mJ and Us = {U>—°mj Let U = > U If s; > Sp,s; < oo for some 4, it is clear that

TYms VM
i € M~g, and we can remove link 7 from consideration. Therefore, wlog we can assume that m, < Sj.

Similarly, we can assume that m,, < Usg.

2. The Dynamic Program Run the same dynamic program described in the preceeding section: compute
the cheapest set S(mn, (1 —)5S0, (14 d3)S0, U — (1 + 03)Us, U — (1 — 83)Usy), in the notation of
the previous section, where d; is a small enough parameter to be fixed later. This gives us a set X such
that

3(X) € [(1—83)80, (1 +33)8], and @(X) € [U —(1+383)Uso,U — (1 — 83)Usp)]
and the cost of X is minimized. The running time of this step is O(n? /7).

3. Retrieve a solution We claim that X satisfies the original requirements.

First, we obtain bounds on s(X). By construction, it follows that

s(X) < yms(3(X) +|X[)/m < (14 63)S0 +yms < (1 + 03 +7)So.

Also,

S(X) > ymd(X)/m
> T2 (1—63)8
> Tl 53)(Som -1
m ALY
> (1 0g)Sh— (1 - g)
> (1 —43)So — (1 —d3)vSo
> (1-63)(1—7)So

Choose 4§, so that
03 +7§62 and (1—(53)(1—’7)2(1—(52),

then we get s(X) € [(1 — d2)So, (1 + d2)So]-
Next, we bound u(X). By construction, we can upper bound u(X) in the following way.

Y1y

8 (0(X) + |X])

m m

u(X) <

U — (1 —835)Us)

IN

(1 —d3)ymu Usom

< ymy, +U — 1)
m Yy

< U —(1=03)Usq +ymy + (1 — d3)ymy

< U~ (1-03—27)Uso.

Finally, we obtain a lower bound for u(X):

wX) > Ma(x)

m ~ ~

> Vm“(U—(1+53)U>0)
My, Um N

> M —m — (1 + 63)Us0)
m Yy

> U_'Ymu_(1+53)U>0

> U — (14 03+7)Uso.

If 64 satisfies d3 + 27 < d9 we get
U(X) S [U — (]. + 52)U>0, U — (1 — 52)U>[)].

The quantities dz, 03,y can be chosen so that all the above constraints are satisfied.

S Extension to Layered Graphs with Bounded Width

Consider a layered graph G with layers Vg, Vi, ... , V} of vertices. All edges go from V] to V; for some 1,
and u, v are the source and sink, with u € Vj,v € Vj. Assume that |V;| < w, Vi. Again, a total of r units of

10

flow has to be sent from s to ¢, and the stackelberg strategy can control ar part of this. A stackelberg strategy
now corresponds to deciding v — v flow paths, with a total of ar flow on them. Corresponding to a given
stackelberg strategy s, we have a Nash flow ¢ consisting of flow paths. The Nash flow satisfies the property
Cp(t + s) = Lpi(t + s) for every pair of paths P, P such that tp,tp: > 0. We show that there is a simple
dynamic programming solution to approximate the stackelberg strategy when the latency functions are all
polynomial functions.

With each layer V;, we associate a vector h =< hy,xz € V; >, which we call the flow vector. For each
vertex x, hy is a triplet hy = (L, 7, oz), Whose semantics are described below. The quantity 7;, denotes the
total flow between x and v carried by s + ¢, and «; is the fraction of flow carried by stackelberg paths. All
Nash flow paths from u to v passing through vertex z can be decomposed into paths from u to z and from z
to v. The latency on the path segments from z to v is a constant, which we call the common Nash latency,
and denote by L, above. We will also let L, be undefined, if no Nash flow path passes through x. Such a
vector h for layer V; completely captures the state of the flow through vertices in ¥. Though we would not
actually know the correct quantities, we shall guess them within a 1 4+ § factor. The optimum s + ¢ flow
from w to v inducing a corresponding vector i on each layer ¥/ and the dynamic program basically finds the
best flow when the flow vectors at each layer are rounded to a power of 1 + §. The total cost of s + ¢ is the
sum of the costs of the flow from layer V; to V;, 1, over all <. Therefore, the problem of finding the best flow
reduces to that of finding the cheapest flow from layer V/ to V; 1, for given flow vectors on V;, V;; . This
immediately suggests the dynamic program for computing an approximation to the best s + ¢ flow. Starting
from ¢ = k, we compute the best s + ¢ flow from V1 to v, for each possible flow vector i on V. Next,
for any flow vector h' on Vj, we find the cheapest flow from V; to V; 1, for each flow vector 4 on V;; 1. This
flow is the cheapest flow from V; to v, with a flow vector /' on V;. Of course, we are only going to solve the

subproblems for values of L, r;, a;, YV, which are powers of 1 + ¢. If the largest of these values is N, the
log N \3
O(g);gl+6) Y

We now consider the subproblem of finding the cheapest flow from ¥/ to V.1, given flow vectors h, ' on
Vi, Vit1 respectively. The other remaining issue of bounding the total error is addressed later. Let (L, 75, ay)
denote the triplet corresponding to vertex z € VU V11 in h, h'. First, consider the case where there are no
parallel edges; this restriction is removed a little later. Since there are only 4 edges, guess a subset F' of
edges which carry positive Nash flow (we will try out every possible subset F, resulting in qw? iterations).
For each edge ¢ = (w,w') € E’, Ly, L,y must be defined and L,, > L, (if not, E' is not a valid guess), and
this determines the flow f, on edge e such that 4. (f.) = Ly, — L,,. This allows us to formulate the following
flow problem, of similar nature as that of [RTO0]. We have variables ¢,t. on each edge, specifying the
stackelberg and Nash flows. One problem is that since the flow vectors h, / are all aproximate, there may be
no flow that satisfies the feasibility constraints exactly. Therefore, we will relax the feasibility constraints set
by hon V;.

number of flow vectors at any layer is bounded by (; , which is polynomial if V is polynomial.

11

Then, the problem is to minimize), scf.(s.) subject to

Y se € [(1=0awr,(1+0ar] VYwel,

Z Se = QT Vu' € Vi
e=(w,w'),Yw
Y (sett) € [(1=0ru,(1+8)rw] VYweV;
e=(w,w') Yu'
Z (Se +1te) = Ty Vu' € Viiq
e=(w,w’),Yw

sette € [(1—-0)fe,(1+0)f] VeeF ey

This problem can be solved by the methods described in [RT00] because we still have a convex program.
For each choice of A on Vj;1, compute the cheapest possible flow and the cheapest such flow, which is
combined with the current flow assignment between layers ¥/ and V;,; to get the solution for flow vector h
on V;. Notice that since the flow constraints on V; are satisfied approximately, this flow induces a vectorh on
Vi, in which every entry is within a 1 & ¢ factor of the corresponding entry in h.

Because of this problem, the dynamic program is actually more complicated. For layer V., we have
a set Fj 1 of possible flow vectors, and for each h € F, there is a vector h close enough to h, having a
realizable flow starting at h. Now when we are computing from layer ¥/, we choose a vector g € F;, and for
each h € Fj 1, we solve for the flow when the flow vectors are g on 1} and h on Vi+1, find the cheapest such
flow over all h, and find the actual g induced on V;.

Finally, we show that the total error is bounded, by the following series of lemmas. Suppose the optimum
flow induces flow vectors hgyp;, hlopt on layers V;, V; 1. The dynamic program will look for the flow with h, #
which are within a 1 4 § factor of Ay, hgpt. Let sopt + topt, s + t be the flow assignments between layers
Vi, Vi+1 in the optimum and the approximate solution, respectively.

Lemma 5 Let sop1 + topt, s + t be defined as above. Then, C(s +t) < (1 4 €)C(sopt + topt)-

The proof of this lemma relies on the facts that the edges have no capacities and small perturbations in the
flow on the edges do not change the cost by much. This allows us to show that the net flow induced by s + ¢
is close to that induced by s,,; + top: On each edge. This lemma allows us to bound the cost of s + ¢ with
respect to the optimum.

One problem is that the final ¢ we compute by combining the assignments across the layers need not be
the actual nash flow, but is an approximate one: some nash flow paths could exceed others in latency by a
factor of 1 + €. Let ¢’ be the actual nash flow induced by s.

Lemma 6 Let s,t,t' be as defined above and L(t), L(t) be the common nash flow latencies of t and t,
respectively. Then, L(t') < (1 + €)L(t).

6 Two-round Stackelberg Strategy

Denote the stackelberg strategy considered in the previous section by 1SS. We consider below a two round
modification of this strategy, called 2SS, and denoted by (s, §).

12

1. Choose a strategy s =< 1, ... ,spy > satisfying Y . s; < ar
2. Let t be the Nash-equilibrium induced by s.

3. Keep t fixed and change s to vector §

The goal is to choose s and § so that s’ + t has as small a cost as possible, compared to the optimum. By
C(s,s'), we denote the cost C(s' + t) of the assignment resulting from the two-round stackelberg strategy
(s,s’). The one-round stackelberg strategy leads to an assignment with cost at mosté times the optimal, and
so the question is whether a two-round strategy leads to a constant factor improvement.

It is easy to see that further rounds do not help. If we have k alternating stackelberg/Nash strategy, the
final solution just depends on the final round. Surprisingly, if the leader plays after the remaining players
have formed a Nash equilibrium, the resulting solution is at least as good as 1SS.

6.1 The quality of 2SS

While 2SS might not guarantee a factor better than 1SS, we show that it is quite often much better. In what
follows, let x = OPT(S,r) and y = Nash(S,r) where S C M, M being the set of all links. If S is
understood or if S = M, we sometimes just write OPT(r) and Nash(r). Let A = {i : z; > y;}. Assume

that the links are ordered in such a way that 4, (x,,) > ... > ¢1(x1). If z(A) — y(A) > ar, the best that

1SS can guarantee is é which is achieved by the Nash solution itself. The factor guaranteed asymptotically
by 2SS in this case is also é though it does better in a large class of instances. On the other hand, if
z(A) —y(A) < o, 2SS always gives an optimal solution, while 1SS could still give a factor of in the worst

case. We show an example where both 1SS and 2SS are just as expensive as the nash solution. We then
describe some classes of instances where 2SS gives a provably better guarranty.

As described earlier, both 1SS and 2SS could be as bad as the Nash solution in some cases.

Lemma 7 Letx = OPT(r) andy = Nash(r). Let A = {i : z; > y;}. If 2(A) —y(A) > ar, C(y) <
éC(x). If £(A) — y(A) < o, 2SS leads to the optimum solution.

Proof: Let L(y) be the common Nash latency. Assume first that z(A) — y(A) > ar. Then, C(z4) >
(ar +y(A))L(y). Therefore, C(y) = rL(y) < WC(@. Next, consider the case z(A) — y(A4) < ar.
Choose the vector s to be s; = y; — z;,1 ¢ Aand s; = 0,4 € A. Then), s; < ar. The induced Nash
equilibrium will then be ; = y; — s;, Vi. In the second round, choose d, = z; — y;,4 € Aand s, = 0,7 € A.

Then), s; = >, s; and s’ 4+ t gives exactly the optimum solution z.

Note that the above scheme for 2SS actually results in a factor of at mostm. The LLF strategy for

1SS only guarantees a factor of é and we believe no strategy for 1SS can actually do better.

A tight example We describe an instance below where the factoré is tight. Consider a graph G' with two

nodes u, v and two parallel edges e, f between u,v. Define the latency functions £, ¢ are shown in Figure
??. Assume that 41 < d2 and €, d1, d9 are all very small quantities.

In this example, the optimum assignment assigns slightly less than «v+ ¢ on link e and slightly more than
1 —a — dy on link f, leading to a total cost of almost (o + &) (1 + €) L. The nash equilibrium is (&, 1 — d;),

13

L(1+ €)

S 1-0—-06
(@) (b)

Figure 1: A tight example:(a) function £,(b) function £;

with a total cost of L. It is easy to see that any 1SS strategy that controls at most v amount does not improve
on the cost of nash. 2SS does not improve the cost either, since § < d5. The basic problem in this example
is that the latency functions could increase sharply. When their slopes are bounded, the following lemmas
show that one can obtain better bounds.

The worst case bounds can be improved when the latency functions are restricted. If £(z(1 4 6)) >
@(0)¢;(z) for each 4, the guarantee achieved by 2SS can be improved. Such an assumption is not too unreal-
istic, since functions growing as fast as a polynomial have this property at least asymptotically.

Lemma 8 Let Vi,u £;(u(l+6)) > $(0)¢;(u). Then if « < 1 and ¢(2=) > 1, then there exists a 2SS
strategy, (s,s'), such that
1+ ag(15) 1

Cx) < —=C(x).

C(s,s") < (L) -

Proof: We can assume that z(A) — y(A) > ar, else the previous lemmas show that 2SS gives the optimal
solution. Let 2 = Nash(A, (1 — a)r — y(A)). Define the stackelberg strategy s in the first round as
si = vy; — 2,1 € Aand s; = 0,5 € A. Then >;8i = ar and the induced Nash equilibrium, t is such
that s + t = y. In the second round, choose any § such that s, = 0,4 € Aand y; < s} < z;,i € A and
S st =ar. Letz=¢8+t. Clearly, 2, = %, € Aand % = % > ﬁ Therefore, there is an
i € A such that y; < z;/(1 — o). From our assumption about the latency functions, £(y;) > €;(z)¢(=).

Let L(y) be the common Nash latency for 4 and L(z) be the common latency of z, onA.

Now,
O(x1) > C(ra) = (5(4) + 0)L(y) > (y(4) + ad(-——))L(z).
C(zz) = (1 —a—1y(A))L(z). This gives us
(1= 9(4) ~ a)C() > (9(A) + ab(——)Clez),

which implies

C(x) = C(za) = C(a),

1+a(p—1)

14

where ¢ = ¢(72). Therefore,

6.2 Linear Latency Functions

Roughgarden[Ro01] shows that the LLF strategy for 1SS yields an assignment of cost bounded by?ﬂ%a times
the optimal, when the latency functions are all linear. We show that 2SS gives a strictly better bound for
this case. In this section, we assume that the latency function for link 7 has the form {(u) = a;u + b;,7 =
1,... ,mandai,bi > O,V’i.

The following lemma relates the costs of the optimum flow of r and the nash flow of #.

Lemma 9 Suppose x = OPT(S,r) and y = Nash(S,7’). Then, C(x) = (r — %’)L(y) + >, ai(wi —

Y2+ blyl , where L(y) is the common Nash latency for'y.

Proof:
Clx) = > aiz}+b
- Z(— yi/4) (aiyi + b;) +ZaZ — 4i/2) + biyi /4
- Z(— yi/4)L +Zaz —vi/2)* + biyi /4
- (;—7’/4 +Zaz zi = yi/2)” + biyi/4 @
n

A Reassignment Operation The 2SS strategy we consider later involves incrementing the assignment on
a set of links, A, that already has a nash assignment. We describe the operation here, and bound the cost
after the increase. Let A = {1,...,a} be a set of links. Let x = OPT(A,(3) and y = Nash(A,)
with 8 > ' + . We will always be considering situations where L(y) < 4(z1) < ... < £4(z,), where
L(y) = 4;(y;), Vi € A is the common nash latency induced by y. Our goal is to add a total of o amount to y,
while keeping the cost bounded. Let d < a be the smallest index satisfying the following properties.

L. Ziga/ T —Yi S«
2. 2; > 2,0 +1<i<a,wherez = Nash({a' +1,... ,a},f +a— >, %)
3. Ly (zq) < L(z), where L(z) = /¢;(2;) is the common nash latency of z.

It is easy to see that such an o exists. Denote the flow on A by a variable 6, and think of increasing it
continuously, while maintaining a nash assignment, denoted by 1. At some point, when § = 6;, we will
have #1(y?) = ¢1(z1). From this instant, keep the assignment on link 1 fixed, and increase the flow on the

15

remaining links, and so on. This process stops at the index ¢ defined above. Define 4; = {1,... ,a'}, Ay =
A\ Ay, z(A1) = (1. Let 8’ be an assigment such that = x; — y;,Vi € Ay and s, = 2, — y;,Vi € Ag and
lety +s' =z. Note that), s! = . Later, we will refer to this step as a reassignment operation, which adds
the vector s’ defined above to the assignment y on set A.

Observation 2 Let x,z, A be defined as above. Then C(x4) > B’i =C(za).

Proof: C(x4,) = (8 +a— (1)L, where L is the common Nash latency of z on 4. Since Vi € Ay, £;(x;) >
Ci(z),

C(x4,) > Z L = ﬂ/ﬂ_ﬁl Clzs,).

1€EAs ta- '81
This implies
(8 +a)C(xa,) > BC(2a,) + Bi(C(xa,) — Cl2a,) > BCay(2) + Bi(6 — B —)L

Then since C'(x4,) = C(z4,), Vi € A1,4i(z;) < L,and z(A4;) = (1, we get

8"+)C(xa,) = BC(24,) = (B— ' — a)C(24,) 2> SC(24,) = (B— ' —)BLL.

Adding up these inequalities, we have (§ + a)C(x) > C(z). R

As in [Ro01], we order the links so that i < ... < b,,, and we can assume that ¢; = 0 for at most one
link 7, which can be assumed to be the last one, if it exists. We recall the following lemmas from [Ro01].

Lemma 10 (lemma 5.1 in [Ro01]) The nash assignment y is given by
m Vi
y = d; - ;
2]

where vy is the vector (i, e t) and 6; is defined inductively as: & = 0, §; = min{(bj11 — b;) || vi |

T — Z;;}) d;} and by =1 — 370 0.

Lemma 11 (lemma 5.2 in [Ro01]) The optimal assignment X is given by

where v is the vector (%, e a—}n) and &7 is defined inductively as: § =0, 67 = min{3(biy1 — b;) || vi ||
T — E;;B 0;j} and 6}, =1 — ZT:O d5.

Lemma 12 As before, let x = OPT(M,r) andy = Nash(M,r). Then, z; > y;/2,Vi.

Proof: Let p be the smallest index such that §, is 0, and m + 1 if no such index exists. Similarly, let g be the
smallest index such that §, = 0, and m + 1 if no such index exists. Clearly, p > ¢. Forall i < ¢, § = ¢;/2
and for i > g, 0 > 9;/2. From the previous two lemmas, ; = 7", 6;‘m andy; = D7, @m. The
lemma now follows. l

16

Lemma 13 [f the latency functions are all linear, then there exists a 2SS strategy (s,s’) such that

4 4

!
<
Cls,s) < max(3+a+a3/32’ 3+a+a(l—a)/8

)C(x)

Proof: The set A is defined, as before, as the set of 4 such that % > y;. Let (A) = fBr,y(4) = G'r. As
before, the initial stackelberg assignment s is concentrated onA, in such a way that s + t = y, where t is
the nash assignment induced by s. The best 2SS strategy would be to choose s so that after the first round,
when s is transferred to elements of A, the remainder on A is assigned optimally. Because of the difficulty
of analyzing this, we consider a different scheme below. Following earlier remarks, we will assume that
2(4) —y(4) > o

The algorithm for 2SS depends on the following two cases, and entails specifying the assignments s, s’.
Choosing s’: In both the cases, the assignment s’ is constructed by performing the reassignment operation
defined earlier, which involves adding a flow of ar to the nash assignment y4 on A.

We first derive a lower bound for C(x4) before the choice of s. As before, z4 is defined as y4+s 4. Recall
that z; > y;,Vi € A. Therefore, C'(z4) > (8’ + a)rL(y). Let € be such that C(z4) = (8’ + a + €)rL(y).
By Lemma 2, C'(x4) > (8 + ﬁ,ja)rL(y).

We now consider different cases, and construct s separately in each of these.

Case 1: i € A such that y; — z; > ar.
By Lemma 12, y; < 2z;, which implies z; > y; — x; > ar.
First, suppose b; > §L(y). Define z ; = Nash(A,r(1 — 8’ — a)).

Choosing s: choose s as s; = y; — 2;,Vj € Aand s; = 0,Vj € A. By lemma 9, C(x5) > (1 — 8 —
1-4'—«a
1

)rL(z7) + b;z; /4. Since y; — z; > ar, and z is the nash flow obtained by reducing a total of ar flow
from A, z; > z; > ar. Therefore, C(x7) > WL(Z). Combining this with the lower bound for

C(x4), we have C(x)/C(z) > 32 + %. If e > a, we get C'(x)/C(z) > M. Ife < a,

we get C(x)/C(z) > w’ where we take § = o? /4.
Next, suppose that b; < 0L(y).
Choosing s: In this case, choose 5; = ar and s; = 0,5 # 4. Define z5 as z; = y; — ar and z; =
y;,Vj € A\ {i}. Clearly, when s is removed from A, the remainder on it is z;. Let z; = yr > ar and
yi =7'r > 2ar. By lemma 9, C(xq(;1) > (1 =8 — v — 1_’8[;_7,)7“L(y) = WTL@). Since
I r_ 2
bi < 0L(y), £i(z:) < =22 L(y) and C(x(y) < (v —a) =222 L(y). C(xgsy) = Y(ay+bi) > L L(y).

Putting all of these together, we get

—4 ! ! 4 42 ! r_
C(x) > 3 ’Y+5+Z+ et 7/7L(y) and C(Z)S(l—i—e—a’y ,a

+ ad) L(y).

Thus, using 7 > 2a, we get

Cx) 3+« S a? —4y'ad ++'(1 — a)e
C(z) 4 49'(1 +¢)

When € > a, we get % > W, with d set to o /4. When € < a, we obtain
Clx) 3+« S a?

C(z) 4 T 4(1+a)

17

Case 2: y; — x; < ar,Vi € A.

In this case, there always exists a set B C A such that ar/2 < y(B) — x(B) < ar. Let 2(B) = yr,y(B) =
Y'r. Define z 5, p = Nash(A\ B,r(1 - ' —y—«a)) and zg = xp.

Choosing s: Choose s so that s; = y; —x;,Vj € Band s; = y; —z;,j € A\ B. After the first round, when
s is moved to A, assignment z remains on A. By Lemma 9 Clxnp)>(1-B-—7— 1*ﬂQ%)L(z), which
gives C(xzp) > 3_4’65¢L(z). C(za\p) = (1 = B' — v — a)L(z). Adding the above inequalities, we
get

Cxanp) = So5vte +44ﬁe/(a +h)L(z).

Thus

Clang) _ 3—3y+a+4fe/(a+p) _ 3+a+a’y+(1—a)e
Cl(zang) — 41—v+¢) - 4 41—y +e)

Since Cp(x) = Cp(z), 28 is bounded by the same ratio. By Observation 2, y > «/2. Thus, if € > -y, then

C(x) S 3+a+(l—a)a/2

Cla) = 1
else
C(x) S 3+Oz+a2/2‘
C) = 4
|

7 Reverse Stackelberg Strategy

In this section, we explore the model where the stackelberg assignment is made after the remaining (1 — «)r
fraction has formed a nash equilibrium. Clearly, the best stackelberg strategy would be to assign the « fraction
optimally, given the remaining assignment. The lemma below shows that such a strategy is at least as good as
1SS. Let t be the nash assignment of the 1 — « fraction initially. Let s = OPT (M, ar /) be the subsequent
stackelberg assignment, where /, (u) is defined as 4,(u + t,), Ve. We still have the model of a network with

two nodes and m parallel links between them.
Lemma 14 C(s +t) > Cigg, where Cygg is the cost of the best strategy for 1SS.

Proof: Let A = {i : ; > t;}, where x is the optimal assignment, as before. Note that z(4) < t(A) =
r(1 — a) — t(A), which implies r — z(A) — t(A) = x(A) — t(A) > ar. Consider an assignment s’
that assigns ar to elements in A, while keeping § + ¢; < z;,Vi € A, which can easily be done since
z2(A) —t(A) > ar. Clearly, C(x) > Ca(s' +t) > (t(A) + ar) L, where L is the common nash latency of t.
If Cy(s' +t) = (t(A) + ar + er)L, C(s' + t) = (1 + €)rL, and therefore, C(x)/C(z) > W‘% > a.

18

References

[AP+01] D. Anson, D. Powell and M. Stein. A Game Theoretic Approach to Strategic Force Planning
& Strategic Stability Assessment. Technical Report, Los Alamos National Laboratory LA-UR
01-31-57 (2001).

[BMW56] M. Beckman, C. Mcguire and C. Winstein. Studies in the Economics of Transportation. Yale
University Press, 1956.

[BPS99] J. Bennett, C. Partridge and N. Shectman. “Packet reordering is not Pathological Network Behav-
ior,” IEEE/ACM Transactions on Networking, 7(6), Dec. 1999, pp. 789-798.

[CR+93] J. Carrahan, P. Russo, K. Kitami and R. Kung. Intelligent Network Overview. IEEE Communica-
tions Magzine, 31, pp. 30-36, 1993.

[CS+93] R. Cocchi, S. Shenker, D. Estrin and L. Zhang. Pricing in Computer Networks: Motivation,
Formulation and Example. IEEE/ACM Transactions on Networking. 1(6), pp. 614-627, 1993.

[CS00] T. O’Connell, and R. Stearns. Polynomial Time Mechanisms for Collective Decision Making.
Game Theory and Decision Theory in Agent-Based Systems. S. Parsons, P. Gmytrasiewicz, P. and
M. Wooldridge, (eds.), Kluwer Academic Publishers, 2000.

[DHO95] S. Deering and R. Hinden. Internet Protocol Version 6 Specification. Internet Draft IETF March
1995.

[Du86] P. Dubey. Inefficiency of nash Equilibria. Mathematics of Operations, Research. 11(1), pp. 1-8,
1986.

[DS69] S. Dafermos and F. Sparrow. The Traffic Assignment Problem for a General Network. J. Research
of the National Bureau of Standards Series B. 73B(2), pp. 91-118, 19609.

[ES91] A.Economides and J. Silvester. Multi-Objective Routing in Integrated Services Network: A Game
Theory Approach. Proc. IEEE INFOCOM pp. 1220-1225, 1991.

[FPS00] J. Feigenbaum, C. Papadimitriou and S. Shenker. Sharing the Cost of Multicast Transmissions.
Proc. 31st Annual ACM Symposium on Theory of Computing (STOC). pp. 218-227, 2000.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[KLO97a] Y. Korillis, A. Lazar and A. Orda. Achieving Network Optima Using Stackelberg Routing Strate-
gies. IEEE/ACM Transactions on Networking. 5(1), pp. 161-173, 1997.

[KP99] E. Koutsoupias and C. Papadimitriou. newblock Worst-Case Equilibria. Proc. 16th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), pp. 403-413, 1999.

[KLO97b] Y. Korillis, A. Lazar and A. Orda. Capacity Allocation Under Noncooperative Routing. [EEE
Transactions on Automatic Control. 42(3), pp. 309-325, 1997.

[MSO1] M. Mavronicolas and P. Spirakis. The Price of Selfish Routing. Proc. 33rd Annual ACM symposium
on Theory of Computing. pp. 510-519, 2001.

[NR99] N. Nisan and A. Ronen. Algorithmic Mechanism Design. Proc. 31st Annual ACM Symposium on
Theory of Computing (STOC). pp. 129-140, 1999.

[OW95] G. Owen. Game Theory. Academic Press, 3rd Edition, 1995.

[ORS93] A. Orda, R. Rom and N. Shimkin. Competitive Routing in Multi-User Communication Networks.
IEEE/ACM Transactions on Networking. 1, pp. 510-521, 1993.

[Pa01] C. Papadimitriou. Algorithms, games and the Internet. Proc. 33rd Annual ACM Symposium on
Theory of Computing. pp. 749-753, 2001.

19

[Ro01]

[RoO1a]

[RTOO0]

[Ro02]

[SMGO1]

[Se85]

[Sh95]

[Wa52]

[Web]

T.Roughgarden. Stackelberg Scheduling Strategies. Proc. 31st ACM Symposium on Theory of
Computing (STOC). pp. 2001.

T.Roughgarden. Designing Networks for selfish users is hard. Proc. 31st ACM Symposium on
Theory of Computing (STOC)??. pp. 2001.

T.Roughgarden and E.Tardos. How bad is Selfish Routing. Proc. 41st Annual Symposium on
Foundations of Computer Science. pp. 93-102, 2000.

T.Roughgarden. How Unfair is Optimal Routing. to appear in Proc. ACM-SIAM Symposium on
Diceret Algorithms (SODA). 2002.

C. Saraydar, N. Mandayam and D. Goodman. Efficient Power Control via Pricing in Wireless
Data Networks To Appear in [EEE Trans. on Communications, 2001.

Y. Sheffi. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming
methods. Prentice Hall, 1985.

S. Shenker. Making Greed Work in network: A Game-Theoretic Analysis of Switch Service
Disciplines. IEEE/ACM Transactions on Networking. 3(6), pp. 819-831, 1995.

J. Wardrop. Some Theoretical Aspects of road Traffic Research. Proc. Institute of Civil Engineers,
Part 11, Vol. 1, pp. 325-378, 1952.

http://www.lanl.gov/orgs/d/d5/projects/MESA/mesa.html
http://www.lanl.gov/orgs/d/d2/projects.html.

20

	Improved Results for Stackelberg Scheduling Strategies
	Abstract
	Introduction and Motivation
	Our Contributions and Related Work
	Basic Model and Preliminaries
	A Fully Polynomial Approximate Scheme for Stackelberg Strategies
	Properties of s
	Reduction to Multidimensional Knapsack
	Finding an Approximate Solution

	Extension to Layered Graphs with Bounded Width
	Two-round Stackelberg Strategy
	The quality of 2SS
	Linear Latency Functions

	Reverse Stackelberg Strategy
	References

