LA-UR-01-6172

Approved for public release;
distribution is unlimited.

NEXT GENERATION EPICS INTERFACE TO

Tte: | ABSTRACT DATA

Author(s): | J. Hill and R. Lange

Submitted to:

http://lib-www.lanl.gov/la-pubs/00796508.pdf

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of

Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-

free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the

viewpoint of a publication or guarantee its technical correctness.
FORM 836 (10/96)

THAPO14

NEXT GENERATION EPICS INTERFACE TO ABSTRACT DATA"
J. Hill, LANL, Los Alamos, NM 87544USA
R. Lange, BESSY, 12489 Berlin, Germany

Abstract

The set of externally visible properties associated
with process variables in the Experimental Physics and
Industrial Control System (EPICS)' is predefined in the
EPICS base distribution and is therefore not extensible
by plug-compatible applications. We believe that this
approach, while practical for early versions of the
system with a smaller user base, is now severely
limiting expansion of the high-level application tool set
for EPICS. To eliminate existing barriers, we propose a
new C++ based interface to abstract containerized data.
This paper describes the new interface, its application
to message passing in distributed systems, its
application to direct communication between tightly
coupled programs co-resident in an address space, and
its paramount position in an emerging role for EPICS
— the integration of dissimilar systems.

1 IN PURSUIT OF HIGH LEVEL
APPLICATIONS

The EPICS software was originally designed to be
tool based approach to process control and this
continues to be its primary application. However, the
collaboration recognizes the benefits that might arise
from more vigorous development of modular advanced
physics modeling and control toolkits that are closely
integrated with EPICS. There may be cultural and
geographical obstacles to this type of open source
collaboration, but our experience makes us suspect that
these barriers are not insurmountable, and if not then
perhaps our aspirations for more efficient development
of advanced toolkits will be fulfilled if certain technical
limitations in the existing EPICS communication
software interfaces are eliminated.

2 FUNDAMENTALS WE DON’T
INTEND TO CHANGE

Certain aspects of the existing EPICS
communication software interfaces appear to be
important facilitators for advanced toolkits. Close
integration with process control systems requires
efficient publish-and-subscribe communication
strategies. Message-batching capabilities also improve
communication efficiency. Software interfacing with

systems capable of independent actions needs
interfaces that can generate an asynchronous response
synchronized with external events. An infrastructure
that encourages proper design of distributed software
systems is also important. For example, in multi-
threaded distributed systems, toolkits need
communication software interfaces designed to avoid
application programmer introduced mutual exclusion
deadlocks. Interfaces must also be properly structured
to encourage robust response to loss of communication
or other hardware resources. Portability between
workstations and embedded systems is an important
requirement for certain advanced applications. These
capabilities are required by process control
components. We expect that they will also be beneficial
to advanced modeling and control toolkits.

3 FOSTERING INTEGRATION WITH
HIGH LEVEL APPLICATIONS

Several physics modeling and control toolkits have
been successfully interfaced with EPICS. These
programs are not shared between sites as frequently as
we had originally hoped, and their view of EPICS tends
to be a fairly narrow one where EPICS is only a source
and destination for data. In our experience the
fundamental requirement for vigorous open-source
software collaboration is well-defined software
interfaces that break a large software effort into a
system of moderate sized modular replaceable
components. Unfortunately, while the EPICS software
interfaces satisfy the fundamental communication
requirements for distributed systems, they are lacking
capabilities encouraging collaborative layering of
software modules above and beyond the requirements
of distributed process control.

The fundamental endpoint for communication within
EPICS is an abstract “process variable” with the built-
in set of properties listed in Table 1.

Table 1: Process Variable Properties

Name Display limits
Class Control limits
Data type Alarm limits
Vector dimension Alarm condition

* Work supported by the Office of Energy Research, Basic Energy Science of the US Department of Energy, the Oak Ridge National
Laboratory, the Bundesministerium fiir Bildung, Wissenschaft, Forschung und Technologie (BMBF), and the Land Berlin.

Value Alarm acknowledge transient
Time stamp Alarm acknowledge severity
Units Number of decimal digits

Multi-state label names

Furthermore, EPICS clients can subscribe for process
variable property updates to be sent when triggered by
any combination of events from the built-in set listed in
Table 2.

Table 2: Process Variable Subscription Events
Change of state (default dead band)
Change of state (archiving dead band)

Alarm condition change of state

Unfortunately, these built-in property and event sets are
inadequate for integration of components that fall
outside the realm of traditional process control.

For example, a data acquisition system might have
an archiving engine that spools physics events off to
disk. When a particular event occurs, a set of process
variable properties must be gathered together and sent
off to the archiving engine. In this context it is
important to guarantee that we synchronize acquisition
of all these property values with the specified triggering
event. Currently, event and property sets are not
extensible by components that plug-and-play with
EPICS. Therefore, it is difficult to guarantee that a
subscription update associated with one process
variable is synchronized in any way with an
independent subscription update associated with
another process variable. Advanced toolkits need the
capability to define new complex data types, and new
event types, unknown to the system internals when they
were compiled.

Considering another example, suppose that we have
a high-level tool kit that wishes to be portable over a
range of different astronomical telescopes. Suppose
that this toolkit has two components: the star tracking
system and the telescope positioning system. When the
star tracking system needs to tell the telescope
positioning system about a new position it must
communicate at least two parameters. In the current
EPICS system we can write to only one process
variable at a time and therefore ad-hoc methods must
be conceived which allow both parameters to be
communicated before the telescope positioning system
initiates the task of gently slewing the telescope to a
new position. Otherwise, the telescope positioning
system might initiate a move after receiving only one of
the parameters risking a less than optimal path to its
destination. Of course we can write the two position
related process variables and then write to a third
process variable that initiates the action. However, this

approach does not foster the development of well-
defined interfaces between modular high-level software
components. Instead, we are left with a poorly enforced
and error prone interface. The lack of multi-thread
safety in this type of ad-hoc interface is of particular
concern to a distributed control system. In contrast,
when toolkits can install new complex data types
initially unknown to core system components EPICS
can accommodate modern software communication
paradigms such as message passing and command
completion synchronization.

4 INTERFACING WITH PROPRIETARY
DATA — CURRENT PRACTICE

Many self-describing data file formats and their
associated programming interfaces are available.
However, in our experience there are two methods
commonly in use by communications software systems
for interfacing with arbitrary, complex structured, and
application specific data.

With remote procedure call systems such as
CORBA? there is a compiler that reads a source file
with a specialized syntax describing data structures and
any associated function call interfaces. This compiler
generates a header file for the target language
describing these data structures and interfaces. Object
code stubs that can be used to transfer data on and off
the wire are also produced. This approach is very
efficient at runtime. However, it is not possible to
extract an arbitrary subset of the elements within a
compound data type, and therefore the communication
system cannot arbitrarily map between data structures
in different programs. This is a direct result of the
communication system’s being oblivious to the
purposes of the fields in the user defined data
structures. In publish and subscribe systems such as
EPICS this limitation might impact flexibility and
compatibility between modular components of the
toolkit. This approach typically also has difficulties
interfacing with array data when multi-dimensional
bounds may change at run time.

In contrast, systems such as GDD® and CDEV* use a
C++ class to encapsulate proprietary data. This
approach stores the data internally as a union, or a
linked list of unions if the data is compound. Each entry
in the data is assigned a property name such as units,
limits, or time-stamp. This allows extraction of an
arbitrary subset of elements within a compound data
type and installation of new elements into complex
compound data at runtime. However, this introduces a
large storage and execution overhead because
knowledge of the data type’s structure must be stored
with every instance of the data. GDD provides

mechanisms to efficiently index data using its property
identifier, but considerable confusion has resulted from
these capabilities being available only in certain modes
of operation. This approach also requires a fairly large
amount of code in its implementation. Users appear to
find interfacing with this approach daunting’, probably
because they must constantly convert between their
native storage formats and the communication system’s
imposed data container.

S INTERFACING WITH PROPRIETARY
DATA — ANOTHER APPROACH

We identify a third distinct approach to interfacing
communications systems with proprietary data. With
this approach there is a C++ abstract base class (an
interface) that is used to introspect the structure of the
arbitrarily complex proprietary data. If a toolkit
element chooses to export it’s proprietary data using
this interface, then any programs that know the
interface may examine or modify the data. A small
support library provides functions for comparing,
converting, and copying between dissimilar data sets.
The toolkit element is not required to store its data in
any particular format or organization. Nevertheless,
knowledge of a complex data type’s structure can be
determined at compile time, and therefore access to the
data can be efficient.

All data exported through this interface is assigned a
property name. A property name may be “weight”,
“units”, “maximum”, or potentially any name that a
group of programs mutually agree upon. A set of data
with unique property names may be stored in a
container that must also be assigned a property name.
Properly interfaced data must provide a traversal
function exporting knowledge of the purpose, the
primitive data type, and the vector bounds of each
participating property. When a toolkit element needs to
extract a property subset out of an arbitrary data
container it requires capabilities that efficiently locate
specific properties in an unknown container. Therefore,
properly interfaced data must also provide a function
that locates a particular property, and library functions
are provided to assist with efficient implementation.
Compared to the traversal mechanism, we expect to
introduce the additional flexibility required by certain
applications at the expense of some loss of runtime
efficiency.

Compared to CDEV and GDD this approach is less
complex, because the data is not transformed into a
new storage format when it crosses the interfaces of the
communication system. This reduces the size of the
support libraries and the toolkit elements. Storage
overhead can also be lower than with GDD and CDEV

because the description of the data may, at the users
discretion, be stored separately from each data instance.

Compared to remote procedure call systems, we do
not need to write a compiler that generates object code
stubs for moving data on and off the wire. The stubs are
more efficient, but we expect that the additional
overhead will not be significant in this context. The
proposed approach can introduce similar per instance
storage overhead compared to remote procedure call
systems, but these systems do not include facilities to
extract a subset of properties from a properly interfaced
arbitrary data structure. Finally, we observe that this
approach can be used to efficiently interface to either of
the above two approaches, but the opposite is not
possible for a traditional remote procedure call system
such as CORBA.

6 CONCLUSIONS

EPICS includes a comprehensive set of
communication primitives that are essential for
distributed process control, but we aspire to cultivate
advanced integration of high-level modular toolkits.
The fundamental endpoint for communication within
EPICS is an abstract “process variable” with a fixed set
of named properties and subscription update events.
Advanced toolkits need the capability to define new
complex data types and new subscription update events
unknown to the system internals when they were
compiled. To eliminate existing barriers, we propose a
new C++ based interface to abstract containerized data.
The new interface was compared to existing practice
revealing important distinctions. A subset of properties
can be extracted from a properly interfaced proprietary
data set. The interface does not impose a storage
format, but nevertheless knowledge of an arbitrary data
type’s structure can be efficiently determined at
compile time.

REFERENCES

[1] W. McDowell et al.: "EPICS Home Page"'

[2] J Siegel: “CORBA Fundamentals and
Programming”, John Wiley and Sons Inc. 1996

[3]J. Kowalkowski: “General Data Descriptor Library
User's Guide and Reference Manual”, 1996, APS,
Argonne, USA.

[4] J. Chen, “CDEV: An Object-Oriented Class Library
for Developing Device Control Applications”

[5] J. Hill, “EPICS Server-Level API Developers
Survey”, ICALEPCS, Trieste, October 1999

! http://www.aps.anl.gov/epics/

	NEXT GENERATION EPICS INTERFACE TO ABSTRACT DATA
	Abstract
	1 IN PURSUIT OF HIGH LEVEL APPLICATIONS
	2 FUNDAMENTALS WE DON’T INTEND TO CHANGE
	3 FOSTERING INTEGRATION WITH HIGH LEVEL APPLICATIONS
	4 INTERFACING WITH PROPRIETARY DATA — CURRENT PRACTICE
	5 INTERFACING WITH PROPRIETARY DATA — ANOTHER
	6 CONCLUSIONS
	REFERENCES

