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ABSTRACT

Spherical pressure vessels are used to fully contain the effects
of high explosions. In this paper, the vibrations of a spherical
containment vessel undergoing elastic response are investigated.
Vibration modes of containment vessels are of particular
interest, as it is the superposition and interaction of different
modes of response with closely spaced frequencies that has
been reported to be the mechanism of 'strain growth'. First, the
modal frequencies of a spherical shell for both axisymmetric
and nonaxisymmetric response modes are discussed, based on a
sequence of papers that have appeared in the open literature.
Analytical predictions are then compared with numerical
simulations using ABAQUS. It is found that the numerical
simulations accurately predict both the axisymmetric and
nonaxisymmetric modal frequencies for the complete spherical
shell. Next, numerical simulations of modal frequencies for the
more complex spherical containment vessel (with nozzles) are
compared with the spherical shell results.

Numerical simulations for the spherical containment vessel
reveal that frequencies are somewhat similar to the complete
spherical shell. Limited comparisons with experimentally
recorded frequencies for participating modes of vessel dynamic
response during high explosive containment testing are
presented as well.

1. INTRODUCTION

Spherical pressure vessels used to fully contain the effects of
high explosions generally fall into one of two categories: 1.
Vessels designed for multiple use, in which the dynamic
response of the vessel is restricted to the elastic range (e.g., see
[1]); and 2. Vessels designed for one-time use only, in which the
vessel may undergo substantial permanent plastic deformations
(e.g., see [2]). In this paper, the vibrations of a spherical
containment vessel are investigated for vessel response in the
elastic range. These vibration modes, and particularly the
spacing of natural frequencies, have recently been shown to be
the mechanism of the 'strain growth' phenomenon [3]. 'Strain
growth' is a phenomenon in which the maximum vessel
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response amplitude occurs later in time, i.e., well beyond the
first response peak and in which the strain amplitude oscillates
with time over an extended period (amplitude modulation
caused by modal beating effects).

A typical spherical containment vessel, with nozzles, is
shown in Fig. 1. Vibrations of such a containment vessel are
related to those of a complete spherical shell. Therefore, a
review of the literature on vibrations of a complete spherical
shell is first presented in the next section, followed by a
comparison of natural frequencies of axisymmetric (Section 3)
and nonaxisymmetric (Section 4) modes of a complete spherical
shell with ABAQUS finite element predictions. Corresponding
natural frequencies of the more complex, spherical containment
vessel are also compared in Section 4. Limited frequency
comparisons with experimental results are presented in Section
5, followed by a Conclusions section.

Figure 1. Typical Spherical High Explosive
Containment Vessel



2. LITERATURE SURVEY

Baker [4] extended the early work of H. Lamb [5] to
determine the axisymmetric vibration modes of a thin complete
spherical shell. He utilized a membrane shell theory and
observed two types of vibration mode sets, falling on a lower
and an upper branch. The lower branch was found to consist of
an infinite number of modes, spaced within a finite frequency
interval. Baker also demonstrated by experiment that the two
types of vibration modes do in fact exist.

Silbiger [6] presented a brief discussion of the presence of
nonaxisymmetric modes of spherical shells, using Baker's [4]
two-branch, membrane solution as a basis. Silbiger states that
nonaxisymmetric modes do indeed exist and that the
corresponding frequencies are identical to the frequencies of the
axisymmetric modes. He goes on to state that, for each
branch, one can select only 2n+1 linearly independent
nonaxisymmetric modes, all other modes being linear
combinations of the 2n+1 modes.

Kalnins [7] again examined axisymmetric modes of a
complete spherical shell, but included the effects of bending.
He also found that the frequency spectrum consists of two
infinite sets of modes. He labeled one branch as flexural and
the other as membrane, the distinction made on the basis of the
comparison of strain energies due to bending and stretching of
each mode'. However, he observed a fundamental difference in
the lower branch behavior, as compared to Baker [4], due to the
inclusion of bending. He showed that the lower branch modes
are a degenerate case of bending modes in the membrane
theory, applicable only to zero thickness shells. When Kalnins
introduced the bending theory, the frequency interval for this
lower branch was found to extend to infinity for every non-zero
thickness shell (rather than all modes being spaced within a
finite interval of the frequency spectrum). The upper
(membrane) branch was nominally identical to that of Baker.

Niordson [8] rederived the equations for bending vibrations
of a spherical shell in a somewhat different form. He examined
the nonaxisymmetric modes as well, concluding that there exist
n+1 (not 2n+1 as reported by Silbiger) modes at each frequency
on each branch.  Observations in [8] made regarding
nonaxisymmetric modes (e.g., the fact that they exhibit the
frequency degeneracy identified by Silbiger [6]) were similar,
except for the number of independent modes anticipated.

Wilkinson [9] again investigated axisymmetric modes of a
complete spherical shell, but with the effects of transverse shear
and rotatory inertia included. Not surprisingly, he observed a
third branch at higher frequencies because of the inclusion of
shear deformations.

Shah, et al. [10] investigated nonaxisymmetric wave
propagation in a hollow elastic sphere. They presented a shell
theory in which the effects of transverse normal strain are

' A closed shell cannot undergo pure bending. A mode is either purely
extensional (membrane) or combined bending-extensional, but can (on an
energy basis) be "mostly" bending. Stated another way, no modes will be
present for which the extension of the middle surface is identically zero.

included as are transverse shear and rotary inertia. This
represents a progressive extension of earlier work cited above.
Shah, et al., observed the presence of axisymmetric modes
which are independent of the circumferential angle. They then
state that, by a suitable superposition of the axisymmetric
modes of vibration about different axes, but of identical natural
frequency, a nonaxisymmetric vibration mode of the same
frequency results, in agreement with observations made by
Silbiger [6] and Niordson [8].

Hirai and Kuroda [11] investigated the natural vibrations of a
spherical shell of variable thickness in the meridional direction.
They investigated nonaxisymmetrical vibrations. Unfortunately,
results were only presented for a hemispherical shell.
Furthermore, no general information regarding the role played
by nonaxisymmetrical modes was given.

Evans [12] investigates nonaxisymmetric modes of a
complete spherical shell, placing his results in terms of modal
impedances. The work is limited to extensional effects for a
thin shell, i.e., membrane theory only. Evans claims that
Silbiger [6] overlooked the fact that there is a lack of
orthogonality of certain of the nonaxisymmetric modes. Evans
does, however, confirm Silbiger's observation that natural
frequencies of nonaxisymmetric modes agree with their
axisymmetric mode counterparts, i.e., that natural frequencies of
the nonaxisymmetric modes are degenerate.

Useful numerical results on the vibration of complete
spherical shells are presented in the ABAQUS/Standard
Example Problems Manual [13]. Both axisymmetric and
nonaxisymmetric ~ comparisons are  presented. For
nonaxisymmetric modes, the first 20 eigenvalues were
investigated. Indeed, as predicted by Silbiger [6], 2n+1 linearly
independent modes were recovered corresponding to each value
of n investigated.

3. AXISYMMETRIC MODES OF VIBRATION

Axisymmetric modes are independent of the circumferential
angle, 6 (See Fig. 2). A detailed discussion of axisymmetric
membrane modes of a complete spherical shell is presented in
[4]. Modes of vibration are expressed in terms of Legendre
Polynomials of integer indices, n. For each value of n > 2, there
are two branches, i.e., two separate, but similar, mode shapes,
and two distinct frequencies (For n = 0, there is only one real
root, corresponding to the 'fundamental membrane or
'‘breathing' mode; n = 1 corresponds to purely rigid-body
displacement, i.e., no distortions). The lower branch
approaches an asymptotic value for large n, as described in [4],
which unfortunately appears to be physically meaningless
because the intervals between the natural frequencies apparently
become increasingly small [7].

The elementary bending/membrane theory developed in [7]
has a similar upper branch when compared against the
membrane theory. However, the lower branch monotonically
increases with integer index number when bending is included.



Natural frequencies for these axisymmetric bending/membrane
modes are plotted as a function of index number in Fig. 3 using
the following geometry and material parameters relevant to the
example spherical shell/containment vessel introduced later in
the paper:

Shell thickness h=2.00 in

Mean radius R=37.0 in

Elastic modulus  E=29.9 X 10° psi

Mass density p=7.32 X 10 Ibf-sec/in*
Poisson's ratio  v=0.29

Figure 2. Complete Spherical Shell
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Figure 3. Natural Frequencies for a Complete
Spherical Shell

The upper and lower branches can be clearly seen in Fig. 3.

In the higher-order theory [9], which includes transverse
shear and rotary inertia, a third, highest branch appears,
associated with the shear-deformation degree of freedom
introduced. However, this highest branch is of little interest
here because the frequencies are so high. The lower and upper
branches  nominally  agree  with  the  elementary
bending/membrane theory. Therefore, attention is given to the
lower and upper branches in this paper.

A finite element model of a complete spherical shell using
axisymmetric elements was developed for use with ABAQUS,
using the above shell parameters. The first 26 modes extracted
by ABAQUS are compared with the lowest 26 modes predicted
by the higher-order theory of Wilkinson [9] in Table 1, from
which the following observations can be made:

1. The first 26 modes (in ascending numerical order) draw from
both lower and upper branches.

2. The lowest mode (zero frequency) is the rigid-body mode,
associated with the lower branch.

3. The so-called 'fundamental' mode is actually the tenth mode
to appear. It is, however, the first mode of the upper branch.

4. The percent difference in respective theoretical and
ABAQUS-predicted frequencies is extremely small, in all cases
much less than one percent.

5. Some of the frequencies are very close in value. For
example, modes 9 and 10 have frequencies within 1 Hz, owing
to the fact that the modes are associated with different branches.
Modes 15 and 16 and modes 25 and 26 are also quite close.
The implication is that beating effects could occur, resulting in
the "strain growth" phenomenon [3]. Such effects were
observed in experiments on complete spherical shells reported
by Baker [4] and are the subject of a recent investigation by
Whenhui, et al. [3].



TABLE 1
NATURAL FREQUENCY COMPARISON - AXISYMMETRIC MODES

MODE ABAQUS THEOR. INDEX, n BRANCH PCT. DIFF.

1 1.32E-4 0.0 1 (Rigid Body) Lower ---

2 642.77 642.84 2 Lower 0.011
3 768.69 769.36 3 Lower 0.087
4 837.87 839.39 4 Lower 0.181
5 906.61 909.33 5 Lower 0.299
6 995.67 999.55 6 Lower 0.388
7 1114.5 1119.6 7 Lower 0.456
8 1266.6 1273.3 8 Lower 0.526
9 1451.8 1459.8 9 Lower 0.548
10 1461.3 1460.7 0 (Fundamental) Upper 0.041
11 1668.2 1676.2 10 Lower 0.477
12 1787.9 1787.2 1 Upper 0.039
13 1913.3 1921.8 11 Lower 0.442
14 2184.3 2192.8 12 Lower 0.388
15 2466.4 2467.5 2 Upper 0.045
16 2478.9 2487.5 13 Lower 0.346
17 2794.8 2802.2 14 Lower 0.264
18 3130.2 3136.9 15 Lower 0.214
19 3296.0 3297.9 3 Upper 0.058
20 3483.4 3488.0 16 Lower 0.132
21 3852.7 3855.4 17 Lower 0.070
22 4169.1 4172.8 4 Upper 0.089
23 4236.9 4237.4 18 Lower 0.012
24 4634.7 4632.1 19 Lower 0.056
25 5045.1 5038.7 20 Lower 0.127
26 5057.1 5062.3 5 Upper 0.103

4. NONAXISYMMETRIC MODES OF VIBRATION

As discussed primarily in [6], nonaxisymmetric modes for a
complete spherical shell do exist. Nonaxisymmetric modes
depend upon both 0 and ¢ (See Fig. 2). They are degenerate:
frequencies are identical to corresponding frequencies of
axisymmetric modes. Silbiger [6] attributes this to the spherical
symmetry of the shell. He argues that the axisymmetric modes
are defined with respect to a specific set of axes. Due to the
symmetry of the shell, however, it can vibrate in similar modes
with a different axis orientation. For a given set of "identical'
modes (differing only in orientation), the modes will each have
the same natural frequency. These axisymmetric modes of
identical natural frequency can be superimposed to obtain new
nonaxisymmetric modes that have the same natural frequency as

the corresponding axisymmetric mode, but which are not
symmetric with respect to any axis. Silbiger [6] goes on to state
that, corresponding to each natural frequency, there exist 2n+1
linearly independent modes, all other modes (at that frequency)
being linear combinations of these modes. As discussed
earlier, Niordson [8], apparently unaware of the work of
Silbiger, predicted that for each integer n>1, there is one
axisymmetric mode and n nonaxisymmetric modes, leading to
n+1 (rather than 2n+1) modes at the same natural frequency.
His physical explanation of the degeneracy was, however,
similar to that of Silbiger.

Actual spherical containment vessels contain deviations from
spherical symmetry due to the presence of nozzles, not to
mention significant manufacturing variations.  Silbiger [6]
points out that when such a deviation from spherical symmetry



occurs, the above degeneracy is no longer present, and the
particular modal frequency for generic integer index, n, on one
of the solution branches will split into 2n+1 distinct
frequencies. In a later paper, Niordson [14] similarly indicates
that when spherical symmetry of a complete spherical shell is
lost, the previously degenerate frequencies form into bands,
with the bandwidth related to the degree of spherical
asymmetry.

Two additional models were constructed and run on
ABAQUS/Standard. The first was a full model of a complete
spherical shell; the second was a full model of the spherical
containment vessel, including ports. The expectation was that
additional nonaxisymmetric modes would appear in both these
cases, as the axisymmetric restriction of the spherical shell
described in the previous section had been removed. A total of
200 normal modes of vibration were extracted using ABAQUS.
Results for a limited number of selected modes are shown in
Table 2. Contents of the eight columns of Table 2 are as follow:

Col. 1: This is the number of the mode extracted, in order of
increasing frequency (This is not the integer index, n).

Col. 2: This is the frequency (in Hz) predicted from the
appropriate axisymmetric solution [9]. In addition, because of
the relaxation of the axisymmetric boundary conditions,
torsional modes can occur. These torsional modes were
determined from [15]. Note further in Col. 2 that there are sets
of "duplicate" frequencies, as predicted by Silbiger [6]. These
correspond to the 2n+1 linearly independent nonaxisymmetric
modes expected for each value of the integer index, n, for each
branch.

Col.3: This is the appropriate value of the integer index, n, for
the frequency value listed. This index was identified by
comparing the ABAQUS-extracted frequency value of interest
with predictions of the various branches of the bending-
extensional (radial-tangential) modes given by Wilkinson [9] or
the torsional modes [15]. Note that, in some cases for the

particular geometry and material properties considered,
frequencies of different modes overlap and there is some
question of precise identification of the type, branch, and
integer index value, n. While the precise identification of each
mode does not appear essential here, what is significant is that
modes in some cases are extremely closely spaced, possibly
leading to a beating phenomenon and amplification of sub-
harmonics.

Col 4: This column identifies the applicable branch of the
observed modes.

Col. 5: This column gives the expected number of linearly
independent modes, 2n+1, as predicted by Silbiger [6].

Col. 6: These are the ABAQUS-extracted normal-mode
frequencies.

Col. 7: This column lists the number of observed modes from
ABAQUS. A comparison of columns 5 and 7 indicates that the
number of modes extracted by ABAQUS agrees precisely with
the number of theoretical nonaxisymmetric modes.
Examination of corresponding theoretical axisymmetric
frequency values (Col. 2) with ABAQUS-calculated values
indicates that agreement is excellent, at least for the lower
values of n shown.

Col. 8: This column contains corresponding nonaxisymmetric
ABAQUS modal extraction results for the full vessel model
(including nozzles). Frequencies are seen to be somewhat
similar to the nonaxisymmetric shell results, although because
of the true asymmetry in the model caused primarily by the
presence of the nozzles, each mode has a distinct frequency.
This is precisely the behavior predicted by Silbiger [6]: He
predicted that the degeneracy would be removed, and 2n+1
distinct frequencies for each integer index, n, would appear for
each branch.



TABLE 2

SELECTED NONAXISYMMETRIC COMPARISONS

MODE | REF. [9], | INDEX, | BRANCH | EXPECTED | ABAQUS | OBSERVED | CONTAINMENT
[15] n NUMBER FULL NUMBER VESSEL
1-3 0 1 (RB) Lower 3 Modes 0 3 Modes 0
4-6 0 1 (RB) Torsion 3 Modes 0 3 Modes 0
7 642.84 2 Lower 643.39 541.95
8 642.84 2 Lower 643.40 586.41
9 642.84 2 Lower 643.41 605.16
10 642.84 2 Lower 643.47 606.99
11 642.84 2 Lower 643.48 635.29
5 Modes 5 Modes
12 769.36 3 Lower 770.23 663.81
13 769.36 3 Lower 770.24 701.76
14 769.36 3 Lower 770.27 712.79
15 769.36 3 Lower 770.49 723.1
16 769.36 3 Lower 770.64 736.04
17 769.36 3 Lower 770.92 750.25
18 769.36 3 Lower 771.10 758.81
7 Modes 7 Modes
89 1460.7 0 Upper 1 Mode 1462.8 1 Mode 1421.5
137 1787.2 1 Upper 1791.6 1818.0
138 1787.2 1 Upper 1792.0 1865.6
139 1787.2 1 Upper 1792.2 1891.3
3 Modes 3 Modes

A comparison of spherical natural frequencies with the spherical
containment vessel (with nozzles) for the first 200 modes is
shown in Fig. 4.

5. EXPERIMENTAL OBSERVATIONS

The existence of 'lower branch' modes for dynamically
loaded spherical vessels was first reported by Baker [4]. Both
lower- and upper-branch participating modes were also reported
in [16] on a vessel similar to that investigated herein. The two
dominant (participating) modes were found to be the
fundamental membrane mode (1397 Hz) and a lower branch
mode at approximately 1100 Hz, based upon an FFT of a single
strain-time record taken on the vessel outer surface. Moreover,
Martineau [17] also performed an FFT of strain-time data
recorded during the dynamic (High Explosive) response process

on the outer surface of the vessel analyzed in this paper. He
found several participating modes, as shown in Table 3.
Comparisons with modal frequencies from ABAQUS
calculations are also indicated in Table 3. Note that, with the
exception of the 'fundamental' mode the precise identification of
the participating mode in Table 3 is not necessarily assured in
view of finite-element modeling approximations taken,
including the neglect of the rather significant spatial variation in
the vessel thickness due to the manufacturing process. It is
clear, however, that modes from both lower and upper branches
significantly participate in the transient vessel response, with
several participating modes below the so-called 'fundamental'
mode.



TABLE 3
A COMPARISON OF OBSERVED PARTICIPATING
MODES
EXPERIMENTAL ESTIMATED ESTIMATED
FREQUENCY, HZ BRANCH MODE
NUMBER, N
836 Lower 5
936 Lower 6
1025 Lower Unknown
1169 Lower 7
1357 Upper 0
('Fundamental')
1556 Lower or Upper Unknown
3.00E+03 T
2.50E+03 T
)
* 200E+03 T
5
T 150E+03 T
=
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Figure 4. Frequency Comparison for Complete Spherical
Shell Model and Spherical Containment Vessel

6. CONCLUSIONS

1. Based upon comparisons of theoretical predictions and
axisymmetric finite element simulations, ABAQUS predicts the
axisymmetric natural frequencies of a spherical shell with high
accuracy (The first 26 modes of the example investigated were
all well within one percent of corresponding theoretical values).

2. Corresponding nonaxisymmetric modes of a complete
spherical shell were also accurately predicted by ABAQUS.
Results confirmed the existence of the 2n+1 linearly
independent, degenerate modes at each discrete frequency
value. These degenerate modes, according to Silbiger, have
identical mode shape, but are independent because an axis of
symmetry cannot be uniquely be specified for a complete, free
spherical shell.

3. Calculations using ABAQUS for a similar containment
vessel with nozzles revealed that frequencies were somewhat
similar, as expected. However, each modal frequency was

found to be distinct, as predicted by Silbiger, suggesting that
mode shapes of nonaxisymmetric modes are unique in this case.

ACKNOWLEDGMENTS

This work was performed for the Los Alamos National
Laboratory under Contract No. W-7405-ENG-36 with the US
Department of Energy (DOE).

REFERENCES

1. J.J. White and B.D. Trott, "Scaling Law for the Elastic
Response of Spherical Explosion-Containment Vessels",
Experimental Mechanics, Vol. 20, No. 5, pp. 174-177 (1980).

2. W.E. Baker, "The Elastic-Plastic Response of thin
Spherical Shells to Internal Blast Loading", Journal of Applied
Mechanics, Vol. 27, pp. 139-144 (1960).

3. A. Whenhui, X. Honglu, A. Guangquan and GK. Schleyer,
"Dynamic Response of Cylindrical Explosive Chambers to
Internal Blast Loading Produced by a Concentrated Charge",
International Journal of Impact Engineering, Vol. 19, pp.
831-845 (1997).

4. W.E. Baker, "Axisymmetric Modes of Vibration of Thin
Spherical Shell", Journal of the Acoustical Society of
America, Vol. 33, pp. 1749-1758 (1961).

5. H. Lamb, "On the Vibrations of a Spherical Shell",
Proceedings of the London Mathematical Society, Vol. X1V, p.
50 (1883).

6. A. Silbiger, "Nonaxisymmetric Modes of Vibration of Thin
Spherical Shells", Journal of the Acoustical Society of
America, Vol. 38, pp. 367-368 (1965).

7. A. Kalnins, "Effect of Bending on Vibrations of Spherical
Shells", Journal of the Acoustical Society of America, Vol. 36,
pp- 74-81 (1964).

8. F.I. Niordson, "Free Vibrations of Thin Elastic Spherical
Shells", International Journal of Solids and Structures. Vol.
20, pp. 667-687 (1984).

9. J.P. Wilkinson, "Natural Frequencies of Closed Spherical
Shells", ", Journal of the Acoustical Society of America, Vol.
38, pp. 367-368 (1965).

10. A.H. Shah, C.V. Ramkrishnan, and S.K. Datta, "Three-
Dimensional and Shell-Theory Analysis of Elastic Waves in a
Hollow Sphere", Journal of Applied Mechanics, Vol. 36, pp.
431-439 (1969).

11. T. Hirai and M. Kuroda, "Analysis of Natural Vibrations
of a Spherical Shell with Variable Thickness", Journal of the
Acoustical Society of America, Vol. 86, pp. 1864-1875 (1989).

12. R.B. Evans, "Modal Impedances for Nonaxisymmetric
Vibrations of a Thin Spherical Shell", Journal of the
Acoustical Society of America, Vol. 100, pp. 1242-1245
(1996).



13. Anon., ABAQUS/Standard Example Problems Manual,
Hibbitt, Karlsson and Sorenson, Inc., pp. 3.1.1-1 - 8 (1997).

14. F.I. Niordson, "The Spectrum of Free Vibrations of a
Thin Elastic Spherical Shell", International Journal of Solids
and Structures, Vol. 24, pp. 947-961 (1988).

15. R.D. Blevins, Formulas for Natural Frequency and
Mode Shape, Krieger Publishing Co., pp. 328-330 (1984).

16. T.A. Duffey, W.E. Baker, B.B. Lewis and J.M. Greene,
"Containment of Explosions in Spherical Shells", Presented at
ASME Pressure Vessel and Piping Conference, July 1993,
Piping Supports and Structural Dynamics (A. Dermenjian,
Ed.), ASME PVP Vol. 264 (1993).

17. R. Martineau, Los Alamos National Laboratory, Personal
Communication, May 27, 1999.



	VIBRATION MODES OF SPHERICAL SHELLS AND CONTAINMENT VESSELS
	ABSTRACT
	1. INTRODUCTION
	2. LITERATURE SURVEY
	3. AXISYMMETRIC MODES OF VIBRATION
	4. NONAXISYMMETRIC MODES OF VIBRATION
	5. EXPERIMENTAL OBSERVATIONS
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

