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Quantum imitations of physical phenomena*

Gerardo Ortiz

Theoretical Diwviston, Los Alamos National Laboratory, USA

Abstract

Quantum imitation is an attempt to exploit quantum laws to
advantage, and thus accomplish efficient simulation of physical phe-
nomena. We discuss the fundamental concepts behind this new
paradigm of information processing, such as the connection be-
tween models of computation and physical systems, along with the
first imitation of a toy quantum many-body problem.

1 Introduction

Recently, a new paradigm in Information Theory and Computer Science
has emerged as a result of the application of the fundamental laws that
govern our real physical universe, i.e., Quantum Mechanics. Information is
fungible and physically realizable and, therefore, subjected to the laws of
physics that place limits on computation [1]. The close connection between
information processing and its physical realization is perhaps one of the
most remarkable aspects of this new paradigm whose set of ideas constitute
what is currently known as “Quantum Information and Computation”
[2]; the device that performs such manipulation of information is named
“quantum computer” (QC) and a fundamental unit of computation is the
quantum bit or qubit (a quantum two-level system).

In this way quantum computation represents a paradigm for informa-
tion processing that makes use of the laws of Quantum Mechanics and, as
such, is in principle independent of the particular experimental realization
of the QC. Indeed, in the following I will assume that a QC exists (i.e.,

*Different aspects of this work were done in collaboration with J.E. Gubernatis, E.
Knill, R. Laflamme, C. Negrevergne and R. Somma.
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will not discuss the important problem of quantum noise or decoherence)
and a natural question to address is what can be done with such a de-
vice that cannot be done efficiently with a classical computer (CC) (either
probabilistic or deterministic)? In this regard, the problem of simulating
physical phenomena and, in particular, studying the properties of matter
at very low temperatures is an obvious candidate since they are believed
to be problems with exponential complexity (both in space and time).

On a deterministic CC the difficulty is associated with the number
of resources needed to describe a quantum system, growing exponentially
with the size of the system. In other words, Hilbert space is too large. On a
probabilistic CC the situation is less clear [3, 4]. A particular class of such
problems deserving special attention are the fermionic ones. We all know
that the bottleneck with simulating fermionic systems on a probabilistic
CC is the infamous sign problem which makes the simulation exponentially
hard. One would like to know, for example, whether a QC reduces its
complexity to polynomial and we will see that this is case for certain sign
problems.

2 AN, PR S

HCBosons | | Spin12 )<~c( LiquidNMR ) { H@

‘VE % s < § = Y

Models | 3 : ]

of L AY Physical /
Computation | SAR'S Systems

E [ S ]

(Operator Algebra) | : 3 § § ?

f\ ",“Wl q
y

Spin32 ) { Fw <=>{ Electrons ? | $=3/2 atoms ?
- o

- 2 4
ey N SS -

1

Figure 1: Relationship between different models of computation (with their
associated operator algebras) and different physical systems. Question marks
refer to the present lack of a QC device using the corresponding elementary
physical components indicated in the box. Diamond-shaped arrows represent
the natural connection between physical system and operator language, while
arrows on the circle indicate the existence of isomorphisms of x-algebras, there-
fore, the corresponding simulation of one physical system by another.
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To be useful as a physics simulation device, a QC must answer ques-
tions about physical properties associated with real physical systems.
These questions are often concerned with the expectation values of spe-
cific measurements of a quantum state evolved from a specific initial state.
Consequently, the initialization, evolution, and measurement processes
must all be implementable with polynomial scaling [3]. Often it is diffi-
cult to do. Further, some classes of measurements, such as thermodynamic
ones, still lack well-defined workable algorithms. The hope is, however,
that quantum imitation is “more” efficient (less resources) than classical
simulation and there are examples that support such hope [3, 5].

2 Quantum Imitation of Physical Phenomena

Following Sections will introduce some of the most relevant concepts to
accomplish efficient quantum imitation of physical phenomena. *

2.1 Models of Computation and Physical Systems

A fundamental concept in quantum information processing is the connec-
tion of a quantum computational model to a physical system by transfor-
mations of closed operator algebras. The concept is a necessary one be-
cause in Quantum Mechanics each physical system is naturally associated
with a language of operators (for example, quantum spin-1/2 operators)
and thus to an algebra realizing this language (e.g., the Pauli spin alge-
bra generated by commuting quantum spin-1/2 operators). Any quantum
system defined by an algebra of operators generated by a set of “basic”
operators can be considered as a possible model of quantum computation
[3]. The remarkable fact is that an arbitrary physical system is simulat-
able by another physical system (or QC) whenever isomorphic mappings
(embeddings) between the two operator algebras exists. In each such case,
an important problem is to determine whether the simulation is efficient
(polynomial resource overhead) in terms of the “basic” generators. For
example, a nuclear spin (NMR) QC is modeled as a collection of quantum
spin-1/2 objects and described by the Pauli algebra. It can simulate a
system of *He atoms (with space discretized by a lattice) represented by

!Some ideas and examples described in the present Note have already appeared in
earlier work [3, 5.
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the hard-core bosonic algebra, and vice versa. In this case, the simulation
is efficient. Figure 1 summarizes this fundamental concept by giving a
variety of proposed physical models for QCs and associated usable op-
erator algebras. If one of these systems suffices as the universal model
of quantum computing, the mappings between the operator algebras es-
tablish the equivalence of the other physical models to it. This is one’s
intuitive expectation, and has a well-established mathematical basis [6].

A model of quantum computation requires physical systems that can
be controlled by modulating the parameters of the system’s Hamiltonian
(quantum control). The method for defining a model of quantum compu-
tation consists of giving an algebra of operators with a set of controllable
Hamiltonians (Hermitian operators in the algebra), a set of measurable
observables, and an initial state of the physical system. In physical terms,
specifying a model of computation amounts to respond the following ques-
tions: What is the state space?, What is the initial state?, How can states
be manipulated? and How do we get information about a state?

In the standard model of quantum computation, the qubit is the fun-
damental unit. A qubit’s state |¢) is a linear combination of the states

|0) and |1) (e.g, a spin 1/2 with |0) =|1), |1) = |})):
p) =al0)+0b 1),

where the complex numbers a and b are normalized to unity: |a|*+|b]? = 1.
Assigned to each qubit are the identity matrix 1 and the Pauli matrices

(10 _ (01 (0 (1 0
o) \1o) i o0) 0 1)

or equivalently 1, o4 = %(crw:lzicry), and o,. In this particular representa-
tion, the states |0) and |1) are the vectors:

= () = )

For a system of n qubits, the mathematical representation of the stan-
dard model is defined by a closed x-algebra (Pauli algebra) generated by

the operators a{l (u ==, y, or z) that act on the j'* qubit:

n factors
gi:i@ﬂ@...@ oh @...@ﬂ)
—~—

jth factor
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where ® represents a Kronecker product. The algebra satisfied by these
quantum operators is

i1 . J
[(T“,U,/] = 2i6ij€n0y

where [A, B] = AB — BA, and ¢, is the totally anti-symmetric Levi-
Civita symbol.

Control of qubits is achieved by applying Hamiltonians that act on
either one or two qubits. A theorem in quantum information processing
says that a generic operation on a single qubit and any interaction between
two qubits is sufficient for building any unitary operation. We take

Hp = lo, (1) o+ o, (1) o3 + (i) olel, (1)

where the «,(t) are controllable as our control Hamiltonian for universal
computation.

Similarly, we now describe a model of anyonic computation. The basic
unit of this model is a state (or anyonic mode) that can be occupied by 0
or 1 anyon. We define the model through the algebra of anyon operators
a; and a} for each qubit j (j = 1,--- ,n), i.e., through the algebra of 2n
elements satisfying canonical equal-time commutation relations ([A4, Bl =
AB — e?BA, with 0 < 0 < 2m)

{[ai,aj]e = [a},ally =0,

la,,al] 5 =6i;(1 = (e + 1)n;) , [ni,al] = 650!,
where n; = a}aj and 6 = m mod(27) corresponds to canonical fermions,

while § = 0 mod(27) represents hard-core bosons [7]. All statistical angles
 correspond to the situation where one can only put up to a single particle
per single quantum state (mode) (i.e, the particles are “hard-core”). In
other words, all these anyons satisfy the Pauli exclusion principle with
(al)? = 0.

In this case we take

Hp =3 [oy(t)a; + & (0a] + 3" iy (t) (ela, + ala; ) +8,(0) min, . (2)

7

as the control Hamiltonian. Physical operators must be (Hermitian) prod-
ucts of even degree involving combinations of the creation and annihilation
operators such as the terms in the last two summands of Hp.
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2.2 Equivalence of Models

One could in principle use any of the two models introduced in previ-
ous Section to perform computation and, therefore, simulate a particular
physical phenomenon. These were just particular examples. On the other
hand, if it is possible to efficiently simulate the anyonic model by the
standard model (or vice versa) then these two models of computation are
equivalent. Indeed, the crux of the proof is the one-to-one mapping be-
tween the anyonic and Pauli algebras. The isomorphism is established
through the generalization of the Jordan-Wigner mapping [6, 8]

o =K, (0) a}

J

ol = ajK}(G)

ol =2n; —1
where the statistical operator K;(#) is given by

K;(0) = =i = T[1 + (¥ = 1) ni]
i<j

since n? = n; (for any # mod(27)), and satisfy Kj(G)K}(G) = K} (0)K;(0) =

2=
1. The inverse mapping is:

( e 41 e 1 i1 i
o =11l + oi] o

L 2 2
' 16 16 1
$ . e’ +1 e -1, .
o=t gl
1<J

Ly =3(1400).

Given the polynomial scaling of the mappings (regardless of the spatial
dimensionality of the lattice [5, 6]), it is always possible to efficiently map a
general anyon Hamiltonian to Pauli operators which can then be simulated
using the control Hamiltonians of the standard model. This establishes
that these two models of computation are polynomially equivalent. So the
quantum imitation using anyons is efficient if the standard model imitation
is efficient (and vice versa).
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Figure 2: Schematics of a quantum algorithm: W is the initial state, U;’s are
unitary operators, O is an observable and ¢? is the variance. For an efficient
imitation one needs all steps in this chain to scale polynomially with complexity.

2.3 Quantum Network Representation of Physical Phenomena

Ideally, no constraints on the control functions are assumed in Eqgs. 1 and
2. However, it is often simpler to design the required control by assuming
that only one of the «,(t) is non-zero at any time (quantum gate). A
quantum algorithm for this model of quantum computation consists of
prescribing the control functions «,(t) [3]. For example, for the fermionic
model a universal set of quantum gates is

o5 (ala; fas) ol (ala)ta a:) PG

NN
s .

In the quantum network representation of the fermionic model, an algo-
rithm is a specific sequence of these operators (quantum gates) applied to
the initial state.

Like the simulation of a physical system on a CC, the simulation of a
physical system on a QC has four basic steps (see Fig. 2): the preparation
of an initial state, the unitary evolution of the initial state (the core of the
algorithm), the quantum measurement of the physical properties of the
evolved state, and error control. We will consider each process in turn,
but first we note that on a QC there is another important consideration,
namely, the relationship of the operator algebra natural to the physical
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system to the algebra of the quantum network. Fortunately, the mappings
(i.e., isomorphisms) between arbitrary representations of Lie algebras are
now known [6] and previous Sections showed an example.

The mappings between algebras, between an algebra and a physical
system, and between physical systems are necessary in order to be able to
simulate physical systems using a QC fabricated on the basis of another
system. However, this does not imply that the simulation of a particular
physical phenomenon is efficiently implementable. As we have previously
discussed [3], efficient quantum computation involves more than having
the ability to represent 2™ different items of classical information so that
the algebra of n qubits can be isomorphically represented and quantum
parallelism can be exploited. The main focus of Ref. [3] was demonstrating
that a particular problem for simulating fermions (i.e., § = 7) on a CC,
called the dynamical sign problem, does not exist on a QC. This amounts
to prove the polynomial scaling of the construction of the initial state,
its subsequent time propagation, measurement of some observables and
control of the error in the results. Similar ideas can be followed to prove
polynomial complexity in the anyonic case [9].

2.4 Resonant Impurity Scattering: An elementary example

To illustrate the concepts described above consider the simulation of a
very simple physical phenomenon, using a QC with quantum spin-1/2
basic units (e.g., liquid NMR). The system to be imitated is described by
the Fano-Anderson Hamiltonian
n V n
H=-— Z(c}cﬁl + c;f#lcj) +edd+ NG Z(c}d +die)) c}m = c;f» ,

Jj=1 j=1

where ¢’s and d represent two different types of fermionic operators with
the index j labeling the lattice sites (R; = ja). Suppose that the system
is prepared in the initial state with N, < n fermions

N.—1 n
w) = [ divac), = =3 o ol
i=0 j=1
where k; = % , with m; an integer (—Z <k < Z). At ¢t = 0", a particle

is injected into the impurity state d, what is the probability amplitude that
the evolved state remains in the initial state ?
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This choice of problem is motivated by the existence of an exact an-
alytic solution and the fact that it reduces to a quantum network with
three qubits (two qubits for the system and one qubit for measurement),
therefore, being amenable to simulation in a real liquid NMR QC.

Let’s show how to write a quantum algorithm to answer that question.
As shown in Refs. [3] and [5] the initial state can easily be prepared
with polynomial complexity. An efficient dictionary between algebras is
realized through the mapping

_ 1 P 1
d=o" d'=o;
_ 1_2 [ 1,2
Cp, = —0,0° ¢, = —0507%
2
O,y = (=1)"0r07 - oTo™ ct, , = (~1)rolo- oot
which leads to the translated Hamiltonian operator (&, = —2cos ka)

2H =

n—1 n—1
€+ Z 5;61.] 1+ eot+ Z Eno 1 V(oto? + ola?)

)
=0 =0

written in terms of the basic elements of the Pauli algebra (i.e., the oper-
ator language of our QC). The physical quantity to be computed is

G(t) = (T(0)|d(t)d (0)|T(0)) , d(t) = Tt d(0) e H*
which clearly reduces the computation to a two qubits problem since

d(t)d'(0) = el e ol

with

- V
H = %o; — o2 4 5(0”1’0‘3 + 0505) )

There are some symmetries in our Hamiltonian H that simplify the ex-
pression for the correlation function G/(t); one can easily verify that

G(t) = <eiﬁtai6_im0;> .

A third qubit is needed for the measurement step [3, 5]: First, we prepare
the system in the initial state |¥(0)) = |¥,) and adjoin to it one ancilla



10 G. Ortiz

(203)

—C)

[Wo)

<
-

Figure 3: Measurement of the physical quantity G(¢) using one extra (ancilla)
qubit [a). In this case (203) = (¥o|UTV|¥() = G ().

(auxiliary) qubit a, in the state |[+) = (|0) 4+ [1))/+/2. This is done by
applying the unitary Hadamard gate to the state |0) [2]. Next, we make
two controlled unitary evolutions using the C-V and C-U gates. The first
operation V evolves the system by V = 6_“;”0'117 if the ancilla is in the state
|1): V =10)(0| ® 14 [1)(1| ® V. The second one U evolves the system by

U = (¢f'e])! if the ancilla state is [0): U = [0)(0| @ U + |1)(1]| @ 1. (V
and U commute.) Once these evolutions are done, the expectation value
of 203 = 02 + i0] gives the desired result (UTV) = G(t). This quantum
circuit is shown in Fig. 3. Note that the probabilistic nature of quantum
measurements implies that the desired expectation value is obtained with
variance O(1) for each instance. Repetition can be used to reduce the
variance below what is required.

To run the simulation on a liquid NMR QC we still need to perform
a decomposition of the unitary operations in terms of one qubit rotations

and two qubit interactions. This is easily and exactly accomplished in this

case (200 = A_ £ /A2 +V2 AL = (e£2)/2):

T =Y T YT with Hp, = a_ol + apo? and

4

U = €'5% o V5% 120202 gl 50y o130z 01505 o150y ot

where cos? = 1/v/1 + 6% with § = (A} + /A% +V?)/V. Figure 4 shows

the result of the simulation.

152 ;w21 o 2

g,0 —1 50 150

zVz 47T 47y
e e ,

MY



Quantum imitations of physical phenomena 11

Re G(t) Im G(t)

0.5

-0.5 | e == . P o oot
£

0 0.5 1 1.5 2 0 0.5 1 1.5 2 25

Figure 4: Real and Imaginary parts of G(t) for e = —8, V = 4. The continuous
curves represent the exact solution while the open circles indicate the result of
a simulation on a liquid NMR QC. The insets display the difference.

3 Concluding Remarks

The power of QCs over traditional computers lies in the fact that they can
access and manipulate arbitrary superpositions of states, a feature known
as quantum parallelism. Surprisingly, there are quantum computations,
such as quantum physics simulations, with even a modest number (40) of
qubits that are impossible for the biggest present day deterministic CCs.
The ability to perform efficient quantum physics simulations for many
degrees of freedom will bring new understanding and permit accurate pre-
diction of the dynamics of complex quantum systems. The fact that even
small numbers of qubits suffice for non-trivial computations leads to new
insights into why QCs are so much more powerful.

At present, we are developing efficient algorithms for quantum physics
simulations which can be implemented in present and proposed hardware
for QCs, and we are studying the origin of the power of QCs. The con-
cepts presented in this Note constitute the very first steps of a different
way of thinking in simulation physics and information theory. Clearly, a
number of challenges for the efficient simulation of physical systems on a
quantum network remain. We are prioritizing our research on those issues
associated with problems that are extremely difficult for quantum many-
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body scientists to solve on CCs. Questions I would like to be answered in
the next few years include: Can we find an interesting physics simulation
problem that a QC can solve impossible to address with a CC? (Let’s say
with O(100) qubits). Can we efficiently simulate a continuous Quantum
Field Theory with a discrete QC? Quantum Control: Is there any physical
limitation to what can be really achieved?
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