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K.U. Kasemir, M.Pieck, L.R. Dalesio, LANL, Los Alamos, NM 87544, USA

Abstract

Being easy to learn and well suited for a self-
contained desktop laboratory setup, many casual pro-
grammers prefer to use the National Instruments Lab-
VIEW environment to develop their logic. An ActiveX
interface is presented that allows integration into a
plant-wide distributed environment based on the Ex-
perimental Physics and Industrial Control System
(EPICS). This paper discusses the design decisions and
provides performance information, especially consider-
ing requirements for the Spallation Neutron Source
(SNS) diagnostics system.

1 INTRODUCTION

EPICS is a highly configurable toolset for building
distributed control systems that scale to accommodate
large projects[1]. It has C and C++ interfaces for the
integration of new hardware and software[2], full
source code is available.

While this provides the best performance, highest
flexibility and is easily understood by experienced pro-
grammers, the initial EPICS setup does already require
a network connection and two computers: the real time
target and a Unix or Win32 (Windows NT, 9%, 2000)
host. Some application engineers who are unfamiliar
with the multifaceted EPICS toolset prefer to start with
a purely visual environment on a single PC. LabVIEW
is a tool where the engineer most familiar with the ap-
plication task can quickly start the implementation.
This paper presents ways of integrating LabVIEW into
the distributed EPICS environment.

2 EPICS CHANNEL ACCESS

EPICS communicates via the ChannelAccess (CA)
network protocol. Front-end input/output controllers
(IOCs) run a CA server, presenting values as well as
time stamps, limits, units, alarm status and other attrib-
utes. CA clients locate the server based on channel
names. They establish a connection and subscribe to
changes in value or connection status. Management of
the connection status as well as high throughput are key
features of CA [3,4].

CA server and client libraries are available to C/C++
software on Unix and Win32. Since the CA libraries
need to monitor network connections for incoming re-
quests and data, the user program has to implement
periodic calls into the CA libraries. The CA server

monitors a dedicated UDP port for search requests. It is
therefore suggested to run only one CA server per
computer since an additional server would use a non-
standard UDP port, unknown to most CA clients.

3 LABVIEW EXTENSION OPTIONS

LabVIEW can call Win32 DLLs, communicate via
ActiveX and DDE or perform low-level UDP/TCP
network calls. Using the latter would result in a re-write
of the CA libraries. Since LabVIEW code is unlikely to
compete with a C/C++ implementation, this was not
attempted. Using the CA libraries as DLLs is problem-
atic because LabVIEW would have to initiate the peri-
odic network processing.

DDE has been used for the CA client library: A sepa-
rate program implemented the periodic processing of
CA network connections, presenting the data to Math-
Works MATLAB via DDE[2]. LabVIEW can use this
DDE interface, but DDE is deprecated with the advent
of newer technologies, namely Win32 COM (Compo-
nent Object Model) and ActiveX[5].

4 ACTIVEX CA SUPPORT

Two ActiveX Automation Server programs interface
to the CA server respectively client library. Every
COM-aware Win32 program can create an ‘EpicsCA-
Server.ProcessVariable’ or ‘EpicsCAClient.Process-
Variable’. COM marshals requests from different proc-
esses into a single thread, avoiding threading problems
in the CA library. More than one program can transpar-
ently use the same instance of the CA server or client.
LabVIEW, MATLAB, Microsoft Visual Basic and
Visual C++ offer interactive browsing of COM objects,
modification of published properties (‘name’, ‘units’,
etc.), invocation of methods (‘setValue’, ...) and reac-
tion to events (‘Changed’, ‘NewValue”).

Several LabVIEW VIs shield the user from the un-
derlying COM calls. Serving a number is reduced to
one initial call to a “Create” VI that takes the name of
the new process variable, followed by calls to a “Set”
VI whenever the value changes, see Fig. 1. In this ex-
ample LabVIEW serves a read-only process variable to
EPICS clients. Fig. 2 shows a more realistic setup as
suitable for a setpoint, a variable that is to be changed
both locally on the LabVIEW front panel and remotely
via a CA client. After creating a process variable for
the setpoint, additional informational parameters are



configured and then the value of a user interface knob
on the front panel is served. In addition, LabVIEW
polls for input from CA and modifies the value of the
knob in response.

Figure 1: Serving a random number from LabVIEW

While other languages can asynchronously react to
ActiveX events, invoking callbacks immediately after
the event arrives, LabVIEW offers only a polling or
waiting mechanism to check for events.

5 PERFORMANCE

The COM call to update the value of one process
variable requires 0.14 milliseconds for LabVIEW on a
900 MHz Pentium PC, increasing with the data size.
Times for Visual Basic, a compiled language, are
slightly better (Table 1). Repeated measurements
showed variations of up to 15% on a Windows NT
4.0 PC because neither LabVIEW nor Win32 are de-
terministic. The CPU load was at 100% in these tests,
leaving no time for the CA server to actually respond to
client requests. In a realistic setup delays will be
needed to allow for CA client interaction.

The measured times reflect the overhead of COM
calls. They also apply when the CA server sends an
event to LabVIEW. Every time an operator changes a
setpoint on an EPICS operator screen, LabVIEW has to
receive this value (1 COM call), maybe constrict it to
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the allowed operating range and post the result to the
server (1 COM call), resulting in an expected overhead
of 0.28 ms per value.

Table 1: Times for updating data on the ActiveX CA
server

Data Served | LabVIEW | Visual Basic

Double 0.14 ms 0.08 ms
Double[100] 0.20 ms 0.16 ms
Double[500] 0.45 ms 0.40 ms
Double[1000] 0.75 ms 0.77 ms

Scaled linearly, one could serve around 700 values at
10 Hz. In reality, different timings result depending on
the implementation. As an example, handling 10 set-
point variables in a loop required 7 ms, 100 variables
required 70 ms. An alternative parallel implementation
handled 10 setpoints in only 0.50 ms. While faster than
the loop, this is impractical for many setpoints because
the resulting LabVIEW diagram is indecipherable.

The Low Energy Demonstration Accelerator
(LEDA) at the Los Alamos Neutron Science Center has
several operational LabVIEW systems. One handles 10
power supplies for 52 magnets, 8 ion pumps, 3 ion
gauges, 3 beam line valves plus 40 thermocouples. The
readbacks and status values result in a channel count of
about 525, there are ~175 setpoints for outputs and
interlock limits. LabVIEW polls for user input between
handling the hardware, reaction times are 1-2 seconds.
In another LEDA system LabVIEW controls 20 power
supplies via GPIB, resulting in ~140 channels. Lab-
VIEW has to generate the GPIB commands and then
wait for a response. Though the sequence of sending
and receiving GPIB messages has been optimized, the
reaction to user input is 3s or more, still acceptable for
the specific system.

If there is a new walue received via CA,
change the Knob ('walue') via a local variable
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Figure 2: Serving a setpoint from the LabVIEW front panel, responding to CA input.



6 SNS DIAGNOSTICS ISSUES

SNS diagnostics systems like the beam position
monitors (BPM) require handling of up to 100 setpoints
while sending the measured beam parameters at 10 Hz.
We assume four values. Since the beam is pulsed at
60 Hz, this higher update rate is desirable at certain
times. All data is to be time-stamped according to in-
formation sent on the real-time data link (RTDL). Oc-
casionally, measurements are to be taken in response to
an event link signal. The system shall respond to user
input within 1s. On demand, array information about a
full beam pulse of 2500 samples shall be provided, but
since this is allowed to cause delays we will ignore it in
the following discussion.

With LabVIEW updating four values at 60 Hz and
handling 100 setpoints, at least 0.9s of each second are
left for processing the diagnostics hardware. Limited by
polled operation, LabVIEW cannot asynchronously
respond to event-link signals or retrieve the current
time stamp in a deterministic manner. A solution is to
monitor the event link and RTDL in hardware, time-
stamp the data in hardware and have LabVIEW only
read the result. The ActiveX CA Server was recently
extended so that LabVIEW can pass these time-
stamped values.

Since the planned diagnostics hardware is for the
PCI bus and LabVIEW cannot directly access it, a
Win32 device driver is required, written in C or C++.
Its implementation might be simplified by basing it on
commercially available real-time extension software for
Win32.

Past experience has shown problems related to set-
points. In a conventional EPICS IOC, they are simply
named and response to user input is instantaneous. A
LabVIEW program has to check for user input and
react to it. When this is done in sequence with the re-
maining program tasks, delays of several seconds have
been observed. While LabVIEW does offer multi-
threading for handling this in parallel, the arising
threading issues require advanced LabVIEW training.

Another proposal for the SNS diagnostics is to keep
the diagnostics systems minimal, resulting in one PC
per BPM running LabVIEW, and use an ordinary
EPICS IOC to collect and correlate data across BPMs
to provide consistent information for beam orbits.

CONCLUSION

We presented a way of integrating LabVIEW and
other Win32 programs (MATLAB, Visual Basic) into a

distributed EPICS environment. The ActiveX interface
to CA is easy to learn. It is ideal for small LabVIEW
systems, especially temporary setups like beam-line
experiments. It is used successfully at LEDA for opera-
tional systems with several hundred process variables.

The current performance measurements together
with recent enhancements suggested that LabVIEW,
integrated via ActiveX, could meet SNS requirements,
although this is neither a pure nor a simple LabVIEW
implementation.

A new system like the SNS BPMs naturally involves
both new hardware and software. For an EPICS 10C,
the required BPM driver, a C program, would handle
the data from several BPMs, using the same event and
RTDL support as other SNS I0Cs. In a LabVIEW im-
plementation, the processing of event and time stamp
data has to be implemented in hardware or the C/C++
driver program, which is needed so that LabVIEW can
access the hardware on the PCI bus. In addition, an
EPICS IOC could still be needed to correlate data
across BPMs.

It must be noted that the performance of LabVIEW
systems is highly dependent on the specific implemen-
tation; we exemplified this with regard to setpoints and
reaction times. And while EPICS IOCs have a known,
reasonable degradation with network load, where the
system will stop responding to network requests but
still perform local control, this is not possible with a
LabVIEW/ActiveX approach because each COM call
is a round-trip request. When the ActiveX CA server
suffers from heavy network load, the LabVIEW pro-
gram will degrade accordingly.
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