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Abstract

Metamodeling, also known as response surface analysis, is the
de facto standard for mathematical representation of complex
phenomena in many fields, especially when first principles
physical relationships are not well-defined, e.g. economics,
climatology, and government policy. Metamodels provide a
computationally efficient, low-dimension relationship for
studying the behavior of a physical system. They can be used for
understanding the physical system, predicting its response,
optimizing its design or the parameters in a physical model, and
performing verification and validation. [1] Metamodels can be
derived from simulation results or fit directly to observed test
data. [2]

In structural dynamics, typical practice is to develop a first-
principles-based model such as a finite element model to study
the behavior of the system. However, it is common that the
features of interest in a structural dynamics simulation are
relatively low order (e.g. first few modal frequencies, peak
acceleration at certain locations) and sensitive to relatively few
model and simulation parameters. In these cases, metamodeling
provides a convenient format to facilitate activities of model
validation, including parameter screening, sensitivity analysis
[3], uncertainty analysis, and test/analysis correlation.

This paper describes the creation of metamodels, and presents
some examples of how metamodels can be employed to
facilitate model validation for nonlinear structural dynamic
response simulation.

Overview of Model Validation
The purpose of this paper is threefold:

a) To discuss some of the philosophical issues
surrounding the validation of computational models
for structural dynamics response simulation

b) To present a paradigm for model validation that goes
beyond the realm of test/analysis correlation

c¢) To examine a supporting tool for simplified modeling
and error metric definition known as “metamodeling”

Model validation is a topic that is beginning to receive
significant attention in the structural dynamics literature. Owing
mainly to its roots in the field of test/analysis correlation of
modal vibration models, model validation has been approached
mainly from the standpoint of comparisons of model predictions
with real-world measurements to make a statement about the
accuracy of the prediction, and hence, the underlying model. In
the aerospace industry, there are even formal acceptance criteria
for the required accuracy of modal parameter predictions. [4]
The implication of such acceptance criteria is that once the
predictions have demonstrated sufficient correlation with
experimental data, then the model can be trusted to accurately
predict the response of the structure.

But is agreement with some set of experimental measurements a
sufficient criterion to deem a model “trustworthy?” To explore
this issue, consider the following sample of definitions of model
validation taking from various sources:

a) “The process of determining the degree to which a
computer simulation is an accurate representation of
the real world, from the perspective of the intended
uses of the model” [5]

b) “Solving the right equations” [6]

c¢) “The substantiation that a model within its domain of
applicability possesses a satisfactory range of accuracy
consistent with the intended applications of the
model” [7]

All three of these definitions cover the general idea of model
validation, and each of them emphasizes a particular aspect.
However, the third definition above (from the simulation
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sciences literature) contains some keywords that give significant
insight into the true objectives of model validation:

a) Accuracy: The agreement of the simulation prediction
with some reference data set considered to represent
"reality" (the referent is generally derived from an
experimental result)

b) Satisfactory: Recognition that the accuracy referred
to above is not absolute -- the objective is to
demonstrate an adequate level of accuracy. This
recognizes that there is always uncertainty present in
the simulation model, the simulation input parameters,
and the experimental measurements.

c¢) Domain: The validation of a model can only be
defined over a prescribed domain of the simulation
input parameters. This domain needs to be specified
whenever a statement about the model's validity is
made.

d) Applications: What the model will be used to
analyze. The application drives the predictive
requirements of the model.

So a more complete view of model validation incorporates not
only the ideas of accuracy for a particular application, but
recognizes that this accuracy is satisfactory, not absolute, and
that there exists a region of validity for the prediction over some
domain of the simulation parameters.

As an aside regarding predictive accuracy, consider what is
meant by the term “predictive.” Can an finite element (FE)
model accurately simulate the results of an experiment purely by
knowledge of the input parameter values, without prior
knowledge of the values of the measured response? The term
“predictive accuracy” is used quite frequently in discussions
about model validation, but in attempting to quantify predictive
accuracy, it is not clear that there is any theoretical construct to
define what it is or how it is measured. Consider the following
extracts from a discussion in Ref. [8] regarding Ref. [5]:

“Prediction: Use of a computational model to foretell the
state of a physical system under conditions for which the
computational model has not been validated” Prediction
refers to a simulation result for a specific case of interest
that is different from cases that have been validated. It is
important to define whether a particular prediction is
“interpolative” or “extrapolative” with respect to the
parameter values of the experimental cases used to validate
the model. The tendency would be to trust interpolative
predictions more than extrapolative predictions.

A distinction should also be drawn between “model validation”
as discussed here and the ‘“Verification, Validation, and
Accreditation (VV&A)” of computational codes, as discussed in
Ref. [6]. VV&A generally refers to the determination and
certification that a computational code performs its functions in
a computationally proper way and that the results are
mathematically correct to some acceptable level of numerical
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precision. Model validation (as used here) refers to the code
being used correctly to model a particular instance of physical
phenomena. For example, the FE code could represent Coulomb
friction “correctly” (as determined by VV&A), but if the user
selects the wrong friction coefficients to model a given
assembly, or if Coulomb friction is not an adequate model form
for the phenomenon, the resulting model will not be valid.

Another way to look at this issue is the proper operation of a
tool (e.g. the FE code) vs. the proper use of that tool for a
particular application (e.g. a model of a particular structure
under loading). The tool can work exactly the way that it is
supposed to, and yet the tool can be used incorrectly for a
specific situation. For example, a circular saw may be in perfect
working order and have an excellent design, but if one uses it to
drive nails one will be very disappointed (and possible severely
injured!) It is the correct usage of the tool (as opposed to the
correct functioning of the tool) that is of interest here. The tool
has been verified against operational standards, but is it a valid
instance of the proper tool for the job?

This introduction has presented many issues regarding the
definitions and issues surrounding model validation. In the
remainder of this paper, the intent is to present a broader view of
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Figure 1: The Paradigm of Validated Simulations Shown with
Model Validation Tasks

the tasks supporting model validation, as well as explore
metamodeling as a useful tool for performing these model
validation tasks.

Model Validation —
Beyond Test/Analysis Correlation

If the objective of computational structural mechanics is the
development of validated simulations, consider the diagram of
the technologies involved in such an endeavor, as shown in
Figure 1: Predictive Simulations, Experimental Diagnostics, and
Data Interrogation. The intersection of these three technologies
is validated simulations, the goal of the computational structural
mechanics modeling process.

In order to declare a model to be valid (that is, to predict the
quantities of interest to satisfactory accuracy for the application



of interest over a specified parameter domain), several tasks
must be performed. These tasks are categorized here under the
general “process of model validation.” They exist in the regions
of intersection as shown in Figure 1.

a) Response Feature Definition
b) Sensitivity Analysis

c) Test/Analysis Correlation

d) Uncertainty Analysis.

Response feature definition involves the selection of what
particular numerical aspects of the simulation and experimental
output are of interest. A feature can be any numerical value that
is extracted from the signals. Examples of common features are
modal frequency, peak acceleration, peak stress, and temporal
moment. Features have certain desirable properties such as low
dimensionality and computational efficiency. Features should
always be dictated by the application of interest for the
model, as well as what is measurable from a practical
standpoint. For example, modal frequency may not be the best
feature of interest when the model will be used to predict peak
acceleration levels under a high-frequency shock. Definition of
appropriate features is crucial to the model validation process
because which features are selected will drive all of the other
model validation tasks.

Sensitivity analysis is simply the analysis of the influence of the
model input parameters on the response features of interest. The
goals of sensitivity analysis include identifying which model
input parameters (e.g. material properties, geometry, loading,
contact) or combinations of input parameters exhibit the most
influence on the response features. This process is known as
parameter effects analysis, and it facilitates parameter
screening, or reducing the number of input parameters by
eliminating those that have little effect on the features of
interest. Sensitivity analysis is performed on the computational
model; generally it is not necessary to have experimental data to
perform this task. However, sensitivity analysis can help to
prioritize which parameters should be controlled and/or
measured during the validation experiments. Thus, it is generally
advisable to perform sensitivity analysis prior to planning the
validation experiments. Basic sensitivity analysis techniques
include the determination of local gradients at points in the
parameter space. Advanced sensitivity analysis techniques
utilize the power of design of experiments (DoE) to perform
model evaluations at key combinations of parameters throughout
the parameter space. [3] Thus, the influence of input parameters
on the response features of interest can be diagnosed with a
minimal number of simulation runs. Formulation of a
metamodel for the simulation response features can be a useful
aid when performing SA.

Test/analysis correlation (TAC) is the “meat” of the model
validation process. TAC is the comparison of features from the
simulation model prediction with corresponding quantities from
experimental measurements in order to assess the “accuracy” of
the prediction. Generally a metric is defined that assesses the
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error between the measured and simulated features. This metric
can be a simple mathematical norm, such as a Euclidian
distance, or it can be a statistical test, such as the Kullback-
Leibler maximum entropy. [12] Generally speaking, TAC is the
process of assessing the fidelity of the simulated feature values
with respect to the measured feature values, whereas validity
refers to the suitability or trustworthiness of the model for a
particular application [9].

While much technology exists to perform comparisons between
response features in this way, there are many issues not
sufficiently addressed in the modern literature. For example, we
know that the validity of the model must be defined over a
certain region in the parameter space. But at what points in the
parameter space should these experiments be conducted? How
do we define an appropriate distance metric for a
multidimensional input space? How do assessments of model
fidelity at discrete locations in the input parameter space yield
confidence in the model over the entire space? Metamodeling
will provide a construct where we can begin to answer some of
these questions.

Uncertainty analysis (UA) is the process of: (a) Propagating
uncertainties from the input parameters through the simulation
to the output features (i.e. assessing how much variability is
expected in the output as a function of input variability); and (b)
Assessment of uncertainties in the experimental measurements
and attributing these observed uncertainties to the appropriate
sources. While mathematical techniques exist to perform both of
these tasks, most are sampling-based and require repeated
evaluations of the simulation, which can become
computationally expensive. Metamodeling can help ease this
burden by providing a fast-running surrogate for the full
simulation model.

In the remainder of this paper, we will focus on the
mathematical technique of metamodeling and explore its
usefulness for completing these primary tasks of model
validation.

Metamodeling — What is it?

A metamodel is a relatively simple mathematical relationship
that provides an approximation of the input/output relationship
created by the FE simulation. The term “metamodel” is often
used interchangeably with the terms “response surface model,”
“black-box model,” “surrogate model,” or “reduced-order
model.” It can take the form of a polynomial, a sinusoid, a
neural network, a set of differential equations, etc.

Think of the FE simulation as a mathematical engine that
processes inputs and yields outputs. The response features (or
simply “features”) are the outputs of the simulation that are of
interest. A feature can be a time history, a peak stress, a modal
frequency, etc. The input parameters (or simply “parameters”, or
in DoE language, “factors”) are the inputs to the simulation that
are of interest. These could be boundary or initial conditions,
material properties, friction coefficients, modal damping ratios,
etc.
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Figure 2: Metamodel as a Surrogate for the FE Simulation

As shown in Figure 2, the metamodel takes the place of the FE
simulation in the computational process, becoming a surrogate
that is typically of much smaller size and computational cost
than the FE simulation.

The metamodel can be visualized as surface plot for 2 input
parameters at a time, as shown in Figure 3. The metamodel is a
scalar function of multi-dimensional inputs. (Thus for multi-
dimensional features, one metamodel is required for each
dimension). As shown in Figure 3, the dependent variable
(ordinate) is a response feature. The independent variables
(abscissas) are simulation input parameters. There can be an
unlimited number of input parameters in the metamodel, but the
required data and number of simulation runs increases
dramatically with the dimension of the input space.

The relationship of the problem entity, the simulation model,
and the metamodel is shown in Figure 4 (adapted from Ref. [1]).
The three “models” represent increasing levels of abstraction,
each to be “validated” with respect to another. While the
simulation model might represent the response of the aircraft to
a higher level of fidelity, the metamodel might provide a more
convenient representation to perform an uncertainty analysis
(because of lower computational cost per run). From an
engineering point of view, the key is to eliminate from the
model those physical phenomena and parameters that have no
effect on the response features of interest, while still preserving
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Figure 3: A Response Surface Visualization of a Multi-
Dimensional Metamodel

the correct relationship between the key input parameters and
the key response features of interest.

In many engineering applications of interest, both the response
feature space and the space of influential parameters are of low
dimension, facilitating the use of metamodels for validation
tasks.

Metamodeling — How is it done?

To create a metamodel that will serve as a surrogate for the FE
simulation model, the basic process is one of calculating
predicted values of the features at various sample points in the
parameter space by performing a simulation at each of those
points. Then regression techniques are used to fit the appropriate
metamodel form to the sampled data. The general idea is shown
in Figure 5: A number of feature values from simulation runs
across the parameter domain are fit with a metamodel. The key
is to select the parameters carefully, to minimize the number of
dimensions in the parameter space, and then to select the
combinations of parameter values where the simulation is
performed.
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Figure 5: Metamodel is Fit to Feature Values from Simulations at Samples in the Parameter Space

The first step is the selection of the parameters over which the
metamodel will be generated. Generally, results of preliminary
sensitivity runs or expert judgment/experience are helpful in
selecting a candidate set of parameters. Also included in this
step is the selection of value ranges for these parameters. The
range selected for each parameter should reflect the range that
one expects to observe for the domain of the prediction of
interest. Generally it is desirable to select the range of the
parameters so that there is a slight overshoot of the expected
parameter values. This overshoot will ensure that predictions
made with the metamodel over the domain of interest will be
interpolative rather than extrapolative.

The second step of metamodeling is the selection of samples of
the parameter values at which to perform the simulation runs. A
number of “vectors” are selected, where each entry in the vector
is one of the simulation input parameters. The use of DoE
techniques is helpful for this step. [2] DoE techniques define a
number of “levels,” or discrete values, for each parameter. For
example, a three-level design uses the high and low value, plus a
mean value, for each parameter. The DoE techniques are
distinguished from each other in both how many levels are used
per parameter, as well as what combinations of the parameter
levels are selected for the simulation runs. It is important to
know the intended form of the metamodel at this point, because
the form will dictate what type of design is appropriate. For
example, if a quadratic metamodel is selected, then at least three
levels will be required for each parameter, preferably more.

A popular experiment design for exploration of the parameter
space is the central composite design (CCD). [2] The CCD
specifies a “ring” of points around the mean value to define the
shape of the simulation response in all directions in the
parameter space. It can be visualized for a 2-parameter space as
shown in Figure 6. The design includes “factorial” points to
separate the linear effects of parameters from each other and
“axial” points to help define the curvature of the metamodel in
each direction. It features an overshoot of the domain of interest
as shown in the figure, to ensure that predictions will be

interpolative. (For design of physical, rather than computational,
experiments, the CCD also features repetitions at the center
point to estimate the magnitude of the purely random error.) The
CCD is intended primarily for use with quadratic metamodels
with interactions (cross-effects terms).

The third step in metamodel generation is the evaluation of the
FE simulation at each of the sampled parameter vectors from the
DoE. This step is where the selection of an appropriate
parameter sample design becomes crucial, especially if the FE
simulations are computationally expensive. The feature values
computed from each simulation run are recorded to form a
vector of simulated feature values. (For the sake of simplicity,
let us assume for now that there is only one feature of interest.)

The fourth step in generating a metamodel is to perform a
parameter effects analysis. The parameter effects analysis is a
statistical process whereby the regression is performed, the
coefficients of the regression (“effects”) are analyzed, and the
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Figure 6: Example of a Central Composite Design for 2
Parameters



Half Normalplot

s A
£ Ac
m B [ ]
£ %an— - AD
ERE-IE " D
= |:|D
* =

o | EID

=
20 5

|E ffe ct|

Figure 7: Half-Normal Plot of Factor Interactions for
Parameter Effects Analysis

importance of each of the parameters is computed. The
parameters that are less important can then be removed from the
metamodel to reduce the overall dimension of the parameter
space. (This is a good thing, as explained below.) This reduction
of the number of parameters via effects analysis is known as
parameter screening.

There are several ways of examining the parameter effects to
perform parameter screening. One common way is via the use of
the Half-Normal Probability plot, an example of which is
shown in Figure 7. The line represents a fit of a normal
distribution. Effects that lie off of the line to the right are non-
normal (i.e. the effects are not random, so they should be kept in
the analysis). The parameters that have been selected are
removed from the fit set, and the normal fit is repeated. When
the remaining terms fall mostly on the line, then all of the
significant terms have been selected. In this case, the main
effects parameters are A, C, and D, along with the interactions
AC and AD.

After parameter screening, it is typically desirable to perform
another set of simulations using a new set of parameter values
computed via DoE. If a significant number of parameters have
been removed from the domain, then it is possible to define
more levels per parameter at the same total number of
computational runs. Thus, there is more information provided
for the same computational cost.

The final step in the metamodel generation process is to perform
the final regression followed by a regression error analysis.
There are standard techniques for regression error analysis,
including the examination of residual error for systematic
effects, statistical tests of fit significance, calculation of outlier
effects, etc. [10] If the regression passes the error analysis tests
adequately, then it can be used as a surrogate model for the FE
simulation. A commercial software tool that is useful for this
type of analysis is Design Expert 6 (DX6) [11]. This software
package enables the performance of all the tasks involved with
metamodeling, including DoE, parameter effects analysis,
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Figure 8: Illustration of Metamodeling for Visualization of
FE Model Response over the Parameter Domain

parameter screening, and regression error analysis. The half-
normal plot shown in Figure 7 was generated using DX6.

Metamodeling — How is it useful?

Presuming that we can formulate a metamodel as a surrogate for
our FE simulation of interest, how can the attributes of the
metamodel be exploited to facilitate the main tasks of model
validation? The first task, response feature definition, is a
precursor to metamodel construction and thus is not facilitated
by the existence of a metamodel. However, the other three tasks
are facilitated by metamodeling as described here:

a) Sensitivity Analysis

Metamodeling facilitates sensitivity analysis in several key
ways. First of all, the ability to visualize the metamodel as a
response surface over two of the parameters at a time allows a
quick, intuitive method for visualizing the relationships between
the model input parameters and the response features, as shown
in Figure 8. Also, the interactions between multiple parameters
can be seen. Areas in the parameter space that contain extrema
or regions of high gradient can be seen, and these will be of
significant interest in the model validation study. Dimensions in
the space that exhibit extremely small gradients (flat surface)
indicate a parameter that has little effect on the feature. As
mentioned in the previous section, parameter screening is
facilitated by the regression step of metamodeling, as well as
providing a reduced dimensional basis to enhance the quality of
the metamodel.

b) Test/Analysis Correlation

As described in the introduction, the validity of a model should
always be described over a domain of parameters. The
metamodel that is defined as a surrogate for the FE simulation
exists over the domain of parameters, and thus is well suited to
compare simulation predictions to experimentally observed
feature values.



! Measured F value for !

I Experiment conducted at P, P, i

FE Simulation Data Point |

I o oy
17 = fd P

i i R | =
L J N (527 I

Figure 9: Illustration of Metamodeling for Visual Comparison
of Experimentally Measured Feature to Simulated Feature

Consider the example shown in Figure 9. The measured feature
value at (P1, P2) is shown as it compares to the surface of the
metamodel over those two parameters. An error metric can then
be defined and visualized as well. In this case, the error metric
could be defined as the distance in the z-direction from the
simulation at (P1,P2) to the measured value. Alternatively, the
error metric could be defined as the minimum distance from the
measured data point to the surface of the metamodel. This
metric would account for some inherent uncertainty in the
values of (P1,P2) where the experiment was actually conducted.

The metamodel also facilitates the selection of points in the
parameter space where further validation experiments should be
conducted. For example, arecas where the metamodel has
extrema or high gradients may be desirable areas of the
parameter space to explore further. Also, large areas of the
parameter space where there has not been significant
experimentation may be of interest. Areas in the parameter space
that are already well populated by experimental data, or where
the surface is relatively flat, may not be of interest for further
validation experiments. Metamodeling enhances the ability to
visualize how the “interesting” regions of the parameter space
(e.g. due to the shape of the surface) compare to the locations of
available experimental data or planned experiments.

¢) Uncertainty Analysis

The two main aspects of uncertainty analysis introduced earlier
in this paper are certainly enhanced via the use of a metamodel.
First of all, the propagation of the uncertainties on the input
parameters through the FE simulation model usually employs
some sort of sampling-based technique, whereby samples are
drawn from the input distributions and run through the
simulation. The sample statistics of the resulting features are
then computed. Clearly such approaches are computationally
costly, especially for expensive FE models. However, with a
metamodel as a fast-running surrogate for the FE simulation,
such approaches become much more attractive. When the
computational cost is reduced from the solution of a million-
degree of freedom differential equation to the evaluation of a 20-
term polynomial, one can suddenly make lots and lots of
simulation evaluations inexpensively.
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Figure 10: Illustration of Metamodeling for Visualization of
Feature and Parameter Uncertainty

Likewise, when attempting to use inverse modeling techniques
to attribute feature uncertainty to source input parameters, a
smooth, differentiable metamodel can make the optimization
process much more palatable. Of course, there are numerous
simulation runs of the full FE model required to define the
metamodel. However, if a DoE approach is used to estimate the
metamodel form with a minimum number of simulation runs,
the metamodel-based approach to the optimization can be less
expensive than performing the optimization using gradients
computed from the FE model at each iteration. Also, the
optimization algorithm does not have to be wrapped around the
computational code if an accurate metamodel is available.

Visualization of uncertainty and its effects is greatly enhanced
by using the metamodel surface. For the example shown in
Figure 10, an uncertainty region is added around the
experimental data point. The uncertainty distance in the vertical
direction indicates the variability observed in the experimental
measurement set, while the uncertainty in the horizontal plane
indicates the uncertainty in the values of P1 and P2 where the
experiments were conducted (i.e. there is uncertainty and/or
variability in the actual settings, loadings, etc. of the
experiments).

Conclusions and Future Research

The purpose of this paper is to discuss some of the philosophical
issues surrounding the validation of computational models for
structural dynamics response simulation, to present a paradigm
for model validation that goes beyond the realm of test/analysis
correlation, and to examine a supporting tool for simplified
modeling and error metric definition known as “metamodeling.”
Following from the success shown in the field of simulation
science, it is recognized that model validation is more than the
comparison of experimental and simulated data. Metamodeling
is introduced as a tool that can facilitate the tasks of model
validation, as well as provide interesting visualization options in
support of model validation studies.
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