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Implicit Turbulence Modeling for High Reynolds Number Flows *

L.G. Margolin

Abstract

We continue our investigation of the implicit tur-
bulence modeling property of the nonoscillatory fi-
nite volume scheme MPDATA. We start by compar-
ing MPDATA simulations of decaying turbulence in
a triply periodic cube with analogous pseudospec-
tral studies. In the regime of direct numerical sim-
ulation, MPDATA is shown to agree closely with
the pseudospectral model. As viscosity is reduced,
the two model results diverge. We study the MP-
DATA results in the inviscid limit, using a combi-
nation of mathematical analysis and computational
experiment. We validate the inviscid MPDATA re-
sults as representing the turbulent flow in the limit
of very high Reynolds number.

I. Introduction

There is a kind of magic about nonoscillatory meth-
ods for numerical simulation of complex fluid flows. Be-
yond the obvious benefits of avoiding unphysical oscilla-
tions by preserving positivity and/or monotonicity, and
of ensuring nonlinear stability, high-order upwind meth-
ods appear to correlate well with the underlying physics,
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leading to simulations that are more physically realiz-
able.

As a recent and unexpected example of realizability,
nonoscillatory methods have demonstrated the ability
to simulate turbulent flows without need for explicit
subgrid scale models, a property that we refer to as
”implicit turbulence modeling.” This property has been
validated in direct comparisons with experimental data
and with high resolution DNS (direct numerical simula-
tion) for a variety of flows, and for a variety of nonoscil-
latory algorithms (see for example [9], [10], [5], [2]) over
the past ten years. In our own research, we have em-
ployed the nonoscillatory algorithm MPDATA (for Mul-
tidimensional Positive Definite Advection Transport Al-
gorithm; see [15] and references therein) to model all-
scale meteorological flows including atmospheric bound-
ary layers [8], gravity-wave dynamics [14], and global
climate [16].

More recently, the beginnings of a theoretical frame-
work has been proposed for implicit turbulence mod-
eling in [7]. These authors derived a finite-scale (i.e.,
coarse-grained) version of the point-wise Burgers’ equa-
tion — a version appropriate for describing the dynam-
ics of finite volumes of (Burgers’) fluid. They compared
this finite-scale equation to the MPDATA approxima-
tion of the point-wise equation, and showed that MP-
DATA already accounts for the finite-scale effects. Since
each computational cell is a finite volume, they rational-
ized that the success of MPDATA in modeling turbu-
lent flows results from its accurate representation of the
coarse-grained equations of motion.

The theory in [7] and the computational examples
that support it are suggestive. However there are sig-
nificant differences between Burgers’ and Navier-Stokes
equations. Perhaps the most important of these is
that the solutions of Burgers’ equation are deterministic
while those of Navier-Stokes are stochastic. This differ-
ence may be readily appreciated by considering simula-
tions at two distinct resolutions. In the case of Burg-
ers’ equation the two solutions will be close, while for
Navier-Stokes equations it is only the statistics of the
solutions that will be close [1].

In this paper, we extrapolate the finite-volume theory
of [7] to analyze nonoscillatory simulations of a turbu-
lent flow governed by 3D Navier-Stokes equations. We



compare MPDATA simulations of decaying turbulence
in a triply-periodic cube with the pseudospectral results
of Herring and Kerr [3]. For two values of physical
viscosity corresponding to direct numerical simulations
(DNS) where all dynamical scales are resolved, the MP-
DATA and the pseudospectral solutions compare closely
in all integral measures.

We also compare simulations using zero viscosity. The
pseudospectral simulation, in this Euler-equation limit
of Navier-Stokes, shows an enstrophy blowup at finite
time. The MPDATA simulation tracks the pseudospec-
tral results for a while, but does not show any blowup
of enstrophy. The pseudospectral result is unphysical
— all physical flows exhibit viscous dissipation at some
finite length scale. In contrast, enstrophy in the MP-
DATA simulation remains uniformly bounded, and the
solution appears physically reasonable. However, the
question remains whether the MPDATA simulation is
the result of a well-posed physical problem, and if so,
what this problem is.

To address this question — the central issue of the pa-
per — we analyze the zero-viscosity MPDATA results
by combining theoretical arguments with computational
experiments. In section III. we derive a relation between
the numerical energy spectra at different resolutions. In
section IV. we validate this relation computationally. A
theoretical consequence is the existence of an asymp-
totic spectrum in the continuum limit. For zero explicit
viscosity, we interpret the asymptotic spectrum as the
high Reynolds number (Re) limit of viscous flows [4].
We elaborate, and then summarize our conclusions in
section V.

II. MPDATA

The simulations presented in this paper all employed
the nonoscillatory fluid solver MPDATA. We would
emphasize that that implicit turbulence modeling ap-
pears to be a property of all nonoscillatory finite vol-
ume (NFV) schemes, however MPDATA does have some
unique features. MPDATA was developed originally for
applications in meteorology. Since it is likely unfamiliar
to the aeronautics community, we take this opportunity
to summarize some of its features. The interested reader
can find a comprehensive description of MPDATA in
[15], including both the underlying concepts and the
details of implementation.

MPDATA in its basic form is sign preserving, but
not monotonicity preserving. For meteorological appli-
cations, we have found that sign preservation is often
sufficient and leads to a less diffusive solution. MP-
DATA is fully second-order accurate and conservative.
A variety of options have been documented [15] that
extend MPDATA to full monotonicity preservation, to
third-order accuracy, and to fields that do not preserve
sign (of which the most important is momentum).

Unlike most NFV methods, MPDATA is not based
on the idea of flux limiting. Instead it is based more
directly on upwinding. In practical terms, the algo-
rithm consists of a series of donor cell steps; the first
step provides a first-order accurate solution while sub-
sequent steps compensate higher-order errors as identi-
fied from a modified equation analysis. One important
consequence of this approach is that MPDATA is fully
multidimensional — i.e., has no spatial splitting errors
— which implies significantly reduced mesh dependence.

MPDATA is a full fluid solver. In analyzing the trun-
cation error of approximations to the momentum equa-
tion, one finds error terms that depend on the interac-
tion of the advection with the forcing terms, including
the pressure gradient. In implementations of NFV al-
gorithms that treat advection separately from the forc-
ings, this error is uncompensated, reducing the order of
accuracy of the solution and potentially leading to os-
cillations and even instability (see [12]). In MPDATA
we compensate this error effectively by integrating the
forcing terms along a flow trajectory rather than at a
point.

MPDATA is implemented in the 3D program EULAG
for simulating rotating, stratified flows in complex ge-
ometries, [14][16]. The name EULAG alludes to the ca-
pability to solve the fluid equations in either an Eulerian
(flux form) or a Lagrangian (advective form) framework.
The latter uses a semi-Lagrangian algorithm in which
an MPDATA type scheme performs as an interpolation
routine. However all the simulations in this paper use
the Eulerian framework. EULAG can be run for incom-
pressible or anelastic fluids; in either case, we solve an
elliptic equation for pressure using a preconditioned gen-
eralized conjugate residual solver [13]. EULAG is fully
parallelized using message-passing and runs efficiently
on a variety of platforms.

ITI. Theory

In this section, we summarize the theoretical results
of [7] and describe an extension to support our analysis.

II1.1 Background

In [7], the authors describe a rationale for implicit tur-
bulence modeling. Their analysis begins by deriving the
modified equation for MPDATA applied to 1D Burg-
ers’ equation. Among the third-order truncation terms,
there appears a nonlinear dispersive term of the form
Az?uzug,. The authors then construct the governing
equation for a finite volume of Burgers’ fluid. These
equations are derived from the point equations, but are
different due to the nonlinearity of the latter, a fact
that has long been appreciated by theorists and mod-
elers studying turbulence. What is unexpected is that
a straightforward and justifiable derivation of the finite
volume equations leads directly to nonlinearly disper-



sive terms similar to those in the MPDATA modified
equation. The rationale for implicit turbulence mod-
eling then is the more accurate approximation of the
finite-volume governing equations by MDPATA (and
more generally, by NFV algorithms).

The finite scale Burgers’ equation merits further dis-
cussion. In particular, one might be tempted to inter-
pret the nonlinear dispersive terms as a model for the
effects of the unresolved scales of motion — i.e., as a sub-
grid scale stress. However a careful examination of the
derivation shows that this is not the case, a point that
is emphasized by the authors. In fact, the finite scale
equation governs the evolution of the volume-averaged
velocity independent of the details of the subgrid scale
velocity field. In other words, the nonlinear dispersive
term regularizes the flow in much the same way that
artificial viscosity regularizes shocks in high speed flows
(see [11] and [2] for a similar point of view).

There is another, complementary point of view pre-
sented in [7]. The finite scale equation can be consid-
ered as a model for the measurements (experimental or
computational) made by some observer. Experimental
devices and simulations both have finite scales of length
and time, implying that information about unresolved
scales is lost and the measurements do not exactly cor-
respond to ”the flow”. Since we are in a regime of classi-
cal physics, we are not concerned that the measurement
process alters the flow, and so we should expect that
the measurements accurately reflect the resolved scales.
In this sense, the finite scale equation is a better model
of the observations than the point equation. One of
our principal results in section IV. is to verify that the
MPDATA simulations do accurately reproduce the large
scales of the turbulence.

II1.2 Extensions

The generalization of the analysis in [7] to 3D Navier-
Stokes is beyond the scope of this paper. Instead, we
shall assume that the basic result of the Burgers’ equa-
tion analysis — that MPDATA estimates the volume-
averaged velocity — remains true for more general equa-
tions. This simple and reasonable assumption will allow
us to predict the relationship of turbulent energy spec-
tra produced at different resolutions. The verification
of this relationship then reinforces our understanding of
the performance of MPDATA.

Consider a 1D periodic domain of length L. A measur-
able velocity u(z) can be expanded in a Fourier series:

u@) =Y [akcos <2“L'”> + bysin <2”L’”ﬂ ()

k=0

Now consider a small segment [z —Az/2, x+Az/2]. In
a 1D simulation, this would represent a computational
cell, and Az/L = 1/N where N is the total number of
cells. We now compute the averaged component « in

this "cell”:
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An elementary calculation leads to the result:
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attenuates each of the spectral coefficients of the original
velocity in a wavenumber dependent fashion. The 1D
volume-averaged energy associated with % can now be
written as
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These calculations can be easily extended to 3D; how-
ever using the anticipated isotropy of the velocity field,
the above result can be applied directly in our simu-
lations. In fact we have calculated the energy spectra
shown later in Figs. 2, 3, and 4, by averaging the 1D
spectra calculated in each of the three coordinate direc-
tions.

Let us now identify 1 as the discrete values of the
velocity components in an MPDATA simulation. Equa-
tion (5) can be used to estimate the underlying energy
spectrum in part — up to the finite wavenumber deter-
mined by the resolution of the simulation. We term

B(k) = o) ©
2 (wk/N)

the asymptotic spectrum. Furthermore, since the simu-

lated spectrum at each resolution has the same asymp-

totic spectrum, we can relate the energy spectral coef-

ficients of two simulations at resolutions N; and No
fA(rk/Ny)  fA(7k/N2)

where this relation holds up to the largest wavenumber

of the more coarsely resolved simulation.

We close this section with these remarks about our
result. First, the derivation of eqs. (6) and (7) does not
depend on the form of the governing equations, and are
not specific to Navier-Stokes. Second, these equations
allow us to estimate an asymptotic spectrum, given a
simulated spectrum at finite resolution, but do not pre-
dict any universal form for this spectrum. Third, for
small values of its argument, eq. (6) implies convergence
of the simulated spectra to the asymptotic spectrum as
1/N2.
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Figure 1: Enstrophy history in pseudospectral and MPDATA simulations of isotropic decaying turbulence.
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Figure 2: MPDATA simulated spectra for zero viscosity at differing resolutions — 322, 483, 643, 1283, 2563




IV. Analysis and Results

We will analyze the simulations of decaying turbu-
lence of a homogenous incompressible fluid in a triply-
periodic cube — a generic problem in turbulence stud-
ies. The assumed homogeneity of the thermodynam-
ics and the lack of near-wall effects, focus attention
on the modeling of the convective derivatives uVu in
the momentum equation. Our NFV experiments with
MPDATA will mirror the 256% DNS and inviscid pseu-
dospectral simulations of Herring and Kerr [3].

Figure 1 displays the numerical data for the evolution
of enstrophy for three values of viscosity, v = 0.0500,
v =0.0125, and v = 0 m?s~! (as indicated). Solid lines
are for MPDATA experiments, while the data from [3]
are marked as circles. One striking result in Fig. 1 is
the remarkable agreement of the NFV and the pseu-
dospectral solutions for DNS (v > 0). This agreement
is maintained uniformly for all flow characteristics, in-
cluding spectra (see [3], for other diagnostics). Tra-
ditionally, pseudospectral methods are valued for their
accuracy and have been considered the tool of choice
to study turbulent flows. Since all convergent methods
become accurate as the flow is fully resolved, one may
wonder whether this agreement is due to excess resolu-
tion. This is definitely not the case for v = 0.0125 where
the Kolmogorov scale is about one grid-interval (Kerr,
personal communication) and the energy dissipation is
marginally resolved.

The v = 0 results expose the essential difference be-
tween the pseudospectral and MPDATA approaches.
Without viscous dissipation, enstrophy blowup occurred
in the pseudospectral solution. The rapid growth of
enstrophy was accompanied by an energy buildup at
the highest wave numbers; the spectral calculations be-
came unstable, and were terminated after ~ 0.35s [3].
Up to this point, the spectral and MPDATA results
agree closely. Beyond this point, MPDATA continues
to produce a plausible solution. However, it is not clear
whether the MPDATA simulation is physically realiz-
able.

Based on the large eddy simulations (LES) of bound-
ary layers in [8], we interpret the v = 0 MPDATA result
as the finite-scale representation of the Re — oo limit
of viscous flows. This contrasts with the pseudospec-
tral result, which at v = 0 represents the solution of
the point-wise Euler equations where finite-scale effects
have been already discarded. To substantiate our inter-
pretation, we have compiled two convergence studies of
the inviscid solution. The first study shows the conver-
gence of the energy spectra as a function of resolution
for zero viscosity. The second study shows the conver-
gence of the energy spectra as a function of viscosity.

Figure 2 compares the energy spectra from MPDATA
simulations at v = 0 for a series of resolutions 323, 483,
643, 1283, and 256°, as indicated. The spectra follow

each other closely at the large scales of motion, but
tend to separate at the smaller scales. This separation
is predicted theoretically in section III., which also im-
plies the existence of the unique asymptotic spectrum
(eq. 6). Figure 3 displays the asymptotic spectra gen-
erated from those shown in Fig. 2. In the absence of
truncation errors, all asymptotic spectra should coin-
cide for the resolved scales. Except for the very highest
wavenumbers, where the theory of [7] does not apply,!
the discrepancies of the asymptotic spectra are small
compared to the separation of the simulated spectra
(Fig. 2). The latter indicates that the MPDATA results
should be interpreted as a finite-resolution projection of
the continuum limit. Note that the solid line in Fig. 2,
showing the asymptotic spectrum averaged over all five
resolutions, estimates the converged limit of the simu-
lated spectra.

As remarked earlier, all physical flows have viscous
dissipation. Although the viscous scale lengths may
be small compared to finite resolution of a numeri-
cal model, they never vanish in the continuum limit.
To assess the effects of small but finite viscosity we
show in Fig. 4 the convergence of the asymptotic en-
ergy spectra as v — 0; these spectra are estimated from
MPDATA simulations at 2563 resolution. The results
shown demonstrate that the viscous spectra converge
uniformly to the inviscid limit as v — 0. Taken to-
gether, our computations substantiate our contention
that the inviscid MPDATA runs are finite-scale repre-
sentation of the Re — oo limit of viscous flows.

V. Summary and Conclusions

In this paper, we have continued our study of the use
of the nonoscillatory finite volume scheme MPDATA to
simulate turbulent flow without need for any explicit
subgrid model. We refer to this property as implicit tur-
bulence modeling. We began by comparing simulations
of a turbulent flow using MPDATA to a pseudospectral
simulation. When the physical viscosity is large enough
so that all dynamical scales are well resolved, we have
shown that MPDATA accurately reproduces the flow
predicted by the pseudospectral model, thus validating
the utility of this NFV scheme for direct numerical sim-
ulation.

In the limit of vanishing physical viscosity, the pseu-
dospectral model predicts a enstrophy blowup in finite
time, and the cessation of meaningful calculation after
this point. In contrast, MPDATA does not predict any
blowup of enstrophy and continues to produce plausible
solutions. Our principal result in this paper has been to
analyze these solutions, to demonstrate that they are in

IThe simulated and asymptotic spectra show the well-known
bottleneck effect [6] which only affects the highest resolved wave
numbers. These data have been ignored while constructing the

average asymptotic spectrum (solid line in Fig. 2).
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Figure 3: Asymptotic spectra for zero viscosity estimated from simulated spectra in Fig. 2
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fact realizable, and to identify them with a physical
problem. Our demonstration relies on mathematical
analysis and a computational study of convergence in
resolution and viscosity.

Our analytic result is derived in section III. and rep-
resents a relationship between the energy spectra gener-
ated in simulations at different resolutions. The results
assume that the numerical algorithm MPDATA accu-
rately estimates the volume-averaged velocity; this re-
sult has been demonstrated rigorously for the Burgers’
equation in [7]. Our analytic result further implies the
existence of an ”asymptotic” spectrum, representing the
continuum limit, and verifies that at fixed wavenumber
the convergence rate goes like the inverse square of the
resolution.

Our numerical results in section IV. validate the an-
alytic relations, and confirm the existence of a unique
asymptotic energy spectrum. We further showed a com-
putational study of the convergence of the asymptotic
viscous spectra to the inviscid spectrum. This leads
to our main conclusion, that the MPDATA simulations
with zero explicit viscosity correctly model turbulent
flow in a high Reynolds number limit.

Throughout this paper, we have emphasized that nu-
merical simulation and physical observation are both
carried out at finite scales. In creating a model for nu-
merical simulation of high Reynolds number flow, one is
effectively considering the limit as two different length
scales become small. The first is the viscous scale, some-
times termed the Kolmogorov scale. The second is the
scale of nonlinear effects (see section III.) which is the
scale of observation or, in the case of simulation, the
size of the computational cell. The latter is never neg-
ligible in a simulation — so the Euler equations can-
not be an adequate model for numerical simulation of
high Reynolds number flow — and the finite scale ef-
fects must be taken into account. Based on the results
presented, we surmise that MPDATA (and likely other
NFV algorithms) accurately models coarse-grained so-
lutions of 3D Navier-Stokes equations, and appears to
be a valuable tool for large eddy simulation free of ex-
plicit subgrid-scale parameterization.
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