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ABSTRACT

Frequency response functions (FRFs), typically calculated by
means of the Fourier transform, are used extensively
throughout  structural dynamics to identify modal
characteristics of a structure. Fourier methods work well with
linear systems, but have limitations when nonlinearities are
present, largely due to their inability to examine non-
stationary data. A nonlinear system is often characterized by
the variation of its structural response in time. More recently,
wavelets have been introduced as an alternative method to
FRF calculation. Unlike Fourier methods, wavelets are a
time/frequency transform, allowing for the creation of a time-
varying FRF. This paper explores the use of wavelet-based
FRFs to identify nonlinear behavior in an eight degree-of-
freedom spring-mass structure. Examination of temporal
changes in the higher frequency range are used to determine
the location of the system's nonlinearities.

NOMENCLATURE

WY(t) Mother wavelet

a Scaling parameter

b Translation parameter

Wi(a,b) Wavelet transform

FRF Frequency response function

H(w) Fourier-based FRF

Hy(ft) Wavelet-based FRF

ST Standard Deviation in time of wavelet FRF
summed over all frequencies

INTRODUCTION

Every real system will exhibit some degree of non-linear
behavior. Nonlinearities are common in flexible structures,
systems with friction, or ones with compliant materials and
may be categorized as geometric, kinematic, or material-
based. In many circumstances, an increase in the
nonlinearity of a system can indicate a change that might
affect the health or operation of the system. Finding

methods that are able to identify and locate these changes
are of great importance.

Fourier-based methods have been used extensively
throughout structural dynamics for the extraction of modal
properties. Specifically, frequency response functions are
often used as a means for identification and comparison of
the averaged modal characteristics of a structure. For linear
systems, this has been a successful measurement device,
but does not typically perform well when nonlinearities are
present. A nonlinear system can be identified by the
variation of its structural response in time. With Fourier-
based methods, the frequency content of the signal is
typically averaged over a large number of data blocks,
smearing out characteristics, and eradicating all time
information. Time/frequency transformations alleviate this
problem by providing information on how the frequency
content of a signal changes in time. Of these
transformations, wavelets have been gaining popularity in
recent years due to the attractive inverse relationship of
frequency and time. At lower frequencies, a fine frequency
resolution is provided with a coarser time resolution. This
relationship is inverted at higher frequencies, where time
resolution is increased and frequency decreased.
Examination of changes in the higher frequencies of an FRF
is a good indication of the occurrence of certain types of
nonlinearities present in a system. Wavelets naturally scale
themselves appropriately for this type of analysis.

This paper seeks to identify damage induced into an 8-dof
spring-mass test system. This system, explained in detail in
[1], consists of eight masses sliding on a steel rod,
interconnected by linear springs. Damage is simulated in the
system by the addition of small bumpers that limit the
compression of the springs. Morlet wavelets are investigated
as a means for identifying the damage in the system. The
Morlet wavelet is a complex valued transform that captures
both the magnitude and phase characteristics of a signal
while also retaining its temporal nature. This transform can
be used to form frequency response functions whose
temporal nature can be used to identify damage.

This paper builds upon the work performed by Hartin [1] on
applying wavelet-based FRFs to the analysis of a bilinear
structure. In this paper, Hartin shows how wavelet FRFs can
be used to identify the location of a nonlinearity in a
simulated system using bifurcated modes. His work shows



much promise for the use of wavelet-based FRFs in the
identification of nonlinearities or damage present in a
system.

Other approaches have been used to analyze this eight
degree-of-freedom structure or ones similiar, including
papers by Sohn [2], Bement and Farrar [3], Wait, et al [4],
and Hunter [5]. The methods used in these papers include
time-based analysis of the system response and statistical
methods for evaluating the modal properties. The results of
this work have been promising, but wavelets offer a new
avenue of examination into the time variability of the spectral
nature of the system, which these approaches cannot take
advantage of.

METHOD

In the example that will be examined in this paper, a
nonlinearity is induced into a system through contact
bumpers. This impact-type nonlinearity adds high frequency
content to the response spectrum of the system. Traditional
Fourier methods used to determine the frequency response
identify the lower frequency components quite well, which is
where the fundamental modes of the system are located.
The high frequency content, however, is usually much lower
in magnitude and therefore harder to identify. The system
itself works as a weak low-pass filter, primarily transmitting
the lower frequency content.

Even if a definite change in the frequency spectrum can be
identified with and without the nonlinearity present, further
difficulty comes in trying to identify its exact location. Since
the system analyzed in this paper is essentially discrete (all
degrees of freedom are measured), traditional methods that
analyze the frequency spectrum have great potential to
locate the damage. For more realistic systems with limited
measurement degrees of freedom, however, this becomes
more difficult.

By looking at the standard deviation in time of the high
frequency content, the exact location of the damage can be
seen. Wavelets are able to show how the FRF changes in
time and this will be used to identify the location of the
nonlinearity or damage in the system.

This identification procedure is specific to impact type
nonlinearities or any other feature that would excite high
frequency vibrations in a system. But, usually the best
features for damage identification, or in this case nonlinearity
detection, are those that are application specific.

WAVELET BASED FRFS

Wavelets are mathematical functions that decompose a
signal into scaled coefficients using a set of wavelet basis
functions. This is very similar to Fourier transforms which
use dilations of sinusoids as the bases. The family of basis
functions used for wavelet analysis is created by both
dilations (scaling) and translations (in time) of a “mother
wavelet”, thereby providing both time and frequency
information about the signal being analyzed. There are
many different functions that can be called wavelets. In this
report, the Morlet wavelet is used:
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which is very similar to a sinusoid with a Gaussian envelope.
The term f, is the center frequency of the sinusoid and o
determines the width of the frequency band. The wavelet
transform is obtained by convolving the signal x(f) with the
translations (b) and dilations () of the mother wavelet:

W (a,b) = f:x(r)q!;bdz 3)

Since the Morlet wavelet is able to compute both magnitude
and phase characteristics of a signal while also retaining its
temporal nature, it can be used to form wavelet-based
frequency response functions (or transmissibility functions)
that retain the variability of the system in time. The complex
form of the Morlet wavelet is unique compared to other
wavelets, and allows for the computation of modal
properties.

The frequency response function relates the output response
of a system to its input and is usually calculated using the
Fourier transform:

r(w)

=% )

(4)

The Fourier Transform has the unique characteristic of
transforming a convolution into a multiplication, which allows
for the simple formula shown above. Time domain methods,
and non-complex wavelet-based methods do not have this
quality and are therefore computationally expensive. This is
compounded further when dealing with noisy data. The most
common method for calculating an FRF for noisy data is the
H1 formulation which assumes that noise is present on the
output signal only:

_YWX (W)

B = X )

(5)

The H1 FRF may also be formed using a complex wavelet
transform.  Transforms of the input and response signals
are calculated with Equation 3 and then used to form the
spectral densities (Y(w)X*(w) and X(w)*X(w)) shown in
Equation 5:

W, (a,b)W. (a,b)

H.(f.0= W_(a,b)W (a,b)

(6)

This formulation was implemented numerically using the
method detailed by Wang and McFadden [6] who utilize
Fourier transforms to perform the integration in Equation 3.

The time resolution of the wavelet-based FRF is traded-off
with its frequency resolution. The center frequency f, and
bandwidth, which determines the scale parameter of the



wavelet transform, can be varied to develop an optimal time-
frequency resolution.

At one extreme, one can obtain an FRF with absolutely no
time resolution, which will look almost identical to the FRF
formed by the more traditional Fourier transform. This can
be achieved by averaging the wavelet-based FRF in the time
domain, which allows for a smoother function in the
frequency domain. Averaging is performed on the phase
and magnitude of the FRF. Equation 7 shows how time
averaging of the magnitude of the FRF is performed with an
ensemble length of size m:

m*k

H,(f.t)= D [H,(f.1) 7
i=m*(k—1)+1
EXPERIMENTAL ANALYSIS

An eight degree-of-freedom system (Figures 1 and 2) was
constructed to study the effectiveness of various vibration-
based damage identification techniques [1]. The system
consists of eight masses sliding on a steel rod
interconnected by linear springs.  Non-linear damage is
simulated by placing rods (bumpers) on one mass, which
limits the amount of relative motion between it and the
adjacent mass. A small clearance is maintained between the
rods and adjacent masses and impact occurs when the mass
translates further than the clearance. This impact simulates
spring deterioration which would permit contact between
adjacent masses to occur. It could also approximate the
impact from the opening and closing of a crack during
vibration or the rattling of a loose joint. The degree of
damage can be altered by changing the size of the bumpers,
hence allowing for a larger or smaller clearance between
adjacent masses.

Figure 1: Picture of Eight Degree-of-Freedom System

Aluminum Mass

Accelerometer

VI A Vv vy v mvay
Force T

Transducer Polished Steel Rod

Bumpers

Figure 2: Schematic of Eight Degree-of-Freedom System
and Simulated Damage

The system was excited at the first degree of freedom using
a Gaussian random signal supplied by a shaker along the
axis of the steel rod. Acceleration responses were measured
at each of the eight degrees of freedom using
accelerometers. A series of experiments were run with
varying excitation magnitudes, clearance levels, and bumper
locations. Bumpers were placed at three different positions:
between masses 1 and 2, masses 5 and 6, and masses 7
and 8. For each of these locations, eight experiments were
analyzed as summarized in Table 1. A range of excitation
voltages were actually used, but only the 6 and 7 volt levels
will be analyzed due to their good measurement quality as
compared to the other levels.

Case Bumper Excitation
Clearance Voltage
1 No Bumper v
2 No Bumper 6V
3 0mm A%
4 0.2 mm A%
5 0.4 mm v
6 0 mm 6V
7 0.2 mm 6V
8 0.4 mm 6V

Table 1: List of Experimental Cases Performed

FRF Estimation

Frequency response function estimates for the system
without any bumpers present are given in Figure 3 for the
acceleration at mass 1 due to the input force. The Fourier



based estimate was calculated by averaging 8 ensembles
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Figure 3: Frequency Response Function Magnitude for Input
1/Output 1Without Bumpers (No Damage)

of 512 points each. For comparison, the wavelet method
was used to form a purely frequency-domain estimate of the
FRF by averaging-out all the time information. This is done
using Equation 7 with an ensemble length of 4096, or the
entire time-span of the function.

Unlike the work done by Hartin [1], this data is not simulated
and therefore contains noise, which necessitates the time-
averaging of the wavelet-based FRF to obtain a smooth
function. Once averaging is done, the wavelet and Fourier-
based FRFs are very similar.

The time-frequency representation of the wavelet-based FRF
using only 8 ensemble-averages in time over 0.64 seconds is
shown in Figure4a. The five most prominent modes of the
system are clearly visible when compared to the traditional
frequency domain plot of the FRF discussed in the last
paragraph (shown in Figure 4b). The lack of any high
frequency content above the structural modes s
characteristic of a linear spring-mass system. The same
FRF is examined in Figure 4c with a bumper added between
degrees of freedom 1 and 2. The presence of this
nonlinearity obviously induces high frequency response in
the structure as well as increasing the variability of the
response in time. The characteristics shown in this plot are
common for all of the damaged cases.

Damage Assessment

The impact of the bumper with the adjacent mass will cause
a spike in the time response of the system, thus exciting a
wide range of frequencies. This type of damage also causes
the system to exhibit nonlinear characteristics, one of which
is the excitation of frequencies other than the fundamental
modes of the system. Therefore, to assess and locate the
nonlinearity or damage in the system, the upper half of the
frequency band of the FRF will be examined (128-256 hz).
With the ability of the wavelet transform to also provide time

resolution to the FRF, the variability of this function in time
will be used as an additional element for the identification of
damage in the system.

To quantify the amount of time variability there is in the
higher frequencies, the standard deviation (in time) of the
FRF at each frequency in the higher frequency band is
calculated:

i(Hw(fj,ti)—ﬁw(fj,t))z
std(f;) =\ (8)

n—1

These values are then summed to obtain the total standard
deviation across all of the higher frequencies, which will be
referred to as ST:

ST= Ystd(f)) ©)

Jj=n/2+1

These calculations were performed for each of the 24 cases
mentioned above, which include 3 different locations for the
damage: between masses 1 and 2, masses 5 and 6, and
masses 7 and 8.

Figure 5a shows the magnitude of the time variability (ST) of
the FRF at each output location for the 8 cases when
bumpers are placed between masses 1 and 2. A high ST
value follows sensor locations 1 and 2 for all cases. This
points towards the presence of a nonlinearity between
masses 1 and 2. Similar results are given for bumpers
placed between masses 5 and 6 (Figure 5b) and masses 7
and 8 (Figure 5c). Especially interesting is the ridge of high
frequency response at locations 7 and 8 in Figure 5c¢.

Figure 6 slices Figure 5¢ along sensor location 7 to show the
relative response for each of the eight cases. Located on
the plot are a summary of each case: 7V 0d represents a 7
volt excitation and no damage, while 7V 2gap represents a 7
volt excitation with a bumper clearance of 0.2 mm. From this
plot, one can see that the standard deviation in the high
frequencies is low when bumpers are not present (cases 1
and 2). Case 3 is the most nonlinear, which has both the
largest excitation and the smallest clearance between the
bumpers and the adjacent masses.

The results in Figure 5 show clearly that a nonlinearity is
occurring and at which sensor location. The ability for the
Fourier-based FRF functions to reveal the same information
was also assessed. Figure 7 shows the standard deviation
(in frequency) of the upper half of the FRF frequency band
when bumpers are placed between masses 7 and 8. This
value reveals the magnitude of high frequency content for
each of the cases. A ridge of high standard deviation values
follow sensor location 7, but the relative magnitude between
it and the other locations is not as large as the wavelet
calculations (Figure 5c). Also in Figure 7 is a ridge of high
standard deviation following location 1. This indicates that
there is either a high frequency input at location 1 or that
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some nonlinearity at that location has produced some locally
high frequencies. This result is common to all of the FRF
evaluations performed using FFT-based FRFs. It is not
understood why this ridge is appearing, but it hampers the
ability to locate the damage effectively.
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Figure 4: Contour plot of wavelet-based FRF for input
1/output 1 without bumper (a), Wavelet-Based FRF with
time resolution averaged out (b), and Wavelet-based FRF for
input 1/output 1 with bumper between DOFS 1 and 2 (c)
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Figure 5: ST-value at each sensor location and case
number for : Bumpers between masses 1 and 2 (a),
Bumpers between masses 5 and 6 (b), and Bumpers
between masses 7 and 8 (c)
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Figure 6: ST Values at Sensor Location 7 for Wavelet-
Based FRF with Bumpers Between Masses 7 and 8.
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Figure 7: Standard deviation of the upper frequency range of
the Fourier-Based FRF with bumpers between masses 7 and
8.

CONCLUSIONS

This paper has shown the possibility of using wavelet-based
frequency response functions for damage or nonlinearity
assessment. The time information obtained by using
wavelets instead of traditional Fourier transforms to form the
FRFs allows for a clear indication of where damage is
occurring in the system. This example illustrates the ability
to distinguish damage induced by impact-type nonlinearities.
This type of damage is of great concern in many
applications, but this procedure might not readily apply in
other areas of nonlinearity detection. The ability to apply this
procedure to real test data that includes noise is
encouraging. Further applications of this procedure to more
complicated test structures would provide for a more
insightful evaluation.
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