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VARIABLE SCREENING IN METAMODEL DESIGN FOR A LARGE
STRUCTURAL DYNAMICS SIMULATION

A.L. Cundy, J.F. Schultze, F.M. Hemez, S.W. Doebling, D. Bingham’
L.os Alamos National Laboratory, ESA-WR
MS P946
Los Alamos, New Mexico 87545

ABSTRACT

This research addresses the problem of analyzing the
nonlinear transient response of a large degree-of-freedom
structural dynamics simulation. A threaded joint assembly’s
response to impulse loading has been studied. Twelve
parameters relating to the input level, preloads of the joint
and friction between components are thought to influence
the acceleration response of the structure. Due to the high
cost of physical testing and large amount of computation
time to run analytical models (three hours on 504 processors
of LANL's ASCI supercomputer, Blue Mountain to simulate
three milliseconds of response) a fast-running metamodel is
being developed. In this case, a metamodel is a statistically
developed surrogate to the physics-based finite element
model and can be evaluated in minutes on a single
processor desktop computer. An unreasonable number of
runs is required (3'%>500,000) to generate a three leve! full
factorial design with 12 parameters for metamodel creation.
Some manner of down-selecting or variable screening is
needed in order to determine which of the parameters most
affect the response and should be retained in subsequent
models. A significant effects methodology has been used,
involving a design of experiments technique, in which all
parameters were first included in the model and then
eliminated on the basis of statistical contributions associated
with each parameter. Bayesian variable screening
techniques, in which probabilities of effects are generated
and updated, have also been explored. Encouraging results
have been obtained, as the two methods vield similar sets of
statistically significant parameters. Both methods have been
compared to general sensitivity analysis (GSA). The
resulting compact metamodel can then be explored at more
levels to appropriately capture the underlying physics of the
threaded assembly with a much smaller set of simulations
(only 64 runs required for a three level model with quadratic
and some third order terms).

’ University of Michigan, dbingham@umich.edu

NOMENCLATURE

Y response feature modeled
X parameter

B parameter coefficient

o error coefficient

€ error

INTRODUCTION

A threaded joint assembly (Figure 1) has been studied to
determine its response to impulse loading from the side. It
has steel upper and lower mass simulators and aluminum
upper and lower shells. The upper mass simulator is bolted
to a titanium mount. The upper shell and retaining nut
(which holds the lower shell in place) are threaded onto the
mount. it also has a unique steel "tape joint” which is
located at the bottom of the assembly, wedged between the
lower mass simulator and the titanium mount. It is the
friction between the interfaces of the lower mass simulator,

{ LAY O E

Figure 1: Physical testing set up of the threaded
assembly. The charge array is held in place with
foam blocks at the lower right of the photo.
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the titanium mourt,, and the tape joint that hold these pieces
in place.

To date four physical tests have been conducted, in which
shell tolerances and “gaps” between the shell and mount
were varied [1, 5]. These parameters were chosen based on
initial engineering judgement. They had to be isolated
before the finite element runs were executed due to
scheduling requirements of the physical tests. A charge
array was attached to one side of the assembly and
detonated. Acceleration responses were monitored at the
top and bottom of the assembly, as well as between the
upper and lower mass simulators (see Figure 1). While
much information was gained from the tests, it is
economically prohibitive (>$60,000/test) to conduct a
sufficient number to generate a response surface.

In order to study the assembly in greater detail, a large finite
element model was created (>1 million elements and 4
million degrees of freedom) [1] (Figure 2). The model can be
run on the Laboratory's ASCI super-computer, Blue
Mountain. However, because Blue Mountain requires about
three hours using 504 processors to run three milliseconds
of simulation time it is still impractical to execute a large
number of runs for response surface generation.

From the finite element run results, twelve parameters were
identified as being potentially important to the response of
the assembly. They relate to dynamic and static coefficients
of friction between the different parts, the preloads, and the
input level (see Table 1). Parameters, or factors, were set at
discrete levels for each experiment and coded to unitless
values. Multiple features were derived from the acceleration
time history data collected. Time histories were transformed
to yield power spectral denisties (PSDs) and shock response
spectrums (SRSs). Then moments were taken of each of
these functions, with the lowest order being the energy (E)
plots and the second and third order moments called Tau
and D [7}.

Table 1: Potenlial parameters to be included in metamodel

Parameter | Phenomenon Described

A Tape Preload

B Nut Preload

C Upper Shell Preload

D Aluminum-Aluminum Static Friction
Coefficient

E Titanium-Titanium Static Friction Coefficient

F Aluminum-Titanium Static Friction
Coefficient

5 Steel-Titanium Static Friction Coefficient

H Aluminum-Aluminum Kinetic Friction
Coefficient

J Titanium-Titanium Kinetic Friction
Coefficient

K Aluminum-Titanium Kinetic Friction
Coefficient

L Steel-Titanium Kinetic Friction Coefficient

M Input Load Level

Design of experiments (DOE) methods are being explored to
create a fast-running, or metamodel, that is based only on
model parameters that affect the response [6]. A Taguchi

orthogonal array, alias free for quadratic and some cubic
terms, was used [4]. Using DOE, an Analysis of Variance
{ANOQVA) is generated using data from finite element runs, in
order to estimate a polynomial (which can be nth order,
depending on the number of runs available) that relates
parameters to responses.

Upper Mass

(Steel)  Forward
Mount
(Ti)

Retaining
Nut (Ti)

Lower Shell —>
(A1)
Figure 2: Detail of threaded joint FEM

A concern with developing a metamodel is that as more
parameters are included in the model, more FEM runs are
required to generate the model. A three level design
incorporating all twelve parameters would require over
500,000 runs for a full factorial design, thus defeating the
simplifying purpose of the metamodel. A fractional factorial
design can be implemented to reduce the number of runs
required for a given model, while increasing the model order.
However, the use of fewer runs for the creation of a higher
order model leads to aliasing of some terms which must then
be omitted; therefore it is still desirable to keep as many runs
as possible. A design with twelve parameters might be run
with as few as 6000 runs, but would be heavily aliased. A
variable screening process must be implemented in order to
reduce the dimension of the response space so that a model
may be designed without too many aliased terms.

GENERAL SENSITVITY ANALYSIS

General sensitivity analysis (GSA) was conducted for a quick
way of looking at important parameters. Parameters A, B
and C were not included in the general sensitivity analysis.
They were held constant at their nominal values because of
difficulty in setting preloads (each preload requires ten extra
runs to set because they cannot be set directly; thermal
stress methods must be employed). A set of finite element
runs were executed with each parameter set at its high and
low value and one run with all parameters set at their
nominal values (19 runs total). Parameter importance was
defined as any parameter causing a relatively large
difference in model response between its high and low value
(as calculated using simple finite differencing). This method
does not account for higher order effects and interactions.
Results from this exercise showed that parameters L and M
(St-Ti kinetic friction, input load level) were important to
model features, with H, K and J (Al-Al kinetic friction, Ti-Ti
kinetic friction, Al-Ti kinetic friction) appearing also, though at
a lesser magnitude.
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SIGNIFICANT EFFECTS METHOD OF VARIABLE A Gibbs Sampler was then used to obtain a posterior set of
SCREENING screened variables, derived from their associated
probabilities. The Gibbs Sampler repeatedly draws samples
Another method of variable screening implemented was from the posterior distributions of each parameter, resulting
analysis of significant effects, or linear variable screening. A in a sample that is approximately one from the joint
particular main effect’s contribution: (no higher order effects) distribution of the above parameters. Chipman, Hamada,
to the total mode! variance was analyzed [1]. Significant and Wu [3] note the chain length can be an implementation
effects method provides an andvantage over GSA because issue, as samples close together may be correlated. After

a probabilistic assessment of variable importance is obtained trying a longer chain (10,000 samples) with a lag of 10 and
through the analysis of variance. Screening was done using discovering that results were nearly the same as using a

a two Jevel fractional factorial design. Features which did not chain 1000 samples long storing every sample , the shorter
result in a high enough total variance contribution (<30%) chain was chosen, with a 100 sample long “burn-in” (to
were discarded because they did not sufficiently discriminate initialize the chain).

between runs. Results from this screening are shown in

Figure 3. In many of the models, effects A, K, L and M are

important parameters. These variables correspond to the Significant Effects Method for Accel 3

tape joint preload, kinematic frictions between parts (Al-Ti,
Steel-Ti), and input scaling. Results agreed with the GSA.
The results were not intuitive; the thread preloads (B and C)
were expected to have more impact on the response,
because they appear to be more directly tied to the upper
and lower mass simulators, but neither of these effects were
screened as important.  This lead to a desire fo corroborate
results with another screening method.
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BAYESIAN VARIABLE SCREENING

% contr. to tot. model variance

The second method used was a Bayesian variable screening ——— L *..,1
technique [2,3]. An advantage it provides over both of the Parameter

previous two methods is that it samples the entire response

space instead of just the high and low edges, as well as Bayesian Variable Screening for Accel 3
providing a probabilistic assessment of parameter I
importance. A simple Markov Chain Monte Carlo (MCMC)
method, called the Gibbs Sampler, was used to sample
different models. The most probable models are visited
most often, with the most probable effects occurring in the
models more frequently than the rest of the effects [6].

WE lime
WE psd
QIE srs

Probability

Bayesian methods make use of prior and posterior
probabilities and distributions. Priors are assigned by the
analyst; the sampling method then updates these values to
posterior values. In an MCMC method, posteriors from one
iteration become the priors of the next. in this case, two sets
of prior probabilities were established. The first relates to
whether main effects and two factor interactions occur in the
model. Because comparison to the method of significant Accel 3 General Sensitivity Results
effects was desired, only main effects were given a

probability (0.25). The rest of the prior proabilities, which ' 1.8
describe two factor interactions, were set fo zero. 1.4

Paramater

Priors relating to the probability of a particular model given a 1 mEP
set of inputs must also be set. A simple linear regression g0 mES
model is used, £ 06 oET

Y=X'B+oe (Equation 1) 0.2
0 . ' ; . .

Where Y is the response feature vector, X is a vector of 0.2 S—H—d—K

parameters and ¢ Is the error. The parameter coefficient, B ) parameter

is assumed to have a multivariate normal distribution and the

error coefficient, o an inverse gamma distribution. Each of

these distributions has associated parameters for which Figure 3: Comparison of Screening Methods for
priors must be set [3]. Accelerometer 3 Response Features
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Results from the Bayesian variable screening method can be
found in Figure 3 for main effects screening. In the Bayesian
method, effects are important if their posterior probability is
high compared to the rest of the parameters in question.

Again the problem of features which are not discriminating
enough arises. Features that have parameters with very low
probabilities {(generally <0.4), ie, models that are
approaching the “mean model,” are omitted from
comparison. Only results for the first moment features, E-
time, E-PSD and E-SRS, are shown. While D and Tau were
similar, E features yielded the most conclusive results. For
most features, A, K, L, and M are important parameters to
the model, matching the results found using the method of
significant effects and general sensitivity analysis. Note that
in the Bayesian screening method, effects G, H and J
occasionally have high probabilities, as well.

Screening was also extended to two factor interactions.
Prior probability for two factor interactions was set at .25 for
interactions with both parents appearing in the model, .1 for
interactions with one parent appearing in the model and .01
for interactions with no parents in the model. Distribution
parameter priors used were the same as for main effects
analysis. Screened two factor interactions for the most part
included combinations of A, K, L, and M with occasional
occurances of B, H and J (nut preload, Al-Al kinetic friction
coefficient, and Ti-Ti kinetic friction coefficient).

DISCUSSION

Both methods clearly indicate which effects are “important”
and which may be omitted from the model, and these results
are comparable. For the set of data that was screened, K, L,
and M frequently appear as important model factors in both
screening methods, with effects A, G, H and J appearing
less frequently. The E features appear to be the most
discriminating for nearly all the accelerometers, based on
high contribution to total model variance in the significant
effects method and its high probability levels in the Bayesian
screening. Features used in the final model were A, G, H, K,
L, and M based on the results obtained above. General
sensitivity analysis provides a good first look at important
parameters, however it only accounts for the high and low
values of parameters and does niot provide a probabilistic
assessment of parameter importance.

CONCLUSIONS AND FUTURE WORK

Results achieved are encouraging, showing that the
parameters screened are very likely to be at least part of
some larger super-set of parameters which have an impact
on the response of the threaded assembly. After screening
parameters and using fractional factorial design, we now
have feature models hased on six important parameters,
significantly reducing the number of runs needed to define
the metamodel (64 runs for a model with third order terms).
Effects chosen have been used in design of a higher order
metamodel, which more accurately predicts the response of
the model.

Future work will concern determining which feature is
appropriate to model and the fidelity with which it must be
modeled. Additionally, testing of some subsystems will be

conducted so that dynamic friction parameters, which were
identified through the screening process as important to
model response, may be estimated. To date, because little
(no?) literature exists on kinematic coefficients of friction,
they have been estimated using engineering judgement and
this value checked by using the metamodel! to solve the
inverse problem. Parameters values are calculated through
inverse means and minimization of error between actual and
predicted parameter values. Once better estimates of these
parameters are obtained, a new metamodel will be
generated which more accurately represents the physics of
the problem.
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