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VARIABLE SCREENING IN METAMODEL DESIGN FOR A LARGE 
STRUCTURAL DYNAMICS SIMULATION 

A.I... Cundy, J.F. Schultze, F.M. Hemez, S.W. Doebling, D. Bingham’ 
Los Alamos National Laboratory, ESA-WR 

MS P946 
Los Alamos, New Mexico 87545 

AB § T R A C 7’ 

This research addresses the problem of analyzing the 
nonlinear transient response of a large degree-of-freedom 
structural dynamics simulation. A threaded joint assembly’s 
response to impulse loading has been studied. Twelve 
parameters relating to the input level, preloads of the joint 
and friction between components are thought to influence 
the acceleration response of the structure. Due to the high 
cost of physical testing and large amount of computation 
time to run analytical models (three hours on 504 processors 
of LANL’s ASCI supercomputer, Blue Mountain to simulate 
three milliseconds of response) a fast-running metamodel is 
being developed. In this case, a metamodel is a statistically 
developed surrogate to the physics-based finite element 
model and can be evaluated in minutes on a single 
processor desktop computer. An unreasonable number of 
runs is required (312>500,000) to generate a three level full 
factorial design with 12 parameters for metamodel creation. 
Some manner of down-selecting or variable screening is 
needed in order to determine which of the parameters most 
affect the response and should be retained in subsequent 
models. A significant effects methodology has been used, 
involving a design of experiments technique, in which all 
parameters were lirst included in the model and then 
eliminated on the basis of statistical contributions associated 
with each parameter. Bayesian variable screening 
techniques, in which probabilities of effects are generated 
and updated, have also been explored. Encouraging results 
have been obtained, as the two methods yield similar sets of 
statistically significant parameters. Both methods have been 
compared to general sensitivity analysis (GSA). The 
resulting compact metarnodel can then be explored at more 
levels to appropriately capture the underlying physics of the 
threaded assembly with a much smaller set of simulations 
(only 64 runs required for a three level model with quadratic 
and some third order terms). 

* University of Michigan, dbingham@umich.edu 

NOMENCLATURE 

Y response feature modeled 
x’ parameter 
B parameter coefficient 
0 error coefficient 
& error 

INTRODUCTION 

A threaded joint assembly (Figure 1) has been studied to 
determine its response to impulse loading from the side. It 
has steel upper and lower mass simulators and aluminum 
upper and lower shells. The upper mass simulator is bolted 
to a titanium mount. The upper shell and retaining nut 
(which holds the lower shell in place) are threaded onto the 
mount. It also has a unique steel “tape joint” which is 
located at the bottom of the assembly, wedged between the 
lower mass simulator and the titanium mount. It is the 
friction between the interfaces of the lower mass simulator, 

Figure 1 : Physical testing set up of the threaded 
assembly. The charge array is held in place with 
foam blocks at the lower right of the photo. 
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the titanium mount,, and the tape joint that hold these pieces 
in place. 

To date four physical tests have been conducted, in which 
shell tolerances and “gaps” between the shell and mount 
were varied [I, 51. These parameters were chosen based on 
initial engineering judgement. They had to be isolated 
before the finite element runs were executed due to 
scheduling requirements of the physical tests. A charge 
array was attached to one side of the assembly and 
detonated. Acceleration responses were monitored at the 
top and bottom of the assembly, as well as between the 
upper and lower mass simulator:; (see Figure 1). While 
much information was gained from the tests, it is 
economically prohibitive (>$60,000/test) to conduct a 
sufficient number to generate a response surface. 

In order to study the assembly in1 greater detail, a large finite 
element model was created (’1 million elements and 4 
million degrees of freedom) [I] (Figure 2). The model can be 
run on the Laboratory’s ASCI super-computer, Blue 
Mountain. However, because Blue Mountain requires about 
three hours using 504 processors to run three milliseconds 
of simulation time it is still impractical to execute a large 
number of runs tor response surface generation. 

From the finite element run resullts, twelve parameters were 
identified as being potentially important to the response of 
the assembly. They relate to dynamic and static coefficients 
of friction between tho different parts, the preloads, and the 
input level (see ‘Table 1). Parameters, or factors, were set at 
discrete levels for each experiment and coded to unitleas 
values. Multiple features were derived from the acceleration 
time history data collected. Time histories were transformed 
to yield power spectral denisties (PSDs) and shock response 
spectrums (SRSs). ‘Then moments were taken of each of 
these functions, with the lowest order being the energy (E) 
plots and the second and third order moments called Tau 
and D [7]. 

Table 1 : Poteniial parameters to be included in rnetamodel 

sl_.__ll_..- 

-i per Shell Preload 
Static Friction 

C 
D 

Coefficient ___. 

Aluminum-Aluminum Kinetic Friction 
Friction Coefficient . 

coAKq*--.- ll__________l_ 

Kinetic Friction 

Design of experiments (DOE) methods are being explored to 
create a fast-running, or rnetamodel, that is based only on 
model parameters that affect the response 161. A Taguchi 

orthogonal array, alias free for quadratic and some cubic 
terms, was used [4]. Using DOE, an Analysis of Variance 
(ANOVA) is generated using data from finite element runs, in 
order to estimate a polynomial (which can be nth order, 
depending on the number of runs available) that relates 
parameters to responses. 

Upper Mass 
(steel) Forward 

Lowershell + 
(AI) 

Shell (AI) 

Retaining c Nut (Ti) 

Figure 2: Detail of threaded joint FEM 

A concern with developing a metamodel is that as more 
parameters are included in the model, more FEM runs are 
required to generate the model. A three level design 
incorporating all twelve parameters would require over 
500,000 runs for a full factorial design, thus defeating the 
simplifying purpose of the metamodel. A fractional factorial 
design can be implemented to reduce the number of runs 
required for a given model, while increasing the model order. 
However, the use of fewer runs for the creation of a higher 
order model leads to aliasing of some terms which must then 
be omitted; therefore it is still desirable to keep as many runs 
as possible. A design with twelve parameters might be run 
with as few as 6000 runs, but would be heavily aliased. A 
variable screening process must be implemented in order to 
reduce the dimension of the response space so that a model 
may be designed without too many aliased terms. 

GENERAL SENSlTVlTY ANALYSIS 

General sensitivity analysis (GSA) was conducted for a quick 
way of looking at important parameters. Parameters A, I3 
and C were not included in the general sensitivity analysis. 
They were held constant at their nominal values because of 
difficulty in setting preloads (each preload requires ten extra 
runs to set because they cannot be set directly; thermal 
stress methods must be employed). A set of finite element 
runs were executed with each parameter set at its high and 
low value and one run with all parameters set at their 
nominal values (19 runs total). Parameter importance was 
defined as any parameter causing a relatively large 
difference in model response between its high and low value 
(as calculated using simple finite differencing). This method 
does not account for higher order effects and interactions. 
Results from this exercise showed that parameters L and M 
(St-Ti kinetic friction, input load level) were important to 
model features, with H, K and J (AI-AI kinetic friction, Ti-Ti 
kinetic friction, AI-Ti kinetic friction) appearing also, though at 
a lesser magnitude. 
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SIGNIFICANT EFFECTS METHOD OF VARIABLE 
SCREENING 

Another method of variable screening implemented was 
analysis of significant effects, or linear variable screening. A 
particular main effect's contribution (no higher order effects) 
to the total model variance was analyzed [I]. Significant 
effects method provides an andvantage over GSA because 
a probabilistic assessment of variable importance is obtained 
through the analysis of variance. Screening was done using 
a two level fractional factorial design, Features which did not 
result in a high enough total variance contribution (<30%) 
were discarded becdUSe they did not sufficiently discriminate 
between runs. Results from this screening are shown in 
Figure 3. In many of the models, effects A, K, L and M are 
important parameters. These variables correspond to the 
tape joint preload, kinematic frictions between parts (AI-Ti, 
Steel-Ti), and input scaling. Results agreed with the GSA. 
The results were not intuitive; the thread preloads (B and C) 
were expected to have more impact on the response, 
because they appear to be mow directly tied to the upper 
and lower mass simulators, but neither of these effects were 
screened as important. This lend to a desire to corroborate 
results with another screening method. 

BAYESIAN VARIABLE SCREENING 

The second method used was a Bayesian variable screening 
technique [2,3]. An advantage it provides over both of the 
previous two methods is that it samples the entire response 
space instead of just the high and low edges, as well as 
providing a probabilistic assessment of parameter 
importance. A simple Markov Chain Monte Carlo (MCMC) 
method, called the Gibbs Sampler, was used to sample 
different models. The most probable models are visited 
most often, with the most probable effects occurring in the 
models more frequently than tho rest of the effects [6]. 

Bayesian methods make use of prior and posterior 
probabilities and distributions. Priors are assigned by the 
analyst: the sampling method then updates these values to 
posterior values. In an MCMC method, posteriors from one 
iteration become the priors of the next. In this case, two sets 
of prior probabilities were established. The first relates to 
whether main effects and two factor interactions occur in the 
model. Because comparison to the method of significant 
effects was desired, only main effects were given a 
probability (0.25). The rest of the prior proabilities, which 
describe two factor interactions, were set to zero. 

Priors relating to the probability of a particular model given a 
set of inputs must also be set. b simple linear regression 
model is used, 

Y =x'p+cT& (Equation 1) 

Where Y is the response feature vector, X is a vector of 
parameters and E is the error. The parameter coefficient, p 
is assumed to have a multivariate normal distribution and the 
error coefficient, cr an inverse gamma distribution. Each of 
these distributions has associated parameters for which 
priors must be set [3]. 

A Gibbs Sampler was then used to obtain a posterior set of 
screened variables, derived from their associated 
probabilities. The Gibbs Sampler repeatedly draws samples 
from the posterior distributions of each parameter, resulting 
in a sample that is approximately one from the joint 
distribution of the above parameters. Chipman, Hamada, 
and Wu [3] note the chain length can be an implementation 
issue, as samples close together may be correlated. After 
trying a longer chain (10,000 samples) with a lag of 10 and 
discovering that results were nearly the same as using a 
chain 1000 samples long storing every sample, the shorter 
chain was chosen, with a 100 sample long "burn-in'' (to 
initialize the chain). 

Slgnlflcant Effects Method for Accel3  

I - -- _I_ ___ _____  

Parameter 

Bayesian Variable Screening for Accel 3 
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Accel 3 General Sensitivity Results 
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Figure 3: Comparison of Screening Methods for 
Accelerometer 3 Response Features 
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Results from the Bayesian variable screening method can be 
found in Figure 3 for main effects screening. In the Bayesian 
method, effects are important if their posterior probability is 
high compared to the rest of the parameters in question. 

Again the problem of features which are not discriminating 
enough arises. Features that have parameters with very low 
probabilities (generally <0.4), ie, models that are 
approaching the “mean model,” are omitted from 
comparison. Only results for the first moment features, E- 
time, E-PSD and E-SRS, are shown. While D and Tau were 
similar, E features yielded the most conclusive results. For 
most features, A, K, I-, and M are important parameters to 
the model, matching the results found using the method of 
significant effects and general sensitivity analysis. Note that 
in the Bayesian screening method, effects G, H and J 
occasionally have high probabilities, as well. 

Screening was also extended to two factor interactions. 
Prior probability for two factor interactions was set at .25 for 
interactions with both parents appearing in the model, .I for 
interactions with one parent appearing in the model and .01 
for interactions with no parents in the model. Distribution 
parameter priors used were the same as for main effects 
analysis. Screened two factor interactions for the most part 
included combinations of A, K, L, and M with occasional 
occurances of B, H and J (nut preload, AI-AI kinetic friction 
coefficient, and Ti-Ti kinetic friction coefficient). 

DISCUSSION 

Both methods clearly indicate which effects are “important” 
and which may be omitted from the model, and these results 
are comparable. For the set of data that was screened, K, L, 
and M frequently appear as important model factors in both 
screening methods, with effects A, G, H and J appearing 
less frequently. The E features appear to be the most 
discriminating for nearly all the accelerometers, based on 
high contribution to total model variance in the significant 
effects method and its high probability levels in the Bayesian 
screening. Features used in the final model were A, G, H, K, 
L, and M based on the results obtained above. General 
sensitivity analysis provides a good first look at important 
parameters, however it only accounts for the high and low 
values of parameters and does riot provide a probabilistic 
assessment of parameter importance. 

CONCLUSIONS AND FUTURE WORK 

Results achieved are encouraging, showing that the 
parameters screened are very likely to be at least part of 
some larger super-set of parameters which have an impact 
on the response of the threaded assembly. After screening 
parameters and using fractional factorial design, we now 
have feature models based on six important parameters, 
significantly reducing the number of runs needed to define 
the metamodel (64 runs for a model with third order terms). 
Effects chosen have been used in design of a higher order 
metamodel, which more accurately predicts the response of 
the model. 

conducted so that dynamic friction parameters, which were 
identified through the screening process as important to 
model response, may be estimated. To date, because little 
(no?) literature exists on kinematic coefficients of friction, 
they have been estimated using engineering judgement and 
this value checked by using the metamodel to solve the 
inverse problem. Parameters values are calculated through 
inverse means and minimization of error between actual and 
predicted parameter values. Once better estimates of these 
parameters are obtained, a new metamodel will be 
generated which more accurately represents the physics of 
the problem. 
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Future work will concern determining which feature is 
appropriate to model and the fidelity with which it must be 
modeled. Additionally, testing of some subsystems will be 


