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PEAK DISPLACEMENTS AND INrERSTORY DRIFTS OF NONLINEAR MDOF 
SYSTEMS USING PRINCIPAL COMPONENT ANALYSIS 

I. Cuesta’ and M. A. Aschheim2 

ABSTRACT 

Principal Components Analysis (PCA) is a method to extract the principal 
components (or modes) of response from recorded or computed response data, of 
systems exhibiting linear and/or nonlinear response. For linear systems, the PCA 
mode shapes coincide with the elastic mode shapes, if the nodal mass is uniformly 
distributed. For nonuniform mass distributions, the PCA modes are related to the 
elastic modes. The PCA technique is particularly valuable when applied to 
systems responding nonlinearly, because it identifies the “predominant mode” of 
response and the degree to which the response is in this mode. 

This paper illustrates the use of the PCA technique for estimating floor and 
interstory drifts for a 12-story moment-resistant frame responding to earthquake 
ground motions. Linear and nonlinear responses are considered, and the observed 
mode shapes and the accuracy of drift estimates are discussed. The interaction of 
modal amplitudes in time is considered in detail. The peak roof drift and interstory 
drifts are expressed as linear combinations of the PCA modes, and are represented 
graphically, together with the observed interaction response. A technique is 
described to determine peak values of these quantities by maximizing the drift 
functions relative to the observed modal interactions. 

Introduction 

The large amounts; of data generated in the nonlinear dynamic analysis of multi-degree-of- 
freedom (MDOF) systems has made it difficult to characterize the behavior of such systems. 
Investigators have used qualitative statements such as “responding predominantly in the first 
mode” while recognizing that the predominant mode of response may deviate from the elastic 
mode shape and without evaluating the degree to which the response is in a given mode. 
Principal Component:; Analysis (PCA) provides a simple tool to identify the relevant mode 
shapes and the degree to which the response is in each mode. The mode shapes obtained by PCA 
are eigenvectors that form an orthonormal basis for the response, although these modes may 
differ from the elastic mode shapes, and for nonlinear response, depend on the excitation. The 
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PCA mode shapes are ordered in such a way that the first PCA mode shape is the shape vector 
that best represents the response, the second PCA mode shape is orthogonal to the first and best 
represents the response with the first mode removed, and so on. The corresponding eigenvalues 
identify the degree to which the variance in the response is represented by each mode. 

PCA is used in the multivariate analysis of empirical data (see Mardia et a1 1979, Dunteman 
1989, and Venables and Ripley 1997). The use of PCA in earthquake-resistant structural 
engineering is relatively new, Wissawapaisal and Aschheim (2000) and Inel (200 1) established 
the properties of structural components based, in part, on agreement of the PCA modes 
determined for the structural model and those determined from the recorded responses of an 
instrumented bridge, Guti6rrez and Zaldivar (2000) independently applied PCA to data collected 
in pseudo-dynamic and shake table tests. 

Theory of Principal Components Analysis 

This section describes the basics of PCA and then introduces extensions required to relate the 
PCA modes to the elastic modes for systems having nonuniform nodal masses. While the 
technique is general arid may be applied to any response quantity (e.g, velocities, accelerations, 
interstory drifts, etc), the derivation assumes displacement data will be used. 

Let Y be an n x 1 vector representing the displacements at n degrees of freedom at an instant 
of time. There are t observations of v over the duration of response data. The deviation of v from 
its mean over t observations,y, can be expressed in terms of a new orthonormal basis @: 

V-T'@CDu (1) 

Because 0 is orthonormal, aT@ = I, and therefore, OT = 0 - l .  Premultiplying by cDT gives 
u = iDT (v -T) (2) 

with the mean of u over the t observations being the n x 1 vector 0. Let the covariance of v be 
represented by the n x n covariance matrix C,. The ( i , j )  element of C, is the covariance between 
the ith and jth degrees of freedom, vi and Vj ,  over the t observations, given by 

I t  

1 '  - I cov(v, , V j )  = --E (Vi,k - vi )(v j , k  - v j  ) 
2 k=l  

(3) 

Standard identities applied to Eq> 2 allow the covariance of u, Cu, to be expressed as 

If the orthonormal basis @ is selected to be the set of eigenvectors of Cv, then C, is a 
diagonal matrix, with each term on the diagonal equal to the eigenvalue that corresponds to an 
eigenvector of C,. 

c,  =i9TC,@ (4) 

By convention, the eigenvectors of @ are arranged in sequence such that the corresponding 
eigenvalues are in descending order (AI 2 A2 2 ,..>An). Because Cu is diagonal, the 
displacements ui and tlj  (expressed in terms of the orthonormal basis a) are uncorrelated for i + j ,  
One can show that: (1) The eigenvectors contained in 0 are the principal components of the 
displacement response v (that is, $1 is oriented to maximize the variance; 4 2  maximizes the 
variance with 41 removed, and so on), and (2) the variance in the displacement response 



represented by each eigenvector is proportional to its eigenvalue; that is, each component 
represents hi /&(A) of the total variance in displacement response. For linear elastic systems with 
uniform nodal masses, the application of PCA to displacement response data determines PCA 
mode shapes (the eigenvectors of @) that coincide with the elastic mode shapes, provided that the 
data samples are frequent enough and over a sufficiently long duration. 

Because the eigenvectors are sequenced according to their eigenvalues, the most efficient 
representations of v using k eigenvectors will be obtained by selecting the first k eigenvectors: 

- k  

i=l 
v(t)- v = c $iui (t)  

- - - 
The mean V can be expressed in terms of the mode shapes, as Vi  = V , resulting Eq. 5 

into 

Because the principal components are orthogonal, the coefficients ui are invariant with 
changes in k, and their values are determined by the simple dot product ui( t )=brV(t) .  The 
number of eigenvectors to be used, k,  depends on the desired level of precision; inspection of A 
reveals the benefit of using additional components in Eq. 6. 

Building Description and Modeling 

Figure 2 shows the 12-story moment-resistant steel frame building used in this study. The 
building was designed by Black (2000) to illustrate a design approach for limiting drift. The 
building has 3 bays, uniform floor masses, with a total weight of 6,612 kN, The steel is Grade 
A36. Non-linear pushover analysis was done by applying lateral forces in proportion to the mode 
shapes, and bilinear ciirves were fit to the capacity curves following Chopra and Goel procedure 
(Chopra and Goel, 2001). The bilinear curves have post-yield stiffness equal to 13.6% and 12.2% 
of the initial stiffness, yield displacements of 36.3 and 10.8 cm, and base shear yield coefficients 
of 0.178 and 0.141, for the 1'' and Znd modes, respectively. 



Displacement Response 
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The building has uniform floor masses, PCA 
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Figure 2. Framing configuration. 
mode shapes are similar in this example, they would be almost as good. Because such a large 
percentage of the variance in the displacement response is represented by the first mode, an 
equivalent SDOF system based on this mode can be expected to provide a reasonably accurate 
estimate of the displacement response, for both linear and nonlinear cases. 

PCA can be applied to smaller intervals of data to better capture the variation of the mode 
shapes with time (although the reduced data sample affects their resolution). Figure 4 shows the 
PCA mode shapes obtained using a 5-sec window advanced over the displacement data in 1-sec 
increments, in dashed tines, with the elastic mode shapes shown in solid lines. For both cases, the 
PCA inode shapes appear as perturbations about the elastic modes. Associated with the moving 
window mode shapes are moving window eigenvalues; Fig. 5 plots the cumulative proportion of 
variance of the first mode, the first two modes, and the first three modes. Three regions may be 
clearly distinguished in both the linear and nonlinear cases. In the first region, for 5-sec windows 
that start between 0 and 25 sec, the 1“ and 2nd modes are appreciable; between 25 and 38 sec, the 
first three modes contribute to the response, and beyond 38 sec, the response is nearly all in the 
lSt mode. 

Figure 6 plots the drift profile for the two cases at the instant that the peak roof displacement 
is reached, using a solid line. Approximations of this drift using Eq. 5 with k = 1 and 2 are shown 
as “PCA 1” and “PCA 1+2” using dashed and dotted lines. Estimates of this drift using either the 
first or the first two elastic mode shapes according to the “Modal Pushover Analysis” method 
(Chopra and Goel 2001) were reasonable for the elastic case, but led to significant disparities in 
the nonlinear case, The MPA estimates were made using “equivalent” SDOF oscillators, having 
properties determined from the pushover curve according to the investigator’s recommendations, 
subjected to the scaled accelerogram, and using the modal damping present in the nonlinear 



dynamic analyses. Values are given in Table 2. 

If, as an approximation, just the first two modes are considered, then simple graphical 
techniques can be used to gain insight into the components that contribute to floor displacements. 
Figure 7 plots the interaction between the normalized amplitudes UI /ulm and u 2  /UZm where 
are the peak displacements, u j m  = max)u, (f] , of the first and second modes, over time, for the 
linear and nonlinear cases. Using Eq. 6 with k = 2, the displacement of floor j is estimated 
v, (f)= $,+I (f>+ $ j2'2('). Therefore, the displacement of floor i, vi, can be expressed as a line in 
the space u1 / U l m  vs 242 / % , ,  C ,  = $jlul ( t ) + 4 J 2 u 2 ( t ) ,  where cj is a constant. The slope of this 
straight line is given by / au ,  / $ ) , 2 ,  The angle of constant drift is 
aj = arctan(- Q j i  / Q j 2 ) ,  which is only function of the PCA mode shape components. 
Rearranging coefficients, the line of constant drift in Fig. 7 is: 

Therefore, in a X-Y coordinate system, the straight lines with constant slopes are given by 
ay 1 = -1 1 u j  , The displacement has a maximum that intercepts this line (solid lines), as shown 
in Fig. 7. Different floors will have different coefficients Cj, and thus the slopes of the lines that 
represent vj vary withj. It is thus possible to represent the peak displacements of many floors as 
the intersections of lines having different slopes with the interaction data shown in Fig. 7. 
Estimates of peak floor displacements in future earthquakes depend on (a) being able to identify 
appropriate mode shapes and (b) being able to estimate the interaction surface. Investigations to 
date indicate that the interaction surfaces can vary substantially from an ellipse (the shape 
assumed in SRSS approximations) and that estimates of modal peak responses are prone to 
significant scatter, Mathematical extensions to three or more modes may be developed, but the 
small contributions of the third and higher modes to the variance in displacement response 
suggest that there is limited benefit in doing so. 

Interstory Drift Index Response 

In this section, PCA is applied in two different ways to characterize interstory drift. In the 
first, interstory drift is calculated by superposition of the interstory drifts associated with the PCA 
mode shapes, using the PCA mode shapes that were determined for the floor displacement 
response data. In the second, PCA mode shapes are determined for the interstory drift data, with 
the interstory drifts being determined as differences in the floor displacement response data. 

Interstory Drift as Dvferences ofthe PCA Mode Shapes 

As discussed previously, the PCA mode shapes of the displacements, a, resemble or 
coincide the elastic rnode shapes. Interstory drifts for the jth story associated with each mode 



where the drift mode shapes are determined with the PCA displacement mode shapes: 
I/ij = $b - @ij-l. The parallel structures of Eqs (6) and (8) indicate that the expression for constant 
interstory drift plots as a line having slope aj = arctan(-yj, / Y , 2 ) ,  on Figure 7 (dashed lines). 
Thus, the largest interstory drift that occurs for a given excitation can be found by maximizing 
the function over the domain of interaction between U I  and u2, with the maximum occurring in 
the intersection between the corresponding straight line and the displacement curve given by the 
two modes. This illustrates the versatility of the plot of u1 vs. u2,for estimating both floor 
displacements and interstory drifts, the dependence of the maxima of the quantities on the actual 
interaction, the fact that the maxima occur at different times (represented by different intersection 
points), and the difficulty of (a) anticipating the shape of the interaction surface a priori and (b) 
the need for accurate estimates of the individual modal peaks if estimates of these quantities are 
to be made. 

Principal Components of Interstory Drvt 

The second approach taken is to estimate the interstory drift, as A j  = CP jlzl (t)+ CP j z z z  (t) ,  
where zi(t>= A(t>uli, A(t) is the computed drift using Drain-2DX, and Pi are the mode shapes 
obtained from the eigenvalue problem CAP = AP , where cA is the covariance matrix of A(t). 
The slope of constant drift for each storyj is given now by aj =arctan(-Oj, / O j 2 ) .  

The PCA mode shapes, determined for 50 sec of response data at 0.01 sec intervals, are 
plotted in Fig. 8 and compared to the interstory drifts calculated from the elastic modes. The 
elastic and PCA mode shapes are different for both the linear (1 x El Centro ground motion) and 
the nonlinear (4 x El Centro) cases. The variance of the interstory drift index explained by each 
mode shape, Ai / trA and the cumulative variance, A, / trA , are given in Table 1 for the first 
three mode shapes and for the two cases studied. The first mode contains 75.87% of the variance 
for the linear case, and 57.12% for the nonlinear case. The cumulative variance when the lSt and 
2nd modes are added increases to more than 88%. The smaller variances obtained for interstory 
drifts, relative to the variances obtained for the displacement data, indicate that interstory drift 
estimates are prone to be less precise, particularly as inelasticity develops, for a given level of 
approximation (k) .  

Figure 9 shows the PCA mode shapes obtained with a 5 s  window data in 1-s increment in 
dotted lines, and the elastic mode shapes in solid lines. In both cases, the PCA mode shapes are 
seem as variations around the elastic mode. This variation increases in the nonlinear case. Fig. 10 
plots the cumulative proportion of variance, /trA, using the first mode, the first two modes, 
and the first three modes with largest variances, using 5-s window data in 1-s increments. For 
both linear and nonlinear cases the 3rd mode is relevant, and even more for the nonlinear case. 
The plots have two sections clearly distinguished. Between 0 and 38 s the lst, 2nd, and 3rd modes 
are predominant. For times larger than 38 s, the 1'' mode is only important. 



Figure 11 plots the peak interstory drift indices (IDI) of each story for the linear and nonlinear 
cases. The peak displacements have been obtained using five procedures: 1) the “exact“ ID1 
obtained with DRAIN-2DX program, 2) the estimates using the first principal component, 3) the 
estimates using the first and second principal components, 4) the estimates using the first model 
for the modal push-over analysis (MPA) method (Chopra and Goel 2001), and 5 )  the estimates 
using the 1’‘ and 2nd modes for the modal push-over analysis method. While in the linear case the 
peak ID1 are well-estimated using PCA or MPA, the peak ID1 in the nonlinear case are 
overestimated using MPA. 

Conclusions 
The theory of Principal Components Analysis was described and applied to the calculation of 

1. PCA is a useful technique for identifying the “predominant” mode of response of 
structures responding linearly and nonlinearly to earthquake ground motions. The 
mode shape and degree to which response is in this mode can be identified. 
PCA can identify the elastic mode shapes of systems responding linearly. 
Floor and roof displacements can be estimated based on the interaction of modal 
responses (Fig. 7) as the intersection of an interaction surface and a line. The shape of 
the interaction surface may vary significantly from an ellispse (assumed in SRSS 
combinations). Accurate estimates of displacement response require accurate 
estimates of the peak modal response amplitudes as well as presumptive assessments 
of the interaction surface. 
While a single mode often is sufficient to represent over 90% of the variance in 
displacement response, two or three modes may be needed for similar accuracy in the 
estimates of interstory drift. 
Superposition of modal responses, as described by Chopra and Goel (2001) led to 
reasonable estimates of displacement and interstory drift amplitudes for elastic 
response, but the accuracy of these estimates suffered for nonlinear response. 

floor displacements and interstory drifts. Based on the examples considered: 

2. 
3. 

4. 

5 .  
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Table 2. Peak roof displacements (in m) obtained with DRAIN-2DX, for the first two principal 
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Figure 3. First and second mode shapes computed from elastic and PCA for all the data set. 
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Figure 9. lSf and 2nd mode shapes computed from elastic 
taken in 5-s intervals. 
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Figure 11. Comparison of peak interstory drift indices. 


