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PEAK DISPLACEMENTS AND INTERSTORY DRIFTS OF NONLINEAR MDOF
SYSTEMS USING PRINCIPAL COMPONENT ANALYSIS

I. Cuesta’ and M. A. Aschheim?

ABSTRACT

Principal Components Analysis (PCA) is a method to extract the principal
components (or modes) of response from recorded or computed response data, of
systems exhibiting linear and/or nonlinear response. For linear systems, the PCA
mode shapes coincide with the elastic mode shapes, if the nodal mass is uniformly
distributed. For nonuniform mass distributions, the PCA modes are related to the
elastic modes. The PCA technique is particularly valuable when applied to
systems responding nonlinearly, because it identifies the “predominant mode” of
response and the degree to which the response is in this mode.

This paper illustrates the use of the PCA technique for estimating floor and
interstory drifts for a 12-story moment-resistant frame responding to earthquake
ground motions. Linear and nonlinear responses are considered, and the observed
mode shapes and the accuracy of drift estimates are discussed. The interaction of -
modal amplitudes in time is considered in detail. The peak roof drift and interstory
drifts are expressed as linear combinations of the PCA modes, and are represented
graphically, together with the observed interaction response. A technique is
described to determine peak values of these quantities by maximizing the drift
functions relative to the observed modal interactions.

Introduction

The large amounts of data generated in the nonlinear dynamic analysis of multi-degree-of-
freedom (MDOF) systems has made it difficult to characterize the behavior of such systems.
Investigators have used qualitative statements such as “responding predominantly in the first
mode” while recognizing that the predominant mode of response may deviate from the elastic
mode shape and without evaluating the degree to which the response is in a given mode.
Principal Components Analysis (PCA) provides a simple tool to identify the relevant mode
shapes and the degree to which the response is in each mode. The mode shapes obtained by PCA
are eigenvectors that form an orthonormal basis for the response, although these modes may
differ from the elastic mode shapes, and for nonlinear response, depend on the excitation. The
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PCA mode shapes are ordered in such a way that the first PCA mode shape is the shape vector
that best represents the response, the second PCA mode shape is orthogonal to the first and best
represents the response with the first mode removed, and so on. The corresponding eigenvalues
identify the degree to which the variance in the response is represented by each mode.

PCA is used in the multivariate analysis of empirical data (see Mardia et al 1979, Dunteman
1989, and Venables and Ripley 1997). The use of PCA in earthquake-resistant structural
engineering is relatively new. Wissawapaisal and Aschheim (2000) and Inel (2001) established
the properties of structural components based, in part, on agreement of the PCA modes
determined for the structural model and those determined from the recorded responses of an
instrumented bridge. Gutiérrez and Zaldivar (2000) independently applied PCA to data collected
in pseudo-dynamic and shake table tests.

Theory of Principal Components Analysis

This section describes the basics of PCA and then introduces extensions required to relate the
PCA modes to the elastic modes for systems having nonuniform nodal masses. While the
technique is general and may be applied to any response quantity (e.g. velocities, accelerations,
interstory drifts, etc), the derivation assumes displacement data will be used.

Let v be an n x 1 vector representing the displacements at n degrees of freedom at an instant
of time. There are ¢ observations of v over the duration of response data. The deviation of v from

its mean over ¢ observations, ¥, can be expressed in terms of a new orthonormal basis ®:
v-V=0u )]

Because @ is orthonormal, ®"® = I, and therefore, @' = &' Premultiplying by @' gives
u=0"(v-v) 2)

with the mean of u over the ¢ observations being the n x 1 vector 0. Let the covariance of v be
represented by the n x n covariance matrix C,. The (i, j) element of Cy is the covariance between
the i and ' J degrees of freedom, vi and vj, over the ¢ observations, given by
cov(v;,v;) = Z(v.k VO ~V)) . 3)
k=l

Standard identities applied to Eq. 2 allow the covariance of u, C,, to be expressed as
C,=0"C,® 4)

If the orthonormal basis @ is selected to be the set of eigenvectors of Cy, then C, is a
diagonal matrix, with each term on the diagonal equal to the eigenvalue that corresponds to an
eigenvector of Cy.

By convention, the eigenvectors of @ are arranged in sequence such that the corresponding
eigenvalues are in descending order (A1 > A2 >.. >An). Because Cy is diagonal, the
displacements ; and u; (expressed in terms of the orthonormal basis @) are uncorrelated for i  j.
One can show that: (1) The eigenvectors contained in @ are the principal components of the
displacement response v (that is, ¢1 is oriented to maximize the variance; ¢2 maximizes the
variance with ¢1 removed, and so on), and (2) the variance in the displacement response



represented by each eigenvector. is proportional to its eigenvalue; that is, each component
represents ; /tr(A) of the total variance in displacement response. For linear elastic systems with
uniform nodal masses, the application of PCA to displacement response data determines PCA
mode shapes (the eigenvectors of @) that coincide with the elastic mode shapes, provided that the
data samples are frequent enough and over a sufficiently long duration.

Because the eigenvectors are sequenced according to their eigenvalues, the most efficient
representations of v using & eigenvectors will be obtained by selecting the first k eigenvectors:

V(t)"; = id’r’ui(t) : (5)

i=l
The mean V can be expressed in terms of the mode shapes, as V; = 0,07 v, resulting Eq. 5
into

V)= S b 0)= 607w 1) ©

i=]

Because the principal components are orthogonal, the coefficients u; are invariant with
changes in k, and their values are determined by the simple dot product ¥ ()= 97 v(). The

number of eigenvectors to be used, k, depends on the desired level of precision; inspection of A
reveals the benefit of using additional components in Eq. 6.

Principal Components in the Response of a 12-story Building

The theory of principal components
analysis was used to study the dynamic
response of a 12-story moment-resistant
frame building subjected to the North-
South El Centro record (5/18/1940). The
acceleration ground history of this record
is plotted in Fig. 1. To obtain linear and
) nonlinear responses, the amplitude of the
S . g : e = acceleration ground motion was scaled

3.
_ i) by factors of 1 and 4, respectively.
Figure 1. The El Centro record (1940).
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Building Description and Modeling

Figure 2 shows the 12-story moment-resistant steel frame building used in this study. The
building was designed by Black (2000) to illustrate a design approach for limiting drift. The
building has 3 bays, uniform floor masses, with a total weight of 6,612 kN, The steel is Grade
A36. Non-linear pushover analysis was done by applying lateral forces in proportion to the mode
shapes, and bilinear curves were fit to the capacity curves following Chopra and Goel procedure
(Chopra and Goel, 2001). The bilinear curves have post-yield stiffness equal to 13.6% and 12.2%
of the initial stiffness, yield displacements of 36.3 and 10.8 cm, and base shear yield coefficients
of 0.178 and 0.141, for the 1% and 2™ modes, respectively.



Displacement Response W18xd6

W14X68 "

The building has uniform floor masses. PCA W14x68 ——
mode shapes were computed for the floor W14%99
displacements (relative to the base), using 50 sec WX
of response data at 0.01 s intervals. The first and bk W21X68
second PCA mode shapes are compared with the W14X120 W21X68 e
first two elastic modes in Figure 3. While the W14X120 WAX6R 4m
mode shapes coincide for the 1x El Centro case, N

[ . W24X68

some deviation in the mode shapes appears for
nonlinear response (4x El Centro). The variance of Wiex14s W24x76
the displacement response explained by each W14X159 W24X76
mode shape, 4;/trA and the cumulative variance W14X159 W24K76
are given in Table 1. For linear response, 96.79% W14X193 W24XT6
of the variance in displacement response is WIAR193 sm
represented by the 1" mode, while 93.4% of the

ot 7777 7777
variance is represented by the 1© PCA mode for I 1@8m S|

the nonlinear case. The first two PCA modes a

account for more than 99% of the variance for Note: all columns and beams within a story are identical
both cases. The PCA mode shapes are oriented to

best represent the response, but because the elastic ~ Figure 2. Framing configuration.

mode shapes are similar in this example, they would be almost as good. Because such a large
percentage of the variance in the displacement response is represented by the first mode, an
equivalent SDOF system based on this mode can be expected to provide a reasonably accurate
estimate of the displacement response, for both linear and nonlinear cases.

PCA can be applied to smaller intervals of data to better capture the variation of the mode
shapes with time (although the reduced data sample affects their resolution). Figure 4 shows the
PCA mode shapes obtained using a 5-sec window advanced over the displacement data in 1-sec
increments, in dashed lines, with the elastic mode shapes shown in solid lines. For both cases, the
PCA mode shapes appear as perturbations about the elastic modes. Associated with the moving
window mode shapes are moving window eigenvalues; Fig. 5 plots the cumulative proportion of
variance of the first mode, the first two modes, and the first three modes. Three regions may be
clearly distinguished in both the hnear and nonlinear cases. In the first region, for 5-sec windows
that start between 0 and 25 sec, the 1% and 2" modes are appreciable; between 25 and 38 sec, the
flsI;St three modes contribute to the response, and beyond 38 sec, the response is nearly all in the
1™ mode.

Figure 6 plots the drift profile for the two cases at the instant that the peak roof displacement
is reached, using a solid line. Approximations of this drift using Eq. 5 with k=1 and 2 are shown
as “PCA 1” and “PCA 1+2” using dashed and dotted lines. Estimates of this drift using either the
first or the first two elastic mode shapes according to the “Modal Pushover Analysis” method
(Chopra and Goel 2001) were reasonable for the elastic case, but led to significant disparities in
the nonlinear case. The MPA estimates were made using “equivalent” SDOF oscillators, having
properties determined from the pushover curve according to the investigator’s recommendations,
subjected to the scaled accelerogram, and using the modal damping present in the nonlinear



dynamic analyses. Values are given in Table 2.

If, as an approximation, just the first two modes are considered, then simple graphical
techniques can be used to gain insight into the components that contribute to floor displacements.
Figure 7 plots the interaction between the normalized amplitudes %, /%, and ¥, /U,, where U,

are the peak displacements, i, = maxlu,. (d,‘of the first and second modes, over time, for the

linear and nonlinear cases. Using Eq. 6 with k = 2, the displacement of floor j is estimated
v, t)=9¢ it t)+6 jalta (t). Therefore, the displacement of floor i, v, can be expressed as a line in

the space /Uy, vs Uy /ty,, ¢; =&, (t)+6,,1,(), where ¢ is a constant. The slope of this
straight line is given by Ou,/0u, =~,/¢,. The angle of constant drift is
o; = arctan(—- 0,79, ), which is only function of the PCA mode shape components.
Rearranging coefficients, the line of constant drift in Fig. 7 is:

S on ) + H @) . 0yt o
¢j1ulm ulm Upm ¢jlulm .
b/' a

i

Therefore, in a X-Y coordinate system, the straight lines with constant slopes are given by
dy/dx=~1/a;, The displacement has a maximum that intercepts this line (solid lines), as shown

in Fig. 7. Different floors will have different coefficients cj, and thus the slopes of the lines that
represent vj vary with j. It is thus possible to represent the peak displacements of many floors as
the intersections of lines having different slopes with the interaction data shown in Fig. 7.
Estimates of peak floor displacements in future earthquakes depend on (a) being able to identify
appropriate mode shapes and (b) being able to estimate the interaction surface. Investigations to
date indicate that the interaction surfaces can vary substantially from an ellipse (the shape
assumed in SRSS approximations) and that estimates of modal peak responses are prone to
significant scatter. Mathematical extensions to three or more modes may be developed, but the
small contributions of the third and higher modes to the variance in displacement response
suggest that there is limited benefit in doing so.

Interstory Drift Index Response

In this section, PCA is applied in two different ways to characterize interstory drift. In the
first, interstory drift is calculated by superposition of the interstory drifts associated with the PCA
mode shapes, using the PCA mode shapes that were determined for the floor displacement
response data. In the second, PCA mode shapes are determined for the interstory drift data, with
the interstory drifts being determined as differences in the floor displacement response data.

Interstory Drift as Differences of the PCA Mode Shapes

As discussed previously, the PCA mode shapes of the displacements, @, resemble or
coincide the elastic mode shapes. Interstory drifts for the I story associated with each mode



shape can be computed as ,
Aj(t)= Y q1th (t)“’szuz(t) 8)
where the drift mode shapes are determined with the PCA displacement mode shapes:
Yy =@ — @41 . The parallel structures of Egs (6) and (8) indicate that the expression for constant

interstory drift plots as a line having slope ;= arctan(—y Al jz), on Figure 7 (dashed lines).

Thus, the largest interstory drift that occurs for a given excitation can be found by maximizing
the function over the domain of interaction between u; and u2, with the maximum occurring in
the intersection between the corresponding straight line and the displacement curve given by the
two modes. This illustrates the versatility of the plot of u1 vs. ua,for estimating both floor
displacements and interstory drifts, the dependence of the maxima of the quantities on the actual
interaction, the fact that the maxima occur at different times (represented by different intersection
- points), and the difficulty of (a) anticipating the shape of the interaction surface a priori and (b)
the need for accurate estimates of the individual modal peaks if estimates of these quantities are
to be made.

Principal Components of Interstory Drift

The second approach taken is to estimate the interstory drift, as A, =0,z (t)+ P22, (t),

where z,(t)=A();, Al) is the computed drift using Drain-2DX, and ¢; are the mode shapes
obtained from the eigenvalue problem C,¢ =A@, where C, is the covariance matrix of A(t).
The slope of constant drift for each story j is given now by &; = arctan(— 0,/ 9, )

The PCA mode shapes, determined for 50 sec of response data at 0.01 sec intervals, are
plotted in Fig. 8 and compared to the interstory drifts calculated from the elastic modes. The
elastic and PCA mode shapes are different for both the linear (1 x El Centro ground motion) and
the nonlinear (4 x El Centro) cases. The variance of the interstory drift index explained by each

mode shape, 4 /A and the cumulative variance, 9,4 /trA, are given in Table 1 for the first

three mode shapes and for the two cases studied. The first mode contains 75.87% of the variance
for the linear case, and 57.12% for the nonlinear case. The cumulative variance when the 1% and
2™ modes are added increases to more than 88%. The smaller variances obtained for interstory
drifts, relative to the variances obtained for the displacement data, indicate that interstory drift
estimates are prone to be less precise, particularly as inelasticity develops, for a given level of
approximation (k).

Figure 9 shows the PCA mode shapes obtained with a 5-s window data in 1-s increment in
dotted lines, and the elastic mode shapes in solid lines. In both cases, the PCA mode shapes are
seem as variations around the elastic mode. This variation increases in the nonlinear case. Fig. 10

plots the cumulative proportion of variance, Zﬁﬂ, /trA | using the first mode, the first two modes,
and the first three modes with largest variances, using 5-s window data in 1-s increments. For
both linear and nonlinear cases the 3™ mode is relevant, and even more for the nonlinear case.

The plots have two sections clearly distinguished. Between 0 and 38 s the 1%, 2™, and 3" modes
are predominant. For times larger than 38 s, the 1% mode is only important,



Figure 11 plots the peak interstory drift indices (IDI) of each story for the linear and nonlinear
cases. The peak displacements have been obtained using five procedures: 1) the “exact® IDI
obtained with DRAIN-2DX program, 2) the estimates using the first principal component, 3) the
estimates using the first and second principal components, 4) the estimates using the first model
for the modal push-over analysis (MPA) method (Chopra and Goel 2001), and 5) the estimates
using the 1* and 2™ modes for the modal push-over analysis method. While in the linear case the
peak IDI are well-estimated using PCA or MPA, the peak IDI in the nonlinear case are
overestimated using MPA.

Conclusions

The theory of Principal Components: Analysis was described and applied to the calculation of
floor displacements and interstory drifts. Based on the examples considered:

1.

W

CAREER Award, any others?

PCA is a useful technique for identifying the “predominant” mode of response of
structures responding linearly and nonlinearly to earthquake ground motions. The
mode shape and degree to which response is in this mode can be identified.

PCA can identify the elastic mode shapes of systems responding linearly.

Floor and roof displacements can be estimated based on the interaction of modal
responses (Fig. 7) as the intersection of an interaction surface and a line. The shape of
the interaction surface may vary significantly from an ellispse (assumed in SRSS
combinations). Accurate estimates of displacement response require accurate
estimates of the peak modal response amplitudes as well as presumptive assessments
of the interaction surface.

While a single mode often is sufficient to represent over 90% of the variance in
displacement response, two or three modes may be needed for similar accuracy in the
estimates of interstory drift.

Superposition of modal responses, as described by Chopra and Goel (2001) led to
reasonable estimates of displacement and interstory drift amplitudes for elastic
response, but the accuracy of these estimates suffered for nonlinear response.
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Table 1, Variance and cumulative variance for the first three principal components of the

displacement and the interstory drift index response.
% El Centro PCA Displacement Interstory drift index
ground motion Mode | Variance | Cumulative Variance | Variance | Cumulative Variance
(%) (%) (%) (%)
1 96.79 96.79 75.87 75.87
1 (linear) 2 2.92 99.71 18.77 94.64
3 0.27 99,98 4.73 99.37
1 93.40 93.40 57.12 57.12
4 (nonlinear) 2 5.94 99.34 30,97 88.09
3 0.57 99.91 8.61 96.70

Table 2.  Peak roof displacements (in m) obtained with DRAIN-2DX, for the first two principal

components, and using the MPA method.
x ElI Centro ground ‘ PCA PCA MPA MPA
motion DRAIN-2DX 1" mode | 1% +2™ modes | 1" mode 1* + 2™ modes
1 (linear) 0.336 0.298 0.326 0.297 0.303
4 (nonlinear) 0575 0.630 0.546 0.767 0.787
Mode'1 Moge 1
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Figure 3. First and second mode shapes computed from elastic and PCA for all the data set.
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