

� pdbconv
� pdbhtml
� pdbmerge

�

pdbtree

C++ Client

CHASM C++
Stub Interface

CHASM Fortran
Skeleton Interface

Fortran Server

 void returnAnArray(F90Array<int,2> &);

 F90Array<int,2> A;
 returnAnArray(A);

 void useAnArray(F90Array<int,2> &);

 long lower[2] = {1, 1};
 long upper[2] = {100, 100};

 F90Array<int,2> B(lower, upper);
 useAnArray(B);

 F90Array<int,2> returnAnArray();

 F90Array<int,2> C = returnAnArray();

class ArrayDesc {
 public:

 enum DataType {
 Int1 = 1, Int2, Int4, Int8, Logical1, Logical2, Logical4,
 Logical8, Real4, Real8, Real16, Complex4, Complex8, Character
 };

 //
 // Get accessor functions
 //

 int rank() const;
 DataType dataType() const;
 void* address() const;
 void getDimensionInfo(int r, long& lower, long& upper) const;

 //
 // Set accessor functions
 //

 void rank(int r);
 void dataType(DataType dt);
 void address(void* addr);
 void setDimensionInfo(int r, long lower, long upper);
};

template <typename ELEMENT_TYPE, int RANK>
class F90Array {
 public:

 //
 // Constructor and destructor methods. The default constructor
 // creates an empty array to be filled in later by a call to a
 // Fortran function returning an array. The lower and upper
 // parameters to the constructor are arrays containing the lower
 // and upper index for each dimension.
 //

 F90Array();
 F90Array(long* lower, long* upper);
 ~F90Array();

 //
 // Array indexing operators
 //

 ELEMENT_TYPE & operator[](const int& x);
 const ELEMENT_TYPE & operator[](const int&) const;
 operator ELEMENT_TYPE*();
 operator const ELEMENT_TYPE*() const;

 //
 // Accessor methods returning meta information about the array
 //

 int rank() const;
 ArrayDesc::DataType dataType() const;
 ELEMENT_TYPE* address() const;
 void getDimensionInfo(int r, long& lower, long& upper) const;
};

[

	CHASM: Static Analysis and Automatic Code Generation for Improved Fortran 90 and C++ Interoperability
	Abstract
	1.0 Introduction
	2.0 Program Database Toolkit
	3.0 General Design
	3.1 Arrays, Fortran Pointers and Dynamic Memory Allocation
	3.2 Code Generation
	3.3 Potential Problems

	4.0 C++ Array Proxy Class
	4.1 Arrays Passed as Procedure Parameters

	5.0 Summary
	6.0 Appendix
	7.0 References

