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Abstract 

Streaming multimedia with UDP has become increas- 
ingly popular over distributed systems like the Internet. Sci- 
entijic applications that stream multimedia include remote 
computational steering of visualization data and video- 
on-demand teleconferencing over the Access Grid. How- 
ever, UDP does not possess a self-regulating, congestion- 
control mechanism; and most best-efort traflc is  served 
by congestion-controlled TCF! Consequently, UDP steals 
bandwidth from TCP such that TCP$ows starve for net- 
work resources. With the volume of Internet traffic contin- 
uing to increase, the perpetuation of UDP-based streaming 
will cause the Internet to collapse as it did in the mid-1980’s 
due to the use of non-congestion-controlled TCP. 

To address this problem, we introduce the counter- 
intuitive notion of inter-packet spacing with control feed- 
back to enable UDP-based applications to perform well 
in the next-generation Internet and computational grids. 
When compared with traditional UDP-based streaming, we 
illustrate that our approach can reduce packet loss over 
SO% without adversely afecting delivered throughput. 

Keywords: network protocol, multimedia, packet spacing, 
streaming, TCI: UDlq rate-adjusting congestion control, 
computational grid, Access Grid. 
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1 Introduction 

TCP and UDP are the most widely-used transport pro- 
tocols today, the TCP/IP protocol suite being the de facto 
standard in the Internet-computing environment. TCP en- 
ables reliable, bulk-data transfer; however, it is inappro- 
priate for such tasks as live video-on-demand and remote 
computational steering of visualization data in computa- 
tional grids. Bulk-data transfer requires 100% reliable com- 
munication, and hence, TCP. Video-on-demand and remote 
computational steering generally do not require 100% reli- 
ability, therefore, TCP is overkill. For instance, if a video 
frame is missing a small block of pixels due to a lost packet, 
the video application is better off displaying the virtually 
complete frame and moving on to the next frame instead 
of waiting for the re-transmission of the lost packet (which 
over the Internet could easily take 100 ms). TCP, in this 
case, provides too much functionality because its loss de- 
tection~ and re-transmission mechanisms, being tightly in- 
tegrated with TCP’s congestion-control mechanism, are in- 
herent functions of the protocol. 

UDP, on the other hand, provides no reliability guar- 
antees. Specifically, it provides best-effort, end-to-end 
service without performing loss detection and packet re- 
transmission and without performing congestion control. 
Because of this, UDP obtains more bandwidth than TCP, 

‘If the required frame rate is 30 frames per second, then the interframe 
delay is only 33 ms. Therfore, a re-transmission delay of 100 ms over the 
wide-area network is clearly unacceptable. 



albeit i t  the risk of suffering packet loss and packet re- 
ordering, problems that can ultimately be addressed by the 
applications themselves. Therelore, multimedia applicil- 
tions such as RealPlayer [17, 181 and scientific applica- 
tions such as remote data visualization use UDP in order 
to improve perceived performance. Because UDP does 
not self-regulate in response to network congestion, these 
UDP-based applications gobble up available network re- 
sources, stealing bandwidth away from well-behaved appli- 
cations that use congestion-controlled TCP. An application 
that blasts UDP packets into the network can readily fill the 
buffers of an intermediate router, causing severe congestion 
and packet loss. Since TCP-based applications slow down 
their sending rates in response to congestion, these appli- 
cations become starved for network resources as the UDP- 
based applications continue to blast their packets unchecked 
into the network and claim the bandwidth being made avail- 
able to them. Even though sending hosts can inject UDP 
packets as quickly as they are able, the throughput can suf- 
fer dramatically due to heavy packet loss and increased de- 
lays as packets spend more time waiting in queues within 
the network. 

A simple observation reveals that adequate throughput 
can be attained by spacing the packets apart instead of blast- 
ing them one right after the other into the network. The next 
section reveals this insight. The notion of slowing down the 
sending rate in order to achieve better throughput is cer- 
tainly counter-intuitive; however, our experiments show the 
viability and effectiveness of this approach. 

1.1 Insight 

Based on our recent work in network traffic characteri- 
zation [25, 8, 91, we observed significant packet loss even 
when the offered load was less than half of the available 
network bandwidth. An analysis of our ns [ 11 simulations 
revealed that this behavior was due to simultaneous bursts 
of traffic coming from client applications and overflowing 
the buffer space in the bottleneck router. Metaphorically, 
this could be viewed as what happens at a major highway 
interchange during rush hour where everyone wants to go 
home simultaneously at 5:OO p.m., thus “overflowing” the 
highway interchange. To avoid such a situation, some peo- 
ple self-regulate themselves by heading home at a different 
time, i.e., spacing themselves out from other people. 

If we view vehicles as packets and the highway inter- 
change as a router, then to avoid buffer overflow and en- 
hance throughput, packets should not be blasted onto the 
network one after another. Instead, packets should be 
spaced out over time. To test this hypothesis, we ran live 
wide-area network (WAN) tests between Los Alamos Na- 
tional Laboratory (LANL), University of Illinois at Urbana- 
Champaign (UIUC), and Ohio State University (OSU). 

These tests consisted of sending UDP packets between 
LAN, and either UIUC or OSU at different packet-spacing 
intervals. Figures 1 and 2 show the throughput and packet 
loss, respectively, of a representative test between LANL 
and UIIJC [6]. When the packet spacing is zero, e.g., to- 
day’s UDP-based multimedia-streaming applications, the 
throughput is 62 Mbh but with a packet loss of almost 90% ! 
With as little as 100 ps of spacing between packets, the 
throughput remains the same, but the packet loss drops all 
the way down to 35%. And when the packet spacing is 50 
ps, the throughput is actually higher than when the packets 
are not spaced as in UDP-based multimedia streaming. 
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Figure 1. Delivered Throughput to the Re- 
ceiver 
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Figure 2. Packet-Loss Percentage 

All curves from our other live WAN tests have the same 
general shape. That is, the throughput initially increases 
when the amount of packet spacing increases and then de- 
creases exponentially as the amount of spacing increases 
further. The packet-loss percentage immediately decreases 



in an exponential manner as packet spacing increases. 

1.2 Related Work 

Many transport protocols for the delivery of multime- 
dia content certainly have been proposed, among them 
being XTP, RAP, and HPF. The Xpress Transport Proto- 
col (XTP) [4] uses explicit rate control to combat con- 
gestion, however, the congestion-control mechanism must 
be implemented within the network and not simply at the 
edges. Fluctuating round-trip times (RTTs) cause poor per- 
formance because of a design feature whereby XTP enters a 
synchronizing handshake when a timer expires while XTP 
awaits a response to a request for information on missing 
data [3]. Furthermore, because it is a complex protocol, 
XTP is meant to be implemented in VLSI for performance 
reasons, so software implementations are too slow for mul- 
timedia traffic [23]. 

The Rate Adaptation Protocol (RAP) [20] is a TCP- 
friendly protocol that employs an ”additive increase, mul- 
tiplicative decrease” (AIMD) algorithm for rate adjustment. 
RAP is intended for the transmission of delay-sensitive, 
semi-reliable, rate-based applications which use layered- 
encoding of their data streams. RAP is therefore not a gen- 
eral solution but specifically targets layered-encoded multi- 
media content which it uses to adjust its transmission rate 
by adjusting the number of layers it sends. 

The Heterogeneous Packet Flows (HPF) [ 131 protocd 
supports the delivery of packets having differing QoS re- 
quirements within a single stream. Addressing a design 
flaw of TCP, HPF decouples congestion control from re- 
liability and uses a rate-based, AIMD approach to combat 
congestion. The problem with the AIMD approach (also 
used by RAP) is that such an approach will not scale to 
high-performance (or more precisely, high bandwidth-delay 
product) networks. For example, when the window size i s  
one, a linear increase is a 100% increase. When the window 
size is 1000, a linear increase is a mere 0.1%. An absolute 
linear increase in window size from 500 to 1000 (as during 
TCP’s congestion-avoidance phase) will take 500 round-trip 
times to converge! More realistically, the situation is actu- 
ally much worse. If we assume a typical WAN with a high 
bandwidth-delay product, Le., 1 Gb/s WAN x 100 ms RTT 
= 100 Mb, then for an uncongested network, the ubiqui- 
tously deployed TCP reno continually increases its window 
size until it induces packet loss (Le., just after 100 Mb) and 
then chops its window size in half (Le., 50 Mb). The re- 
convergence back to the ”optimal window size” of 100 Mb 
using TCP’s absolute linear increase takes much too long 
and results in lowered network utilization. In this particular 
case, convergence can take as long as (100 Mb - 50 Mb) / 
(1500 B/RTT * 8 b/B) = 4,168 RTTs or (4,168 RTTs * 100 
ms/RTT) = 416.8 seconds = 6.947 minutes! 

In 1997, Mahdavi and Floyd [14] informally proposed 
the notion of equation-based congestion control for unicast 
applications. While the AIMD algorithm found in TCP 
backs off by cutting its sending rate in half in response 
to a single congestion indication, equation-based conges- 
tion control uses a control equation that more gradually and 
smoothly adapts its maximum rate because some real-time 
applications find that halving the sending rate is unneces- 
sarily severe and can noticeably reduce the user-perceived 
quality [24]. Although the above work has given rise to a 
significant amount of research on equation-based and other 
types of congestion-control mechanisms [22,20,24, 16,21, 
lo], we still do not have any deployable congestion-control 
mechanisms for best-effort streaming multimedia. 

Previous work in packet spacing includes [ 12,2]. In [ 121, 
Jain argues that rate-control protocols for congestion con- 
trol may not work without the cooperation of intermediate 
routers because packets may get clumped together at the 
intermediate routers anyway. This would result in larger 
bursts at the intermediate routers even though the goal may 
have been to reduce the burstiness of the traffic. While this 
may have been true a decade ago, we believe that the boom 
of the world-wide web and other multimedia applications 
creates enough interleaving traffic to maintain packet spac- 
ing between end hosts, We will substantiate this belief in 
Section 3.2.4. 

Aggarwal et al. [2] study the effect of uniform packet 
spacing (or “pacing”) over a round-trip time in TCP. While 
pacing results in better fairness, throughput, and lower drop 
rates in some cases, the throughput is worse than regular 
TCP most of the time because a paced-TCP is susceptible 
to synchronized losses and delays congestion notification. 
In contrast, we focus on the effects of packet spacing over 
UDP with control feedback rather than on TCP itself. 

In general, our packet-spacing protocol differs from the 
above work in several ways. First, rather than focus- 
ing primarily on being compatible or fair with TCP, our 
rate-adjusting protocol addresses fairness while simulta- 
neously delivering UDP-like bandwidth. Second, we ac- 
complish the above feat by introducing the counterintuitive 
notion of packet spacing. Third, rather than relying on 
equation-based congestion control to more smoothly adapt 
the sending rate, we allow the sending rate to adapt as 
needed (based on available network resources). We then 
rely on transcoding, e.g., mapping a multimedia stream onto 
rapidly-varying available bandwidth [ 191, to smooth out any 
potentially rapid change in available bandwidth. 

2 Approach 

Packet spacing refers to the delay introduced between 
two consecutive packets, as shown in Figure 3. Here, t ,  is 
the amount of spacing between packets, and t ,  is the trans- 



missiori time for each packet. By introducing such a de- 
‘lay, bursts of packets can be spaced out, resulting in fewer 
packet drops at intermediate routers and potentially higher 
throughput at the end host, as shown back in Figure 1. Thus, 
packet spacing can potentially be used as a mechanism lo 
assist in congestion avoidance and control. 

Based on Figure 1, the ideal operating region of our 
packet-spacing mechanism ranges from 50 ps to 500 p a .  
No packet spacing or packet spacing of less than 50 ps re- 
sults in very high packet loss with less delivered bandwidth 
than when the packet spacing is 50 ps. 

Depending on the application, the ideal packet-spacing 
range may be as small as 100 ps to 200 ps in order to get 
UDP-like bandwidth but with significantly less packet loss, 
e.g., at 200 ps, bandwidth is 50 Mb/s while packet loss i s  
only lo%, or as large as 400 ps to 500 ps to obtain TCP-like 
reliability but with higher throughput than TCP. To exploit 
this counterintuitive finding, we develop an ad-hoc packet- 
spacing protocol (PSP) to adjust the amount of packet spac- 
ing based on feedback from the network. 

time 
c__ 

Figuro 3. Packet Spacing 

2.1 Ad-Hoc Packet-Spacing Protocol (PSP) 

In our ad-hoc packet-spacing protocol (PSP), the sender 
initially transmits packets at the highest possible rate, i.e., 
no inter-packet spacing, and the receiver sends acknowl- 
edgments every round-trip time (RTT) for the packets it re- 
ceives. (This RTT is the base propagation-delay time, not 
the dynamic RTT. To keep the protocol simple, we did not 
experiment with dynamic RTTs.) 

We calculate the base RTT by performing ping during 
connection ~ e t - u p . ~  After the connection is established, the 
sender conveys the calculated RTT to the receiver by includ- 
ing it within the header of each packet. Note that this is not 
required after the first acknowledgment is received, but we 
have left this provision so that dynamic RTTs can be used 

2We note that at the present time, the feedback is only used for adjusting 
the packet spacing and that no retransmissions are done at this time. 

3We refer to our protocol as being “ad-hoc” because it i s  an ad-hoc, 
point-specific solution meant to illustrate the benefits of packet spacing. It 
is not a general solution (although we are currently in the midsts of testing 
a general solution). 

4A more sophisticated mechanism could be developed to get a better es- 
timate of the RTT. However, for the purposes of our experiments, we only 
needed a value that was reasonable enough to provide timely feedback. 

- 

in the future. Each acknowledgment contains the number of 
packets that were received in the previous RTT. 

When the sender receives such acknowledgments, it 
compares the number of packets sent, psentr in the previous 
RTT to the number of packets received, prcvd. Based on 
the values of psent and Prcvd, the sender adapts its packet 
spacing p s  as shown in Figure 4. 

if gI3ent > prcvd (Le., packets were lost) then 
/* sender must reduce its transmission rate */ 
i f p s  = 0 then 

else 
p s  t 50 ps 

p s  t m i n ( p s  * 2, RTT) 
else /* sender tries to increase its sending rate */ 

p s  t p s  - 2 

Figure 4. Ad-Hoc Packet-Spacing Protocol 

Because our WAN experiments and simulations showed 
that the ideal packet spacing occurred between 0 ps 
and 2000 ps, we chose an initial packet spacing of 50 ps 
because: (1) anything smaller generated significantly higher 
packet loss with no benefit with respect to throughput 
and (2) finding the ideal packet spacing within this range 
quickly would take no more than seven RTTs. Larger spac- 
ings can be reached in only a few more RTTs because the 
packet spacing increases exponentially. 

The p s  t m i n ( p s  * 2, RTT) clause ensures that the 
maximum packet spacing is one RTT. This ensures that at 
least one packet is sent every RTT. 

2.2 Damped Packet-Spacing Protocol 

Due to the opposing packet-spacing decisions in PSP, our 
initial tests of PSP resulted in large oscillations around the 
ideal sending rate. To address this problem, we added the 
following heuristic to damp the oscillations: Zfa loss oc- 
curs due to a deliberate decrease in the packet spacing (and 
consequently, increase in rate), then the sender reverts to 
the previous packet-spacing value. Using this heuristic, the 
sender makes significantly smaller oscillations around the 
ideal operating point. Figure 5 shows a comparison between 
the PSP and damped PSP. In this figure, each experiment ran 
for 100 s, and the sending rate for each was plotted. With 
damping, the overall throughput increased by 10%. 

3 Experiments 

For our WAN simulations, we used ns-2, which is a net- 
work simulator developed by the VINT group [ 11. We will 
refer to senders and receivers as agents, which follows nat- 
urally from the terminology employed by ns-2. Our simpIe 
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Figure 5. Oscillation Damping 
Figure 6. Topology for WAN Simulations 

packet-spacing agents (PSAs) implement packet spacing 
without feedback while our adaptive packet-spacing agents 
implement the damped PSP rather than the simple PSP. 

3.1 Network Topology 

Figure 6 shows the network topology that we used in 
our experiments. The IC nodes on the left (121,122,. . . , nrz) 
simulate senders on a local-area Ethernet, transmitting via 
a common gateway router (e&, LANNIrAN gateway or 
n m i d d l e )  to a WAN backbone running at 155 Mb/s or OC- 
3; this topology models the LAN and WAN at Los Alamos 
National Laboratory. All the receivers are aggregated into 
the node nsink. The gateway router has a buffer size of 10 
packets, lOO-Mb/s Ethernet links with 2-ms delays to the 
senders, and a 155-Mb/s link with 40-ms delay to the re- 
ceivers. This delay is typical of the delay found in a 
transcontinental WAN connection. 

3.2 PSA Simulations 

Here we study the behavior of (1) a single PSA with no 
other traffic, (2) competing PSAs, and (3) PSAs competing 
with TCP agents. Like Mo et al. [15] who compare TCP 
Reno and TCP Vegas using infinite file transfers, we use in- 
finite file transfers for the TCP connections as well. (Por 
the figures in this section, each data point in the simulation 
graphs represents the result of a 500-s simulation for a par- 
ticular packet-spacing interval.) 

3.2.1 Single PSA 

Figure 7 shows the throughput for a single PSA for packet 
spacings between 0 l i s  and 5000 ps. (Note that there is no 
other traffic on the network besides that of the single PSA.) 

As expected, the sender and receiver throughputs are the 
same. This is because the gateway can keep up with the 
aggregate sending rate and because there is no competing 
traffic on the channel, and therefore, no packet loss. 

3.2.2 Competing PSAs 

In this set of experiments, we ran simulations with 2, 4, 
8, and 16 PSAs competing against each other, respectively. 
Figures 8 and 9 show the results for the last case. The re- 
sulting behavior is similar to what we observed in the actual 
WAN experiments (i.e., Figures 1 and 2). (Note that all the 
16 competing PSAs showed similar behavior.) 

In Figures 8 and 9, the region of interest occurs be- 
tween 0 ps and 1000 ps. With a packet spacing of 0 p s ,  the 
sender throughput is 100 Mbh while the receiver-realized 
throughput is only a measly 10 Mbh with a packet loss of 
90%! As packet spacing increases, the packet-loss percent- 
age drops sharply, and the throughput at the receiver actu- 
ally increases to its maximum point at 1000 ps of inter- 
packet spacing. This phenomenon is similar to what we 
found with our live WAN tests in Figures 1 and 2. 

3.2.3 PSAs Competing with TCP Agents 

In these experiments, we ran simulations with 1,2,4,8, and 
16 senderheceiver TCP pairs and an equal number of PSA 
pairs, respectively. Figures 10 and 11 show the behavior of 
one particular PSA competing with 15 other PSAs and 16 
TCP connections. All other simulations resulted in simi- 
lar behavior. Again, we see that the behavior is strikingly 
similar to that seen in the actual WAN experiments. The op- 
timal performance of the PSAs with respect to throughput 
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Figure 7. Throughput for One PSA 
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and packet loss occurs at 1000 ps to 1050 ps, Le., through- 
put is 11 Mb/s while packet loss is 0%. 

Figures 12 and 13 show the throughput and packet- 
loss behavior of one particular TCP connection competing 
with 15 other TCPs and 16 PSAs, respectively. In these 
figures, we cannot help but notice that the TCP through- 
put does not increase beyond 2.7 Mbls (even when the PSA 
throughput is low)! The reason for this behavior has noth- 
ing to do with the TCP-friendliness of our damped PSP and 
has everything to do with TCP's default advertised receiver 
window of 20 packets. This receiver's window size is the 
default in many operating systems and artificially limits the 
amount of outstanding data that a sender can have in the 
network. Further, the figures also show that with very small 
packet spacings, the PSAs operate like UDP connections (as 
expected), thus starving TCP connections of any bandwidth. 

Figures 14 and 15 show how TCP behaves with a win- 
dow large enough to keep a bandwidth-delay product's 
worth of information outstanding in the network. These fig- 
ures show that with sufficient spacing by the PSAs, a TCP 
connection can consume its share of available bandwidth. 
For example, Figures 10 and 14 illustrate that with 5000 ,us 
of packet spacing, each PSA receiver sees 2.23 Mb/s while 
each TCP receiver gets 6.57 Mb/s. 

3.2.4 PSA Spacing at the Receiver 

To verify our claim that packet-spaced traffic stays spaced 
out by the time it reaches the receiver (rather than getting 
clumped as claimed by [ 12]), we recorded the inter-arrival 
time of packets at one PSA receiver, using the same exper- 
imental set-up as described in Section 3.2.3. The sending 
PSAs used a spacing of 1500 ps; the resulting inter-packet 
spacings at the receiver averaged 1540.6 ps with a standard 
deviation of 64.75 ps. 
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Figure 8. Throughput for One of the 16 PSAs 
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3.3 Adaptive PSA Simulations 

Our adaptive PSAs implement the damped PSP, which 
tries to find the ideal packet spacing under varying net- 
work conditions. We first show the behavior of two adap- 
tive PSAs competing against each other and then with two 
additional TCP connections. As in Section 3.2, the TCP 
connections were that of infinite file transfers. 

Figure 9. Packet Loss for One of 16 PSAs 

3.3.1 Competing Adaptive PSAs 

Figure 16 shows how the sending rate of an adaptive PSA 
varies with time. The adaptive PSA makes small oscilla- 
tions around the ideal sending rate. Figure 17 demonstrates 
that our adaptivePSAs are fair (when both are started simul- 
taneously) as both adaptive PSAs have sending rates that lie 
on the fairness line. 
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Figure 13. Packet Loss for One TCP of 16 TCP 
Connections and 16 PSAs 
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Figure 14. Throughput for One TCP (Window 
Size = 800 Packets) of 16 TCP Connections 
and 16 PSAs 
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Figure 15. Packet Loss for One TCP (Window 
Sire = 800 Packets) of 16 TCP Connections 
and 16 PSAs 
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Figure 18. Fairness - Delayed Start 

Figure 18 shows us a portion of the fairness graph where 
one adaptive PSA started 10 seconds later than the other. 
As we can see, both adaptive PSAs change their rates in 
a fair manner and eventually make small oscillations about 
the ideal sending rate. 

3.3.2 Competing Adaptive PSAs with Background 
Traffic 

In this simulation, we ran 10 TCP connections with infinite 
file transfers in the background and two adaptive PSAs com- 
peting in the foreground. Figure 19 shows that the adaptive 
PSAs respond readily to congestion. And again, both adap- 
tive PSAs have very similar sending rates. 

Figure 19. Two Adaptive PSAs Competing 
with 10 TCPs 

4 Implications for Next-Generation Internet 

The results in Section 3 support our claim that "packet 
spacing" is preferable to "packet blasting" because of re- 
duced packet loss, increased throughput, and increased fair- 
ness. 'The packet-spacing protocol is a solution that works 
for today's Internet and for tomorrow's next-generation In- 
ternet, which will introduce smart routers with active queue 
management [ll, 71. These routers will punish packet- 
blasting UDP applications by dropping packets from their 
non-adaptive flows. 

Many applications do not need the full reliability of TCP, 
and hence, should not use TCP as their transport mecha- 
nism, e.g., video teleconferencing in the Access Grid [ 5 ] .  
UDP is the main alternative. It does not provide any relia- 
bility guarantees, but neither does it provide for, much less 
enforce, congestion control. As a result, UDP-based appli- 
cations, currently stealing bandwidth that results from its 



lack of congestion control, will be crippled further as smart 
’routers with active queue management make their way into 
the next-generation Internet infrastructure. The purpose of 
incorporating these smart routers into the Internet is two- 
fold: (1) to allow routers to enforce the implicit, defacto, 
fair-usage policies as they have evolved in the best-effort 
Internet and (2) to reduce queue lengths within the network 
so that the network is better able to absorb the natural packet 
bursts that occur in normal network traffic. 

Smart routers employing active queue management 
schemes in the next-generation Internet will have some 
measure of control over “rogue” applications to ensure that 
they do not unfairly steal bandwidth away from competing 
applications and fill up all the available buffer space within 
the network. In light of this coming reality, streaming appli- 
cations must have a viable alternative to TCP and IJDP with 
respect to flexibility (in terms of reliability) while providing 
adequate and fair congestion control to be ”good” network 
citizens. Our damped packet-spacing protocol is a first step 
in providing such an alternative. 

5 Conclusion 

Perhaps the most interesting result in this paper is that a 
receiver’s realizable throughput actually increases (up to a 
point) even when the sender’s transmission rate decreases. 
This result has dramatic implications on many of today’s 
multimedia applications that blast packets onto the network 
as fast as possible, i.e., no packet spacing. By slowing down 
the introduction of packets into the network, congestion is 
alleviated at the intermediate routers; this, in turn, results in 
a net increase in throughput. Thus, this work provides an 
incentive for multimedia provides not to blast UDP packets 
indiscriminately into the network. In addition, it provides 
motivation for the deployment of a packet-spaced protocol 
that can deliver UDP-like performance yet still be respon- 
sive to competing connections, particularly for applications 
with multimedia streaming such as the Access Grid [SI. 

Our damped packet-spacing protocol (PSP), imple- 
mented via an adaptive PSA, sends data near its “optimal” 
sending rate by using a simple feedback mechanism that 
reports packet loss every RTT. This mechanism in turn con- 
trols the amount of packet spacing. Our preliminary results 
demonstrate that by introducing packet spacing to a multi- 
media stream, packet loss can be reduced dramatically with- 
out much loss in throughput. 

Future work inc1udt:s examining the performance of our 
damped PSP with different types of application traffic and 
over a live WAN. Of particular interest are those applica- 
tions that generate data in short bursts with relatively large 
intervals between bursts. Based on the experimental results 
presented here, we expect that the packet loss that would 
normally be induced by these bursts to be greatly reduced. 
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