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We present calculations based on a realistic theoretical model of the multi-dimensional potential-energy sur-

face of a fissioning nucleus. This surface guides the nuclear shape evolution from the ground state, over inner

and outer saddle points, to the final configurations of separated fission fragments. Until recently, no calcula-

tion has properly explored a shape parameterization of sufficient dimensionality to permit the corresponding

potential-energy surface to exhibit the multiple minima, valleys, saddle points and ridges that correspond to

characteristic observables of the fission process. Here we calculate and analyze five-dimensional potential-energy

landscapes based on grids of several million deformation points. We find that observed fission features such as

different energy thresholds for symmetric and asymmetric fission and fission-fragment mass and kinetic-energy

distributions are very closely related to properties of the valleys and mountain passes present in the calculated

five-dimensional energy landscapes. We have also determined fission-barrier heights for 31 nuclei throughout

the periodic system.
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I. Introduction

When a heavy nucleus divides into two fragments in nu-

clear fission, two key aspects of the process have challenged

researchers since the discovery of fission more that 60 years

ago. First, what is the threshold energy for the reaction and,

second, what are the shapes involved in the transition from

a single nuclear system to two separated daughter fragment

nuclei? These two questions are intimately connected. The

energy of a nucleus as a function of shape defines a landscape

in a multi-dimensional deformation space. It is the energy

of the the lowest mountain pass, or saddle point, in this land-

scape, connecting the nuclear ground state with the region cor-

responding to separated fragments that represents the thresh-

old energy of the fission process.

After the discovery of fission in 1938 by Hahn and

Strassmann �� the phenomenon was almost immediately ex-

plained by Meitner and Frisch �� and by Bohr and Wheeler ��
in terms of a model involving a charged liquid drop with a sur-

face tension. When the atomic number increases, the drop be-

comes increasingly unstable with respect to deformation and

at proton number � � ��� stability is completely lost. For

slightly lower-� actinide nuclei the fission barrier between

the ground-state shape and the separated-fragment configu-

ration is sufficiently small that spontaneous fission, due to

quantum-mechanical penetration of the fission barrier, occurs

with measurable probability. Fission may also be induced by

exciting the nucleus to energies above the barrier energy. In

some cases, such as �����U, thermal neutron capture yields

sufficient energy to excite the nucleus above the barrier.

In a pioneering use of the first electronic digital computer

ENIAC, Frankel and Metropolis �� in 1947 explored some key

aspects of the liquid-drop-model potential-energy landscape.

In particular, they determined the shapes of nuclei at the sad-

dle point threshold energies in the macroscopic model they
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investigated. However, no macroscopic model such as the

liquid-drop model of nuclear fission is able to explain certain

features of fission-fragment mass and kinetic-energy distribu-

tions. For example:

1. Nuclei near ���Ra exhibit two fission modes. We show

in Fig. 1 an example of the extensive data obtained in

Reference ��. In one mode, with the lower threshold en-

ergy, the fragment mass distribution is asymmetric and

the fragment total kinetic energy is about 10 MeV higher

than in the other, symmetric mode. The kinetic energies

indicate that the scission configuration is more compact

for the asymmetric mode than for the symmetric mode.

From the totality of the data Ref. �� concludes: “Thus it

seems that after the gross determination of the symmet-

ric or asymmetric character of fission made already at the

barrier, the two components follow a different path with

no or little overlap in the development from the barrier to

the scission configuration.”

Here in Japan it has been determined that many nu-

clei in the light actinide region exhibit similar fission

properties ����.

2. Most actinide nuclei near the line of � stability undergo

mass-asymmetric fission. The heavy-fragment mass is

close to 140 from Th to Fm, with the remainder of the

mass in the light fission fragment.

3. Near the upper end of the actinide region fission proper-

ties change suddenly and may exhibit a different type of

bimodal character in the same nucleus. For example, the

fragment mass distribution changes suddenly from mass-

asymmetric for ���Fm to symmetric for ���Fm and there

is a correlated increase in the total fragment kinetic en-

ergy (TKE) by 35 MeV. But ���Fm also exhibits the

asymmetric mode with the lower TKE.

In the 1960s an improved model for the nuclear potential en-

ergy as a function of shape emerged. In this macroscopic-
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Fig. 1 Fission probability data show different thresholds for mass-

asymmetric and mass-symmetric fission for ���Ra. The figure

is based on a figure in Ref. ��.

microscopic model ���	�, the potential energy is the sum of

shape-dependent liquid-drop and microscopic terms. Over the

past 30 years this model has provided considerable insight

into nuclear structure. For example nuclear masses are cal-

culated for nuclei throughout the periodic system to an aver-

age accuracy of about 0.7 MeV. Improved descriptions of the

fission barrier, for example fission-isomeric states and mass-

asymmetric fission saddle points were obtained in this model.

However, since the spurt of insights in the early 1970s no

major improvement in the description of the fission potential-

energy landscape has been obtained. Many calculations based

on 1000 or so grid points have been presented. But, to prop-

erly describe the evolution of a single nuclear shape into two

fragments� of different mass and deformation, for example

one spherical ���Sn-like fragment and one deformed frag-

ment with mass number � near 100, at least five independent

shape parameters are required. We have here constructed, cal-

culated, and investigated such a five-dimensional space with

� ��� ��	 grid points. Specifically, the five shape coordinates

are: (1) charge quadrupole moment, (2) neck diameter, (3)

left nascent-fragment deformation, (4) right nascent-fragment

deformation, and (5) mass asymmetry.

II. Model

Our potential-energy model is the macroscopic-

microscopic finite-range liquid-drop model as defined in

Ref. ��� with shape-dependent Wigner and �	 terms as de-

fined in Ref. ���. In fission-barrier calculations it is essential

to formulate the model so that the energy obtained for the

�At the present time we do not consider parameterizations that allow the

study of ternary fission. However, at low excitation energy only approxi-

mately one in five hundred fissions are ternary in the actinide region.
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Fig. 2 Calculated macroscopic and total potential energies for shape

sequences leading to the touching configuration, at the long-

dashed line, of spherical ��Zn and ���Hg. To the left the

calculations trace the energy for a single, joined shape con-

figuration from oblate shapes through the spherical shape at

� � ���� to the touching configuration at � � ����; to the

right the calculation trace the energy for separated nuclei to

the touching point. To obtain continuity of the energy at

touching, a crucial, necessary feature in realistic models, it

is essential that various model terms depend appropriately on

nuclear shape, as is the case for the curves (a). The slight re-

maining discontinuity in the total fusion energy curve arises

because the Fermi surfaces of the nuclei readjust at touching,

and because pairing and spin-orbit terms also change discon-

tinuously there.

configuration of two touching spherical nuclei is the same

whether the energy is calculated as that of a very deformed

compound system or as that of two separate nuclei with

appropriate Coulomb and nuclear interaction energies. By

introducing shape dependencies for the Wigner and � 	 terms

in the macroscopic part of the model and implementing other

features in the microscopic part, we have assured that the

model has the required properties. These issues are discussed

in further detail in Refs. ������. It is not possible to formulate

the droplet model satisfactorily in the limit of the touching

configuration; for this reason we use the FRLDM version

in our calculations instead of the FRDM. In Fig. 2 we show

that when appropriate shape dependencies are included

for the Wigner and �	 terms then we obtain approximate

continuity at touching: almost the same energy is obtained



Q2

41 Q2 ~  Elongation (fission direction) 

20 αg ~  (M1-M2)/(M1+M2) Mass asymmetry

15 ε
f1

~  Left fragment deformation

ε
f1

ε
f2

15 ε
f2

~  Right fragment deformation

15
⊗

⊗

⊗

⊗

d ~  Neck 

d

Five Essential Fission Shape Coordinates

M1 M2

⇒  2 767 500 grid points − 156 615 unphysical points

⇒  2 610 885 physical grid points

Fig. 3 Five-dimensional shape parameterization used in the present

potential-energy calculation. Different shades of gray indi-

cate the three different quadratic surfaces defined in the 3QS.

The first derivative is continuous where the surfaces meet.

Note that we give the charge quadrupole moment �� in terms

of ���Pu with the same shape as the nucleus considered,

so that the nuclear size effect is eliminated. The end body

masses, or equivalently volumes, �� and ��, refer to the left

and right nascent fragments were they completed to closed

shapes. For the nascent spheroidal fragments we characterize

the deformations by Nilsson’s quadrupole � parameter.

for a very deformed shape with zero neck radius as for

(the identical) configuration of separate, but just touching,

spherical daughter fragments.

III. Shape parameterization

Because fragment shell effects strongly influence the struc-

ture of the fission potential-energy surface long before scis-

sion, often in the outer saddle region, it is crucial to in-

clude in calculations the nascent-fragment deformations as

two independent shape degrees of freedom. In addition,

elongation, neck diameter, and mass-asymmetry shape de-

grees of freedom are required, at a minimum, to adequately

describe the complete fission potential-energy surface. For

nascent-fragment deformations we choose spheroidal defor-

mations characterized by Nilsson’s quadrupole � parameter.

This single fragment-deformation parameter is sufficient be-

cause higher-multipole shape-degrees of freedom are usually

of lesser importance in the fission-fragment mass region be-

low the rare earths.

The three-quadratic-surface parameterization (3QS) is ide-

ally suited for the above description. ��� In the 3QS the shape

of the nuclear surface is specified in terms of three smoothly

joined portions of quadratic surfaces of revolution. Using this

parameterization we here construct, calculate, and investigate

complete five-dimensional spaces with � ��� ��	 grid points

as illustrated in Fig. 3.

A common notation used to characterize the fragment mass

asymmetry of a fission event is �
��� where �
 and ��

are the masses of the heavy and light fission fragments respec-

tively. For the purpose of grid generation for the potential-

energy calculation it is convenient to relate a mass-asymmetry

shape degree of freedom for the pre-scission nucleus to the

final fission-fragment mass asymmetry in some fashion, al-

though the final mass division, strictly speaking, cannot be

determined from the static shapes occurring before scission.

However, the exact nature of our definition of mass asymme-

try for a single shape has little effect on the calculated saddle-

point energies and shapes because our five-dimensional grid

covers all of the physically relevant space available to the

3QS parameterization, regardless of how we choose to define

a “mass-asymmetry” coordinate. In order to obtain a defini-

tion of mass asymmetry that is meaningful close to scission,

and equations that are reasonably simple to work with for the

purpose of grid-point generation, we define an auxiliary grid

mass-asymmetry parameter ��

�� 

�� ���

�� ���

(1)

where �� and �� are the volumes inside the end-body

quadratic surfaces, were they completed to form closed-

surface spheroids. Thus

�� 

���	� � ���	�
���	� � ���	�

(2)

where � denotes the transverse semi-axis and 	 the semi-

symmetry axis of the left (1) and right (2) quadratic surfaces

of revolution. With this definition we select 20 coordinate val-

ues corresponding to

�� 
 ��
�� 
 
 
 ��
��� 
 
 
 �
�� (3)

We have closely spaced the asymmetry coordinate so that we

will be able to spot favorable saddle-point shapes that may not

appear in a more sparsely spaced grid. For ��	Pu the values

0.00, 0.02, and 0.36 of the mass-asymmetry coordinate � �

correspond to the mass divisions 120/120, 122.4/117.6, and

163.2/76.8, respectively.

Because of the intuitive appeal of the notation �
��� we

use it below to characterize the “asymmetry” of a single shape.

We then connect �
 and �� to �� through

�
 
 �
� � �

�

�

�� �� 
 �

�� �
�

�
(4)

for a nucleus with � nucleons. For shapes with a well-

developed neck the ratio obtained with this definition can be

expected to be close to the final fragment mass-asymmetry ra-

tio. We cannot conveniently use �� and �� to designate the
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Fig. 4 Fission barriers for symmetric and asymmetric fission modes

for ���Th. The ridge between the two valleys is also shown.

The shapes shown correspond to saddle points and minima

along the two fission barriers. The entry saddle point to the

symmetric valley is 2.17 MeV higher than the entry saddle

point to the asymmetric valley. The highest point on the sep-

arating ridge is 1.56 MeV higher than the symmetric saddle.

All energies are given relative to the spherical macroscopic

energy.

final fragment mass asymmetries because they do not exactly

sum up to the total nuclear volume or mass. Equation (4) sim-

ply represents a scaling of �� and �� so that their sum after

scaling adds up to the total mass number �.

We have performed several multi-million grid-point cal-

culations for different regions of nuclei, down to 
	Se. For

fission-fusion potential-energy surfaces in the superheavy-

element region we have extended the range of the mass-

asymmetry coordinate to �� 
 �
��. The corresponding

deformation space consisted of � ��� ��� deformation grid

points when 33 different elongations (��) were considered.

IV. Analysis of Five-Dimensional Spaces

It is a common misconception that the structure of a multi-

dimensional potential-energy function can be determined by

calculating and displaying the function versus two shape vari-

ables, for example, �� and �� where the function has been

“minimized” with respect to additional multipoles such as ��,

��, �� and �
. Such approaches are not even approximately

correct. No such “local” strategy will correctly identify saddle

points in multidimensional spaces as is extensively discussed

in Refs ����
�.
It is also a common misconception that constrained self-

consistent calculations, for example HF or HFB calcula-

tions with Skyrme or Gogny forces ������ automatically take

into account all non-constrained variables. For the applica-

tion to saddle-point determination this is incorrect. A self-

consistent calculation constrained in one variable, for example

��, would have difficulties similar to those discussed above.
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Fig. 5 Calculated and measured ������ average mass division in

asymmetric fission for sequences of even isotopes of Th, U,

Pu, Cm, Cf, and Fm. The error bars on the calculated points

correspond to the spacing of mass asymmetry values on the

multidimensional shape-coordinate grid. The data is for spon-

taneous fission when it is available, otherwise data for low-

energy induced fission is used. The results reproduce the ex-

perimental observation of a heavy fragment at mass number

� � ��� and a light fragment with mass corresponding to the

remainder of the original nucleus. However, deviations from

this rule of thumb are also reproduced by the calculations.

In addition, it is of interest to note that in calculations where

the potential energy is displayed as contour diagrams versus

two shape variables and in which the energy is minimized with

respect to additional multipoles, only relatively few points are

required to perform a minimization with respect to, say, 3 ad-

ditional multipoles, about 30 or so. If the two-dimensional

contour diagram is based on 10 by 10 points then only � ���
points are considered in the calculation. In contrast, we find

that to adequately investigate the structure associated with five

simultaneous shape-degrees of freedom almost � ��� ��� grid

points, that is, 1000 times more points than earlier calculations

purporting to be multi-dimensional are required.

The technique we use here to investigate the structure of



the multidimensional surface is to employ imaginary water

flows ������ in the calculated 5-dimensional potential-energy

surface. For example, we imagine that we stepwise flood, in

intervals of 1 MeV, the second minimum with water. Dur-

ing the flooding process we check at what water level a pre-

selected “exit” grid point that is clearly in the fission valley

near scission gets “wet”. When this happens, then the wa-

ter level has passed the threshold energy level for fission. We

can determine the saddle-point energy to desired accuracy by

repeating the filling procedure with successively smaller step-

wise increases of the water level. The saddle-point shape can

also be obtained from this procedure.

Once the threshold energies for fission have been identified,

it is of interest to establish if structure effects in the poten-

tial energy provide a mechanism for multi-mode fission, such

as the well-known three-peaked mass distribution in ���Ra

fission ��. To look for such structures we ask if there are val-

leys of distinctly different character running in the fission di-

rection of increasing ��. For 10 or more fixed �� values be-

yond the outer saddle region, we determine all minima in the

remaining 4-dimensional space of the two fragment deforma-

tions, neck size and mass asymmetry. We find that there are

usually two (but sometimes more) distinct valleys in the re-

gion beyond the second saddle point, one corresponding to a

mass asymmetry �� of about ���� � �� � ������� and one

corresponding to mass symmetry �� 
 �. To understand

the significance of these valleys it is necessary to study their

interconnections in the five-dimensional deformation space.

Variations of the flooding algorithm allow us to determine

that separate saddle points provide entries to the two valleys

and the respective energies of these saddle points. Once the

lowest saddle has been determined we may block the water

flow across this saddle by building an imaginary dam across

the saddle region. We can also totally block the water flow

beyond a selected maximum ��. This prevents water from

flowing down one valley and up “the back way” into the other

valley. To determine the height of the ridge between the two

valleys along their entire length we study for each fixed ��

the remaining 4-dimensional space in which the two valleys

correspond to two minima and the ridge to the saddle separat-

ing them. We use the flooding algorithm in four dimensions

to locate this saddle/ridge.

V. Calculated results

In general our calculated potential-energy surfaces exhibit

a complex structure with multiple minima, maxima, saddle

points and valleys. Structures significant in fission are ex-

tracted by use of the water immersion techniques outlined

above. For nuclei in the radium through light actinide re-

gion we find consistently that beyond the second minimum

the potential-energy surfaces are dominated by two valleys

leading to symmetric and asymmetric division into two frag-

ments. The two valleys are separated from the second min-

imum by different saddle points and from each other by a a

ridge. We find that for ���Ra the ridge peaks at 2.47 MeV

above the entrance saddle to the symmetric valley, whereas

for ���Th it peaks at 1.56 MeV. For ���U the ridge only rises

Table 1 Macroscopic model parameters of the FRLDM (1992) and

obtained in the present adjustment using barrier heights ob-

tained in our five-dimensional calculation.

Constant FRLDM (1992) Current fit

�	 16.00126 16.02444

�	 1.92240 1.94149

�
 21.18466 21.39654

�
 2.34500 2.36891

�� 2.61500 1.08654

	� 0.10289 0.16197

marginally above the entrance saddle to the symmetric valley.

For still heavier systems such as ��	Pu we find that the sym-

metric valley emerges as a “side valley” to the asymmetric

valley at some point beyond a single outer saddle at the be-

ginning of the asymmetric valley. Calculated features of the

five-dimensional potential-energy surface for ���Th are illus-

trated in Fig. 4.

In our calculated potential-energy surfaces we can for each

nuclide determine the value of the mass-asymmetry coordi-

nate �� at the bottom (minimum) of the asymmetric valley.

This value is almost independent of �� from slightly beyond

the outer saddle to scission; to be specific we use below the

mass asymmetry at �� 
 ��� in our comparisons. As dis-

cussed above we can directly relate this coordinate to the final

heavy and light fragment masses �
 and ��. In Fig. 5 we

compare heavy and light fragment masses calculated in this

way with experimental data. The mean deviation between cal-

culations and experiment is only 3.0 nucleons.

We have also calculated outer barrier heights and com-

pared them to experimental barrier heights for 31 nuclei from

	Se to ���Cf. Because fission saddle points in our five-

dimensional deformation spaces are systematically lower than

in earlier, lower-dimensional spaces a readjustment of the

macroscopic-model constants is necessary to avoid system-

atic errors in the calculated fission-barrier heights. We here

perform such a readjustment in a manner similar to how our

FRLDM (1992) constants were determined ���. Only 6 con-

stants are varied; the others remain unchanged. A comparison

between the old and the preliminary new constants is found

in Table 1. In the FRLDM (1992) the mass-model error was

0.779 MeV, and the barrier rms error was 1.40 MeV. We now

obtain a mass-model error of 0.759 MeV, and a barrier rms

error of 1.08 MeV for a larger and slightly different barrier

data set. Because there is a change in barrier deformations

for the new set of constants, an iterative procedure is required

to determine a final set of FRLDM model parameters (new

saddle-point deformations have to be calculated with the new

parameters, parameters must be redetermined, and so on). We

expect the converged results of such an iteration will not differ

by too much from the first iteration presented here.

Finally we give a result from our study of SHE fission-

fusion potential-energy surfaces for the compound system
�
	110. For heavy ions with � 
 ��� and � 
 ��, �� at

touching is 40.4 in our units. At our grid point � � 
 ��
��



FRLDM (2001) 

Experimental 

Calculated 

Discrepancy (Exp. − Calc.) 

0 20 40 60 80 100 120 140 160
-10

0

0

10

20

30

40

0

10

20

30

40

50

Neutron Number N 

F
is

s
io

n
 B

a
rr

ie
r 

H
e

ig
t 

(M
e

V
) 

Fig. 6 Comparison of calculated and experimental fission-barrier

heights for nuclei throughout the periodic system, after a pre-

liminary readjustment of the macroscopic model constants. It

is assumed here that the saddle-point shapes are not affected

by the readjustment. Experimental barriers are well repro-

duced by the calculations, the rms error is only 1.08 MeV for

31 nuclei. In the actinide region it is the outer of the two

barriers that are compared.

we find two and only two valleys with mass ratios 162/108

and 200/70 and depths ��
�� MeV and ��
�� MeV, respec-

tively. The ridge between the two valleys is 4.16 MeV high.

Clearly a cold-fusion channel exists here, stabilized by a high

ridge. However, this valley corresponds to a shape with a

fairly large neck diameter. The touching configuration, with

no neck, has a much higher energy of 7.72 MeV. Thus this

cold-fusion touching configuration is on the side of a hill in

five-dimensional space. It slopes down towards two valleys:

(1) a “cold-fusion” valley at ��
�� MeV which is separated

from a (2) deeper “fission valley” at ��
�� MeV by a more

than 4 MeV high ridge.

In summary, with our complete, five-dimensional calcu-

lations of potential-energy surfaces, (1) we obtain realistic,

multi-mode potential-energy surfaces that correlate closely

with the multi-mode fission data seen in experiments, (2) we

calculate accurately the average mass asymmetries in asym-

metric fission, (3) we obtain observed barrier heights for fis-

sion barriers throughout the periodic system, and (4) for su-

perheavy systems we observe a shell-stabilized “cold-fusion”

channel that persists to very compact shapes.
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