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Data Normalization: A Key For Structural Health Monitoring

Charles R. Farrar, Hoon Sohn and Keith Worden



ABSTRACT

Structural health monitoring (SHM) is the implementation of a damage
detection strategy for aerospace, civil and mechanical engineering infrastructure.
Typical damage experienced by this infrastructure might be the development of
fatigue cracks, degradation of structural connections, or bearing wear in rotating
machinery. For SHM strategies that rely on vibration response measurements, the
ability to normalize the measured data with respect to varying operational and
environmental conditions is essential if one is to avoid false-positive indications of
damage. Examples of common normalization procedure include normalizing the
response measurements by the measured inputs as is commonly done when
extracting modal parameters. When environmental cycles influence the measured
data, a temporal normalization scheme may be employed. This paper will
summarize various strategies for performing this data normalization task. These
strategies fall into two general classes: 1. Those employed when measures of the
varying environmental and operational parameters are available; 2. Those employed
when such measures are not available. Whenever data normalization is performed,
one runs the risk that the damage sensitive features to be extracted from the data
will be obscured by the data normalization procedure. This paper will summarize
several normalization procedures that have been employed by the authors and issues
that have arose when trying to implement them on experimental and numerical data.

INTRODUCTION

The process of implementing a damage detection strategy for aerospace, civil
and mechanical engineering infrastructure is referred to as structural health
monitoring (SHM). Here damage is defined as changes to the material and/or
geometric properties of these systems, including changes to the boundary conditions
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and system connectivity, which adversely affect the system’s performance. The
SHM process involves the observation of a system over time using periodically
sampled dynamic response measurements from an array of sensors, the extraction
of damage-sensitive features from these measurements, and the statistical analysis
of these features to determine the current state of system health. For long term
SHM, the output of this process is periodically updated information regarding the
ability of the structure to perform its intended function in light of the inevitable
aging and degradation resulting from operational environments. After extreme
events, such as earthquakes or blast loading, SHM is used for rapid condition
screening and aims to provide, in near real time, reliable information regarding the
integrity of the structure.

The authors believe that the SHM problem is best addressed as a problem in
statistical pattern recognition. In this context, the SHM process can be broken
down into four parts: (1) Operational Evaluation, (2) Data Acquisition and
Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model
Development [1]. Texts are available that provide a good general overview of
statistical pattern recognition technology [2].

Operational evaluation answers four questions regarding the implementation
of a SHM system: 1. What are the economic and/or life safety motives for
performing the monitoring? 2. How is damage defined for the structure that will be
monitored? 3. What are the conditions, both operational and environmental, under
which the system to be monitored functions? and 4. What are the limitations on
acquiring data? Operational evaluation begins to tailor the process to unique aspects
of the monitored system and unique features of that system’s damage.

Data acquisition involves selecting the types, number and location of
sensors to be used, and the data acquisition/storage/transmittal hardware. Other
considerations include how often the data should be collected, how to normalize the
data, and how to quantify the variability in the measurement process. Data
cleansing operations, such as filtering and decimation, are used to selectively
eliminating some of the measured data before the feature extraction process.

The area of the SHM that receives the most attention in the technical
literature is feature extraction. Feature extraction is the process of the identifying
damage-sensitive properties, derived from the measured system response, which
allows one to distinguish between the undamaged and damaged structure. Data
compression is inherently part of most feature extraction procedures. A relatively
recent review of the features for SHM is summarized in [3].

Statistical model development is concerned with the implementation of the
algorithms that analyze the distribution of extracted features in an effort to
determine the damage state of the structure. The algorithms used in statistical model
development fall into the three general categories: 1. Group Classification, 2.
Regression Analysis, and 3. Outlier Detection. The appropriate algorithm to use
will depend on the ability to perform supervised or unsupervised learning. Here,
supervised learning refers to the case were examples of data from damaged and
undamaged structures are available. Unsupervised learning refers to the case were
data is only available from the undamaged structure.

For SHM strategies that rely on vibration response measurements, robust data
normalization procedures are necessary if this technology is to mature from



laboratory demonstration problems to field implementation on complex aerospace,
civil and mechanical engineering infrastructure. Without such data normalization
procedures, varying operational and environmental conditions will produce false-
positive indications of damage and quickly erode confidence in such SHM
procedures. The challenge presented for the development of data normalization
procedures is illustrated in Figure 1. Here, three strain time histories have been
measured on the composite hull of a surface-effects fast patrol boat [4]. The first
two signals correspond to a similar system condition while the third signal
corresponds to an alternate system condition. These recordings were made when
the boat was operating in different sea states. Clearly, the varying sea states have a
significant influence on the recorded data. This influence must me removed if one
is to determine that the changing system condition can be detected from changes in
the measured vibration response.

These approaches to data normalization fall into two general categories: 1.
Cases when the source of variability can be measured, and 2. Cases when the
sources of variability cannot be measured. Figure 2 illustrates the case when it is
necessary to have a measure of the variability source. In Figure 2 the change in the
distribution of damage sensitive features caused by some source of variability
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FIGURE 1 THREE STRAIN-TIME HISTORIES RECORDED ON THE
HULL OF SURFACE EFFECTS FAST PATROL BOAT DURING VARYING
SEA STATES.



produces changes similar to those caused by damage. For this case a measure of the
variability source will, most likely, be necessary. In Figure 3 damage produces a
change in the feature distribution that is in someway orthogonal to the change
caused by the environmental or operational variability. In this case it may be
possible to distinguish changes in the feature distribution caused by damage from
the changes caused by the sources of variability without a measure of the
operational or environmental variability.
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FIGURE 2 A HYPOTHETICAL CASE WHERE DAMAGE PRODUCES A
CHANGE IN THE FEATURE DISTRIBUTION THAT IS SIMILAR TO THE
CHANGE CAUSED BY THE ENVIRONMENTAL VARIABILITY.
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FIGURE 3 A HYPOTHETICAL CASE WHERE DAMAGE PRODUCES A
CHANGE IN THE FEATURE DISTRIBUTION THAT IS IN SOME MANNER
ORTHOGONAL TO CHANGES CAUSED BY THE ENVIRONMENTAL
VARIABILITY.



Successful damage detection methodologies will be required to perform
accurately when the structure is subjected to varying environmental and operational
conditions. As an example, a bridge will be subject to varying thermal
environments that will change on a daily and on a seasonal cycle. For longer
suspension and cable-stayed bridges wind can significantly influence the measured
vibration response. Rain can be absorbed by the bridge deck and change the mass
of the structure as well as the soil properties at the piers and abutments.
Operational variability for a bridge is primarily associated with traffic flow. The
measured vibration response will change significantly based on the volume of
traffic and the speed of that traffic. Traffic flow can vary on daily basis, between
the work week and weekend, and the flow can vary as a result of unique and
unpredictable events such as a traffic accident. Analogous environmental and
operational variability scenarios can be defined for aerospace and mechanical
engineering systems. All of these applications necessitate the development of
robust data normalization procedures that can be used to minimize the uncertainty
in damage state assessments when those assessments are made in the presence of
environmental and operational variability.

Some data normalization procedures that have been studied by the authors will
now be summarized. These normalization procedures must be applied with care
because the procedure can attenuate the system’s damage-sensitive features.

DATA NORMALIZATION PROCEDURES

There are many data normalization procedures that are commonly employed
with measured vibration data. The mean value of a measured time history is often
subtracted from that signal to remove DC offsets from the signal. Division by the
standard deviation of the signal is done to normalize for varying amplitudes in the
signal. Experimental modal analysis procedures involve curve fitting analytical
forms of the frequency response function to measured frequency response
functions. These frequency response functions are formed by normalizing the
measured response by the measured input. If the structure is linear, this
normalization procedure removes the influence of the input from the parameter
estimation procedure.

Identification and Quantification of Source of Variability

Clearly, in any structural health monitoring application it is most desirable to
directly measure all sources of variability that can influence the features extracted
from the measured data that are being used discriminate between and healthy and
damaged system. However, the sensors and data acquisition hardware needed to
make such measurements will increase the cost of the deployed system. Also, it is
often difficult to define a priori all the sources of operational and environmental
variability that will influence the selected features.



Normalization Procedures When Source of Variability can be Quantified

A general approach to data normalization for structural health monitoring
applications include measuring the response of the healthy structure over a period
of time while recording various measures of the operational and environmental
variability. The damage sensitive data features associated with the healthy system
can then be defined as a function or the measured operational and environmental
parameters. When new system response data becomes available along with new
measures of the operational and environmental conditions, the features extracted
from these data can be compared to features extracted form data measured on the
healthy structure under similar conditions. The authors refer to this data
normalization procedure as developing a “reference database” of environmental and
operation conditions.

Normalization Procedures When Source of Variability cannot be Quantified

AUTO-ASSOCIATIVE NEURAL NETWORKS

One approach investigated by the authors for the case when measures of the
variability source are not available is based on auto-associative neural networks
where target outputs are simply inputs to the network. Using the measured features
corresponding to the normal conditions, the auto-associative neural network is
trained to characterize the underlying dependency of the measured features on the
unmeasured environmental and operational variations by treating these
environmental and operational conditions as hidden intrinsic variables in the neural
network [5].

The development of this neural network is based on nonlinear principal
component analysis (NLPCA). NLPCA is used as an aid to multivariate data
analysis. While principal component analysis (PCA) is restricted on mapping only
linear correlations among variables, NLPCA can reveal the nonlinear correlations
presented in data. If nonlinear correlations exist among variables in the original
data, NLPCA can reproduce the original data with greater accuracy and/or with
fewer factors than PCA. This NLPCA can be realized by training a feed-forward
neural network to perform the identity mapping, where the network outputs are
simply the reproduction of network inputs. For this reason, this special kind of
neural network is named as an auto-associative neural network. The network
consists of an internal “bottleneck” layer and two additional hidden layers. The
bottleneck layer contains fewer nodes than input or output layers forcing the
network to develop a compact representation of the input data. The NLPCA
presented in this paper is a general purpose feature extraction/data reduction
algorithm discovering features that contain the maximum amount of information
from the original data set.

NLPCA generalizes the linear PCA mapping by allowing arbitrary nonlinear
functionalities. NLPCA seeks a mapping in the following form:

X = G(Y) (1)



where G is a nonlinear vector function and consists of d number of individual
nonlinear functions: G = {G,,G,...,G,}. The inverse transformation, restoring the

original dimensionality of the data, is implemented by a second nonlinear vector
function H:

Y = H(X) ()

The information lost is measured by E=Y-Y . Similar to PCA, G and H are
computed to minimize the Euclidean norm of ||E|| meaning minimum information
loss in the same sense as PCA. NLPCA employs artificial neural networks to
generate arbitrary nonlinear functions. It has been shown that functions of the
following form are capable of fitting any nonlinear functiony = f(x) to an arbitrary

degree of precision:

Ny s Ny . (3)
Vi = ZijO' Zwijxi +bj
Jj=1 i=1

where y,and x, are the kth and ith components of y and x, respectively. w}

g
represents the weight connecting the ith node in the Ath layer to the jth node in the
(k+1)th layer, and b, is a node bias. o(x) is a monotonically increasing continuous

function with the output range of 0 to 1 for an arbitrary input x. A sigmoid transfer
function is often used in neural networks to realize this function.

Note that, to fit arbitrary nonlinear functions, at least two layers of weighted
connections are required, and the first hidden layer should be composed of
sigmoidal functions. Therefore, the two nonlinear vector functions in Equations 1
and 2 should have the same architecture: one hidden layer with sigmoidal functions
and one output layer. The output layer can have either linear or sigmoidal transfer
functions without affecting the generality of the mapping. For instance, the first
hidden layer of G, which consists of M, nodes with sigmoidal functions, operates

on the columns of Y mapping m inputs to M, node outputs. The output of the first

hidden layer is projected into the bottleneck layer, which contains d nodes. In a
similar fashion, the inverse mapping function H takes the columns of X as inputs
relating d inputs to M, node outputs. The final output layer reconstructs the target

output Y, and contains m nodes.

It should be noted that if the neural networks for G and H are to be trained
separately, the target output X is unknown for the training of the G network. For
the same reason, the input for the H network is not known. It is observed that X is
both the output of G and the input of H. Therefore, combining the two networks in
series, where G feed directly into H, results in a new network whose inputs and
target outputs are not only known but also identical. Now, supervised training can
be applied to the combined network.

The combined network contains three hidden layers; the mapping, the
bottleneck, and de-mapping layers. The second hidden layer is referred to as the
bottleneck layer because it has the smallest dimension among the three layers. Note
that the nodes in the mapping and de-mapping layers must have nonlinear transfer
functions to model arbitrary G and H functions. However, nonlinear transfer
functions are not necessary in the bottleneck layer. If the mapping and de-mapping
layers were eliminated and only the linear bottleneck layer were left, this network



would reduce to linear PCA. Typically M, and M, are selected to be larger than m
and they are set to be equal (M,=M,).

In the study reported in [5], the auto-associative network is employed to reveal
the latent relationship between the measured features and the unmeasured intrinsic
parameters causing the variations of the measured features. The auto-associative
neural network presented here can be trained to learn these correlations and reveal
the inherent variables driving the changes. Then, assuming that the neural network
is trained to capture the embedded relationships, the prediction error of the neural
network will grow when an irrelevant data set, such as ones obtained from a
damage state of the system, is fed to the network. Based on this assumption, the
auto-associate network is incorporated with novelty detection, which is described in
[5] where it is applied to a numerical simulation of a damaged disk drive subjected
to a changing thermal environment. A drawback of this approach is that one needs
to make an assumption regarding the size of the bottleneck layer, which is related to
the number of unmeasured operational and environmental parameters that influence
the features extracted from the measured data.

REFERENCE DATABASE APPROACH

The authors have also employed a reference database for analyzing the data
from the surface effects fast patrol boat (Figure 1) when no measures of the
operational and environmental variability were available [4, 6]. As can be observed
in Figure 1, there is a noticeable difference between Signals 1 and 2 because of
operational variation of the boat. It seems extremely difficult to group Signals 1 and
2 together, and at the same time separate Signal 3 from them. The data
normalization procedure for this case begins by assuming that a “pool” of signals is
acquired from various unknown operational and environmental conditions, but from
a known structural condition of the system. The ability of this procedure to
normalize the data will be directly dependent on this pool being representative of
data measured in as many varying environmental and operational conditions as
possible. The collection of these time series is called “the reference database” in
this study.

For this particular example at hand, each signal is first divided into two parts.
The first halves of Signal 1 and Signal 2 are employed to generate the “reference
database”. The second halves of Signal 1 and Signal 2 are later employed for false-
positive studies. In this example, signal “blocks” in the reference database are
generated by further dividing the first halves of Signal 1 and Signal 2 into smaller
segments. These reference signals are considered to be “the pool” of signals
acquired from the various operational conditions, but from a known structural
condition of the system. (In this example, Signals 1 and 2 are assumed to have been
measured under different operational conditions of the surface-effect fast patrol
boat. However, it is also known that these two signals correspond to the same
structural condition of the system.) When a new signal is recorded (for example,
when Signal 3 is measured), this signal is divided into smaller segments, as done for
the blocks in the reference database. Then, the signals in the reference database are
examined to find a signal block “closest” to the new signal block, and the selected
signal is designated a “reference signal”. Here, the metric, which is defined as the



distance measure of two separate signal segments, is subjective. The detailed
formulation of the metric used in this study and the definition of the “closeness” is
described in [4, 6].

Second, a two-stage prediction model, combining Auto-Regressive (AR) and
Auto-Regressive with eXogenous inputs (ARX) techniques, is constructed from the
selected reference signal. Then, the residual error, which is the difference between
the actual acceleration measurement for the new signal and the prediction obtained
from the AR-ARX model developed from the reference signal, is defined as the
damage-sensitive feature.

This approach is based on the premise that if the new signal block is obtained
from the same operational condition as one of the reference signal segments and
there has been no structural deterioration or change to the system, the dynamic
characteristics of the new signal should be similar to those of the reference signal
based on some measure of “similarity”. That is, if a time prediction model, such as
AR-ARX model employed here, is constructed from the selected reference
waveform, this prediction model also should work for the new signal if the signal is
“close” to the original.

For example, if the second half of Signal 1 is assumed to be a new blind-test
signal, the prediction model obtained from the first half of Signal 1 should
reproduce the new signal (the second half of Signal 1) reasonably well. On the other
hand, if the new signal is recorded under a structural condition different from the
conditions where reference signals are obtained, the prediction model estimated
from even the “closest” waveform in the reference database should not predict the
new signal well. For instance, because Signal 3 is measured under the different
structural condition of the system, the prediction model obtained from either Signal
1 or Signal 2 would not predict Signal 3 well even if “similar” waveforms were
analyzed. Therefore, the residual errors of the “similar” signals are defined as the
damage-sensitive features, and the change of the probability distribution of these
residual errors is monitored to detect system anomaly.

Finally an approach currently being considered by the authors and their
colleagues is to deploy a local actuation system that can be used to apply known
inputs to the structure at discrete locations and tailored to the structural health
monitoring activity. The concept here is that the tailored inputs will outweigh any
unmeasured inputs caused by the changing operational and/or environmental
conditions.

SUMMARY AND DISCUSSIONS

In this paper the authors have identified the issue of data normalization as a key
concern when deploying a structural health monitoring system on a “real-world”
structure. The optimal approach to accomplish such data normalization is to obtain
a measure of the operational and/or environmental variability that can lead to false-
positive indications of damage. However, the instrumentation required for this
approach can potentially be costly and considerable time may be required to capture
the requisite portions of operational and environmental cycles.

The paper also summarized approaches to the data normalization problem that
have been used when measures of the operational and environmental conditions are



not available. These methods are effective for the case illustrated in Figure 3 where
the damage produces changes to the feature distribution that is in some way
orthogonal to the changes produced by the sources of environmental and/or
operational variability. However, the authors have not developed a procedure that
is appropriate for the case illustrated in Figure 2 where damage produces changes in
the feature distribution that is similar to the changes caused by the environmental
and operational variability and measured of this variability do not exist. Clearly,
there is a need for more studies of the data normalization procedures as they apply
to damage detection strategies. Without such procedures it is the authors opinion
that structural health monitoring will have a difficulty making the transition from a
field of research to actual implementation on “real-world” hardware. It is of
interest to note that the most successful applications of structural health monitoring,
those associated with machinery condition monitoring, are often accomplished with
systems subjected to minimal operational and environmental variability.
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