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Abstract

Using multiple independent networks (also known as

rails) is an emerging technique to overcome bandwidth

limitations and enhance fault tolerance of current high-

performance clusters. We present an extensive experimental

comparison of the behavior of various allocation schemes in

terms of bandwidth and latency. We show that striping mes-

sages over multiple rails can substantially reduce network

latency, depending on average message size, network load,

and allocation scheme. The compared methods include a

basic round-robin rail allocation, a local-dynamic alloca-

tion based on local knowledge, and a dynamic rail alloca-

tion that reserves both communication endpoints of a mes-

sage before sending it. The last method is shown to perform

better than the others at higher loads: up to 49% better than

local-knowledge allocation and 37% better than the round-

robin allocation. This allocation scheme also shows lower

latency and it saturates on higher loads (for messages large

enough). Most importantly, this proposed allocation scheme

scales well with the number of rails and message sizes. In

addition we propose a hybrid algorithm that combines the

benefits of the local-dynamic for short messages with those

of the dynamic algorithm for large messages.

Keywords: Communication Protocols, High-Performance

Interconnection Networks, Performance Evaluation, Rout-

ing, Communication Libraries, Parallel Architectures.

1. Introduction

System-interconnection networks have become a critical

component of computing technology, with a direct impact on

the design, architecture, and use of high-performance par-

allel computers. Indeed, not only the sheer computational�
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speed distinguishes high-performance computers from desk-

top systems, but also the efficient integration of the com-

puting nodes into tightly coupled multiprocessor systems.

Network adapters, switches, device-drivers and communica-

tion libraries are increasingly becoming performance-critical

components in modern supercomputers.

One approach to building large-scale supercomputers,

with as many as thousands of processors, is to use shared

memory multiprocessors (SMPs) as building blocks. In such

machines, it is very important to keep the ratio between com-

puting power and communication capability properly bal-

anced. One solution to the issues of limited bandwidth avail-

ability in network connections, and of fault tolerance, is the

use of multiple parallel networks or "rails." To the best of our

knowledge, very little attention has thus-far been given in

the literature to studies of communication protocols, perfor-

mance characteristics, fault tolerance, and implementation of

system software and libraries for multiple rails.

Aside from being a challenging scientific endeavor, the

analysis of multirailed networks has direct practical impli-

cations as well. Los Alamos National Laboratory and Com-

paq are currently developing an extreme-scale, multirailed

cluster of SMPs, the 30Tops ASCI Q machine1. The Q-

machine is based on the Quadrics network (QsNet)2, which

consists of two building blocks, a 64bit/66MHz PCI card

with a programmable network interface called Elan [7] and

a low-latency high-bandwidth communication switch called

Elite [8]. Elites can be interconnected in a fat-tree topology

[4]. A recent performance evaluation of the QsNet shows

that the network performance is seriously limited by the PCI

bus [5]. In fact, the network can deliver almost
�����

MB/sec

at user-level (
�����

MB/sec of raw bandwidth), but the PCI im-

plementation can sustain only
�����

MB/sec, using the most

efficient PCI chipset on the market. The presence of bidi-

rectional traffic further degrades performance, limiting the

aggregate communication bandwidth to 	 ��
 of the unidi-

1http://www5.compaq.com/alphaserver/news/supercomputer_0822.html
2http://www.quadrics.com



rectional bandwidth on most PCI chipsets (Intel 840, Server-

works He and LE, Compaq Wildfire). Though the next gen-

eration of the PCI interface, called PCI-X, will double the

nominal performance, the new generation of QsNet will also

double its performance, so this issue will not disappear.

In this paper we present the basic properties of a mul-

tirailed network and analyze three approaches to multirail

communication, with the constraint that bidirectional traffic

cannot be efficiently supported by the I/O interfaces.

In [1] we have already shown that static rail allocation

is not a feasible solution. With static allocation, each net-

work interface can either send or receive messages, and its

direction is determined at initialization time. Static alloca-

tion poses the problem of connectivity between nodes: we

want to have a direct path in the network between any pos-

sible pair of nodes. The use of intermediate nodes could

seriously degrade the latency achieved by zero-copy, user-

level communication protocols, a key feature of most high-

performance networks. A high number of rails is required

for statically allocated unidirectional traffic. A network with

r rails can support no more than �
� � ��������� nodes un-

der these conditions. For example, a network of ��� nodes

requires at least six rails with static allocation. Furthermore,

static allocation performs poorly in terms of bandwidth and

latency, compared to the methods presented in this paper.

We first address these problems with the local-dynamic

allocation. In this scheme, rails are allocated in both direc-

tions, using local information available on the sender side.

Messages are sent over rails that are not sending or receiving

other messages, potentially striping a message over multiple

rails when possible. Since this algorithm uses only local in-

formation, there is no guarantee that on the receiving end the

traffic will be unidirectional.

The dynamic allocation scheme tries to reserve both end-

points before sending a message. In its core is a sophisti-

cated distributed algorithm that ensures unidirectional traffic

at both ends and avoids deadlocks, potentially generated by

multiple requests with a cyclic dependency. The implemen-

tation of this algorithm requires some processing power in

the network interface card (NIC), which needs to process in-

coming control packets and perform the reservation protocol

without interfering with the processors in the SMP. Fast re-

sponse time in the NIC is essential to limit the overhead of

this protocol for the protocol’s overhead to be justified. This

is the case of the QsNet [5], which is equipped with a thread

processor that can read an incoming packet, do some basic

processing and send a reply in as few as ����� .
Finally another dynamic allocation scheme is proposed,

called hybrid, which allows bidirectionality for small mes-

sages, thus minimizing the protocol overhead for fine-

grained communication. In the presence of large messages,

the algorithm reserves both endpoints, maintaining unidirec-

tional transmission on both ends as much as possible.

The experimental results, obtained using a circuit-level

simulator of the network and network interface, explore the

performance of these allocation algorithms under several

traffic loads and message sizes. These results shed new light

into the benefit of using multiple network rails and expose

several trade-offs in the design of the allocation algorithms.

The rest of this paper is organized as follows: Section 2

presents the local-dynamic allocation and Section 3 offers a

description of the dynamic and hybrid allocation approaches.

The details of the experimental evaluation performed are de-

scribed in Section 4 and the results obtained are presented in

Section 5. Finally, we conclude in Section 6.

2. Local Dynamic Allocation

With dynamic allocation schemes, the direction in which

each NIC is used by its node changes depending on the re-

quirements of the transaction. This allows to overcome the

high rail requirement of the static allocation outlined above

and can make better use of network resources. Unlike static

allocation, dynamic allocation does not predefine a commu-

nication direction for rails while still taking measures to min-

imize the amount of actual bidirectional traffic on a link.

In this section, a dynamic algorithm based only on local

information (that available at the source node) is proposed.

It can be applied to network configurations with any num-

ber of rails. Several desirable features are addressed namely,

minimization of bidirectional traffic over the network inter-

face, load balancing among rails, and high network utiliza-

tion. The local-dynamic algorithm is used by each process

to send a message over the network and is designed to stripe

messages over multiple rails. Furthermore, when sending

a message, it only selects NICs that are available. Thus, a

sending transaction will not produce bidirectional traffic in

the source bus unless a message reception starts before the

sending transaction completes.

Algorithm 1 : Local Dynamic Allocation
Procedure Local_Dynamic_Allocation

Input: message (M), destination node (dest), striping ra-
tio (str_r)

begin
repeat

F � {n | Nstatus[n]==FREE}
S � Select_Tx_NICs(F, str_r)

until  F !"�#%$
send M to dest using NICs in S

end

Algorithm 1 shows the local-dynamic scheme. The rail

allocation policy selects a subset & of the set of free rails '
for sending a message. All rails in & are then used for send-

ing the message. The algorithm considers a rail as free if it is

not sending or receiving. The local-dynamic algorithm uses

a data structure (NStatus) which contains the status of each

NIC in a specific node. The state is updated by the NICs

and can be RESERVED or FREE. The subset of free NICs

which is selected depends on the desired striping ratio. This

parameter fixes the number of free rails which is used to send



a single message (striped in the appropriate number of frag-

ments). Its value ranges between 0 (only one rail is selected)

and 1 (all the available rails are chosen). The striping ratio is

handled with the Select_Tx_NICs function, which employs

a round-robin algorithm to ensure fairness when selecting a

subset of the free NICs. The allocation of the NICs starts at

the first free NIC just past the last one allocated in the previ-

ous transaction.

3. Dynamic Allocation

The dynamic allocation algorithm collects local- and

remote-state information from the NICs for every commu-

nication operation. Its main goal is to guarantee that both

the sending and the receiving side are free before injecting a

message. This ensures unidirectional traffic at both ends.

In the dynamic allocation algorithm, we use two types

of communicating processes. The first (PE process) is inte-

grated with the underlying communication library and is run

at user level by all the processes of a parallel job. The second

runs on the NIC processors and handles local and remote re-

quests. It should be noted that this distributed algorithm runs

on every PE and NIC in the cluster.

3.1. PE process

Algorithm 2 : Dynamic Allocation (PE process)
Procedure Dynamic_Allocation_PE

Input: message (M), destination node (dest), striping ra-
tio (str_r)

begin
repeat

F � {n | Nstatus[n]==FREE}
send local_RTS to the NICs in F

Wait until all remote NICs reply or a timeout expires
A � {The set of NICs that replied with a CTS}

until  A !"�#($
S � Select_Tx_NICs(A,str_r)

Deallocate all NICs in A ) S, sending an ABORT.
send M to dest using NICs in S

end

This process, shown in Algorithm 2, runs on the PEs

and is invoked when a message is sent. Rail reservation is

employed prior to sending so that the network interfaces at

source and destination are dedicated to unidirectional traffic

at both ends. This reservation is performed by the sender

in the following way: if local NICs are available, each re-

quest is temporarily assigned to all the available NICs. Then

a Request To Send (RTS) is sent to the destination NICs (one

destination NIC for each source NIC) to check for avail-

ability and reserve them. Destination NICs reply with a

Clear To Send (CTS) if free and a Negative Acknowledgment

(NACK) otherwise. Once the set of available paths (rails) is

known at the sender side, another selection is done (by the

Select_Tx_NICs function) in order to choose the actual set of

rails for sending, based on the desired striping ratio. Rails

initially allocated that are not eventually used are freed by

sending an ABORT command. A round-robin algorithm is
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Figure 1. Dynamic allocation operation when selecting

more than one NIC

used to guarantee a fair selection of NICs. Finally the mes-

sage is striped, if possible, and sent over the selected set of

NICs. A visual representation of the algorithm is depicted in

Figure 1.

3.2. NIC Process

This process, shown in Algorithm 3 and Table 1, runs on

the NIC and handles the requests issued by local and remote

processors. As in the local-dynamic algorithm, we use a data

structure (NStatus) containing the status of each NIC in a

given node. In this case the status, which is only updated by

the NICs, can be one of the following:*
FREE - the NIC is available.* RESERVED - the NIC is reserved by a local requester,

while trying to allocate the destination NIC.*
RECEIVING - the NIC is receiving a message.*
RECEIVING and Out_RTS - the NIC is receiving a

message and has an outstanding RTS message.*
SENDING - the NIC is sending a message.

When a remote RTS is received and the NIC is free, the NIC

is assigned to the requester and a CTS is issued. The re-

quester can either use the reserved path to send a message

or abort it. If the NIC is not free, a NACK is sent to the

requester.

With regard to the local requests, if a local RTS is received

and the NIC is free, it is assigned to the local requester and

a remote RTS is sent to the destination NIC. If a CTS is re-

ceived from the remote NIC (the path has been granted), a



Event\Status Free Receiving Sending Reserved Receiving & Out_RTS

Local RTS Remote RTS Local NACK Local NACK Local NACK Local NACK
Reserved Receiving Sending Reserved Receiving & Out_RTS

Local ACK Remote ACK Remote ACK
Free Reserved

Local ABORT Remote ABORT
Free

Remote RTS Remote CTS Remote NACK Remote NACK – Remote NACK
Receiving Receiving Sending Reserved/Receiving & Out_RTS Receiving & Out_RTS

Remote ABORT – –

Free Reserved
Remote CTS Local CTS ABORT & Local NACK Local CTS

Sending Receiving Sending
Remote ACK –

Free
Remote NACK Local NACK Local NACK Local NACK Local NACK Local NACK

Free Receiving Sending Free Receiving

Table 1. : Dynamic allocation - NIC process state table. The first row in each cell represents the message(s) to be sent and the second

row represents the new state.
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Figure 2. Deadlock example

Event\Status Reserved & Deadlock

Local Winner Send: Remote NACK; c=c-1

Reserved

Remote Winner Send: Remote CTS; c=c+1

Receiving & Out_RTS

Table 2. : Deadlock avoidance state table

local ACK is sent to the local requester that decides whether

to use the reserved path (sending a message) or to dismiss it

(sending an ABORT). That depends on the applied striping

ratio as stated in 3.1.

This procedure can deadlock if a cyclic dependency is es-

tablished between different NICs. As an example, let us sup-

pose that each NIC in Figure 2(a) sends a request to another

NIC so that a cycle of dependencies is generated. In this

scenario, each NIC receives a request while having an out-

going request pending. Consequently, using the algorithm

described above, every NIC sends a NACK (the NICs are

busy as they have outgoing pending requests) and then all

three NICs retry the connection. This leads to a deadlock or

livelock if no other mechanism is implemented.

Algorithm 3 : Dynamic Allocation (NIC process)
Procedure Dynamic_Allocation_NIC

begin
NStatus[i] � FREE
counter � 0 {for deadlock avoidance}
while TRUE { repeat forever }
case event of

local_RTS:
if (NStatus[i]==FREE) then

NStatus[i] � RESERVED

send RTS to remote node
else

send NACK to local process

remote_CTS:
if ((NStatus[i]==RESERVED) OR (NStatus[i]==FREE)) then

NStatus[i] � SENDING

send CTS to local process
else if (NStatus[i]==RECEIVING) then

send NACK to local process
send ABORT to remote node

remote_RTS:
if (NStatus[i]==FREE) then

NStatus[i] � RECEIVING

send CTS to remote requester
else if (NStatus[i]==RESERVED) then

call deadlock_avoidance()
else

send NACK to remote requester

local_ACK:
if (NStatus[i]==RECEIVING) then

NStatus[i] � FREE

else if (NStatus[i]==RECEIVING AND Outstanding_RTS) then
NStatus[i] � RESERVED

send ACK to remote requester

remote_ACK:
if (NStatus[i]==SENDING) then

NStatus[i] � FREE

remote_NACK:
if (NStatus[i]==RESERVED) then

NStatus[i] � FREE

send NACK to local process
else

send NACK to local process

local_ABORT:
if (NStatus[i]=SENDING) then

NStatus[i] � FREE

send ABORT to remote requester

remote_ABORT:
if (NStatus[i]==RECEIVING AND Outstanding_RTS) then

NStatus[i] � RESERVED

else if (NStatus[i]=RECEIVING) then
NStatus[i] � FREE

end



Algorithm 4 : Deadlock avoidance procedure
Procedure deadlock_avoidance
begin

if ((local_counter>remote_counter) OR
((local_counter=remote_counter) AND
(local_node_id>remote_node_id))) then { local re-

quest receives priority: }
counter � counter - 1
send NACK to remote requester
NStatus[i] � RESERVED

else { remote receives priority }
counter � counter + 1
send CTS to remote requester
NStatus[i] � RECEIVING & OUTSTANDING_RTS

end

In order to deal with this problem, a deadlock-avoidance

mechanism has been developed and included in Algorithm 4.

For the sake of clarity, this mechanism is shown in a separate

procedure (Algorithm 4 and Table 2). This priority-based al-

gorithm is run by each NIC whenever a deadlock is possible,

which is every time an incoming request is received while

an outgoing request is pending. At initialization time, every

NIC is assigned a default priority level. Each time a po-

tential deadlock is detected the priorities of the remote NIC

(incoming request) and the local NIC (outgoing request) are

compared. The request with lower priority is aborted. If the

priorities are identical, the identifiers of the local and remote

node are used instead. Finally, in order to ensure fairness,

the local priority is updated in the following way: if the local

request wins, the local priority is decremented, otherwise it

is incremented.

An example is shown in Figure 2(b). In this example, the

potential deadlocked situation appears when each node sends

an outgoing request, and while it is still pending, it receives

an incoming one. NIC-i and NIC-j have lower priority than

the source NIC of their incoming requests (NIC-k and NIC-i,

respectively), so they send a CTS to the requester NICs. On

the other hand, NIC-k has a higher priority than its requester

NIC (NIC-j), so it sends it a NACK. Eventually, every NIC

receives a reply. NIC-i receives a CTS and rejects it since it

has granted a connection to the higher priority NIC-k. NIC-j

receives a NACK for its request and ignores it since it has

been previously granted a path to NIC-i. NIC-k receives a

CTS which grants it the path for the requested sending. Fi-

nally, NIC-j receives an ABORT from NIC-i and becomes

free again. NIC priorities are updated as stated above, NIC-i

and NIC-j increment their priorities, and NIC-k decrements

its one. All the possible states and transitions are depicted in

Tables 1 and 2.

3.3. Hybrid algorithm

The rail reservation protocol employed by the dynamic

algorithm incurs an overhead for every message send. For

short messages, this overhead could become significant,

compared with the time it takes to send the message. We

therefore implemented a third, hybrid approach, shown in

Algorithm 5 . On the NIC side, an incoming short message

is always accepted even if it causes bidirectional traffic on

Algorithm 5 Hybrid allocation (PE process)
Procedure Hybrid_Allocation_PE

Input: message (M), destination node (dest), striping ra-
tio (str_r)

begin
if |M| + SHORT_MESSAGE_LENGTH then

F � {n|Nstatus[n]=FREE} { Set of free NICs }
select s , F using round-robin
send M to dest using NIC s

else
call Dynamic_allocation_PE (M, dest, str_r)

end

the bus for a short time. Note that a short message is never

striped, since the associated overhead of striping is not jus-

tified in this case. Rather, it is sent on a single rail which is

chosen in a round-robin fashion to ensure fairness.

The threshold used by the algorithm to distinguish be-

tween long and short messages is an important parameter.

This value has to be carefully selected to provide the best

performance. If the value is too small, it could cause the

dynamic algorithm to be applied to message sizes for which

striping and guaranteed unidirectional bus traffic would not

be effective. If too large, the allocation policy tends to be-

have like the basic algorithm. Several experiments have been

carried out in order to analyze the influence of this parame-

ter on network performance and determine its optimal value,

and the results are shown in Section 5.

4. Experimental Framework

This section offers details on our simulation platform, the

workloads that were simulated, and the metrics of interest.

4.1. Simulation model

In the experimental evaluation, we focus our attention on

a family of fat-tree interconnection networks, ranging from� � to ����	 SMPs, with four processors per SMP. The simula-

tion model tries to capture the most important characteristics

of the QsNet at the granularity of the clock cycle. The simu-

lator models wormhole flow-control, with two virtual chan-

nels on each physical channel. The input buffers on each

virtual channel can contain up to �-��	 flits [2], each consist-

ing of two bytes. A flit can be transmitted over a physical

channel in a single clock cycle, while a packet can be routed

through an Elite switch in six clock cycles.

The simulator also models a thread processor in the NIC,

which can process incoming control and data packets and

can send a reply in a few hundred clock cycles. Another im-

portant characteristic is the unidirectionality of the I/O bus,

which can transmit data in one direction at a time. We also

assume that the bus bandwidth is equalized with the external

network bandwidth (an optimistic set of assumptions, given

the current state of the art).

This model is evaluated in the SMART (Simulator of

Multiprocessor ARchitectures and Topologies) environment



[6]. Implemented in C++, SMART is an object-oriented,

discrete-event simulation tool for evaluating parallel archi-

tectures and high performance interconnection networks.

4.2. Communication patterns

In our model each process generates packets indepen-

dently, using three random variables:* the message size, which is exponentially distributed

with a given mean value,* the inter-arrival time, also exponentially distributed

around a given mean value,* and the destinations, which are randomly chosen with

equal probability between the processes.

We consider a set of communication algorithms, including

a baseline basic algorithm, and the dynamic algorithms de-

scribed in Sections 2, 3. The basic algorithm does not use

any protocol; whenever a node needs to send a message, it

sends it on one rail, choosing it in round-robin fashion. This

base case can serve to illustrate the effects of both the over-

head of other protocols and the penalties of bidirectional traf-

fic.

4.3. Metrics

The performance of an interconnection network under dy-

namic load is usually assessed by two quantitative parame-

ters, the accepted bandwidth, or throughput, and the latency.

Accepted bandwidth is defined as the sustained data deliv-

ery rate given some offered bandwidth at the network input.

Two important characteristics are the saturation point and the

sustained rate after saturation. Saturation is defined as the

minimum offered bandwidth where the accepted bandwidth

is lower than the global packet creation rate at the source

nodes. It is worth noting that, before saturation, offered and

accepted bandwidth are the same. The behavior above satu-

ration is important because the network and/or the allocation

algorithms can become unstable, leading to a sharp perfor-

mance degradation. We usually expect the accepted band-

width to remain stable after saturation, for example in the

presence of burst-mode applications that require peak per-

formance for a short period of time [3].

The experimental results of each traffic are presented us-

ing two graphs, one to display the accepted bandwidth and

the other to display the network latency. In both graphs, the

x-axis corresponds to the offered bandwidth normalized with

the unidirectional bandwidth of the links connecting the pro-

cessing nodes to the network switches. This makes the anal-

ysis independent of the link bandwidth and the flit size.

We report the latency in cycles rather than absolute time,

in order to make our analysis insensitive to technological

changes. Given that the I/O bus in the network interface
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can only allow unidirectional traffic, the maximum achiev-

able throughput under uniform traffic is only / ��
 of the

nominal injection bandwidth. The intuition behind this limit

is the following: let us consider for example a cluster with

only two SMPs and single network rail; under uniform traf-

fic, only one SMP can send to another at any given time, due

to the unidirectionality constraint in the endpoints.

5. Experimental Results

In this section, we try to provide insight into some impor-

tant aspects of the multirail allocation algorithms. We first

study the impact of network load, message size, and striping

on the basic and dynamic algorithms. Then, we analyze how

the algorithms perform when the number of nodes and the

number of rails are scaled up, and we integrate these results

in the evaluation of the hybrid algorithm.

5.1. Bandwidth and latency

The following results were obtained by simulating ����	
SMPs (nodes), four rails and four PEs per SMP. Figures

3-6 compare the accepted bandwidth and network latency

as a function of the offered bandwidth. Two different val-

ues for the average packet size are compared in the exper-

iments. These graphs show the performance for the basic,

local-dynamic and dynamic algorithms. Given that the mes-

sage latency goes to infinity after the saturation point, we

only report the latency when the network is not saturated.

We can see that the basic algorithm performs relatively

well on short messages, but its performance decreases as the

message size increases. The dynamic algorithm behaves in

the opposite manner, performing poorly on short messages,

and increasing in performance as the message size grows.

The local-dynamic algorithm exhibits similar performance

to the basic algorithm, performing better than the basic for

larger messages and worse for shorter messages. This sug-

gests that we may benefit from using the hybrid approach,
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where shorter messages are sent using the basic protocol and

longer messages using the dynamic protocol.

5.2. Effect of striping

Figures 3-6 also depict the effect of message striping

whenever possible in the dynamic and local dynamic ap-

proaches. Figure 7 shows the latency vs. the average mes-

sage size for an offered load of
�10 ��/ . We used an aggressive

approach for striping, using only full striping and no inter-

mediate values. Results not shown here indicate that it is

always best to stripe as much as possible.

Striping does not seem to have a significant effect on any

protocol’s accepted bandwidth. However, it does reduce the

latency of sending messages, especially as the message size

grows (which makes the striping overhead less significant)

and load diminishes (which allows a higher effective strip-

ing ratio). It can be seen, for example, that for an average

message size of � � KB and a load of / 
 , striping reduces

the dynamic and local-dynamic latencies by approximately��/ 
 and 2 � 
 respectively. The better local-dynamic results

arises from the lower overhead associated with sending a
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Figure 7. Latency vs. message size with an offered load

of 0.15. The latency for messages shorter than 3 KB is not

shown for the dynamic allocation because the network is sat-

urated with this load.

message (there is no need to reserve the paths), combined

with the low load that offers a high probability that rails will

be free.

From Figure 7 it can be seen that for short average mes-

sage sizes (below �4� KB) the best results are obtained with

the local-dynamic allocation algorithm with full striping. For

longer messages the dynamic allocation algorithm with full

striping provides the best performance.

5.3. Node scalability

The effect of increasing the number of nodes on the max-

imum accepted load is shown in Figure 8 for an average

message size of
� � KB. The dynamic algorithm outperforms

the basic algorithm by
� � 
 for

� � nodes and ��5 
 for ����	
nodes. These algorithms scale reasonably well, with a loss

of 2 
 - �-� 
 in maximum accepted bandwidth when the net-

work size is doubled from � � to �-��	 nodes.
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Figure 9. Maximum accepted load vs. average message

size for 32 nodes

5.4. Rail scalability

In order to understand the behavior of the algorithms as a

function of the number of rails, we tested configurations of

one, two, and four rails with
� � nodes, each having four PEs,

and using average message sizes in the range � KB- ��/�� KB.

The results are depicted in Figure 9.

For the dynamic allocation we show full striping only,

since the maximum bandwidth is hardly affected by striping

(due to the low probability of reserving more than one rail

for higher injection rates). Also, we increase the offered load

linearly with the number of rails, so that the resource require-

ment matches the increase in available resources, thus giving

a clearer view of the network’s scalability. Again, we see the

dynamic algorithm’s performance increasing with message

size, for any number of rails, while the basic algorithm’s per-

formance decreases, this result supporting the idea of a hy-

brid approach. More importantly, we see that the maximum

bandwidth obtained using the dynamic algorithm is almost

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

1 2 3 4 5 6 7

M
a
x
im

u
m

 A
c
c
e
p
te

d
 L

o
a
d

6

Rails

Dynamic striping
Basic

Figure 10. Maximum accepted load vs. no. of rails for 32

nodes and average message size of 32KB
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Figure 11. Scalability analysis for latency with injection

load of 0.15 and average message size of 32KB

constant for any number of rails (and even improves when

adding more rails, for messages larger than �4� KB). This can

be clearly seen in Figure 10 which shows the maximum ac-

cepted load vs. number of rails (up to seven) for an average

message size of
� � KB. This graph confirms that the dynamic

allocation algorithm slightly improves its bandwidth when

the number of rails is increased. On the other hand, the ba-

sic algorithm degrades significantly when compared with the

single-rail configuration (a
����


bandwidth reduction in the

maximum accepted load with seven rails when compared to

the single-rail topology). The reason for this is that as the

number of rails grows, so does the average sending load of

each processor (the number of processors is fixed). The basic

approach uses a round-robin rail selection method, ignoring

the state of the NICs. It therefore becomes more probable

for the processors to self synchronize the choice of the rails,

leading to a performance loss.

In Figure 11 we can observe the effect of the number of
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Figure 12. Saturation point as a function of message size

rails on latency. The data were obtained from experiments

with an injection load of
�70 �-/ , using

� � nodes (four PEs per

node) and an average message size of
� � KB. The basic algo-

rithm’s latency actually increases with the number of rails,

due to the inefficiency of the round-robin method, as dis-

cussed above. This is confirmed in the simulation traces that

show the injection latency to be the source of the latency

growth. As expected, striping reduces the latency when the

number of rails is increased for the dynamic algorithms, with

an advantage to the local-dynamic algorithm. It is interesting

to note that even with no striping, both dynamic algorithms

scale well with the number of rails.

5.5. Effect of message size on saturation point

Another important feature of the allocation algorithms is

the saturation point for different message sizes. The experi-

mental data set that was used to obtain the saturation points

for each message size is the same as in 5.1. The results are

shown in Figure 12.

We can see from Figure 12 that the dynamic algorithm’s

saturation point increases with the message size, while the

basic and local-dynamic algorithms retain a near-constant

saturation point. These results suggest that the dynamic al-

gorithm scales better with the message size than do the other

two. One possible explanation for this is that the dynamic

algorithm ensures that no conflicts will occur on any rail.

These conflicts are more likely as the message size increases

and rails are unavailable for longer periods of time.

5.6. Hybrid approach

The results observed in 5.1 and 5.5 indicate that the ba-

sic algorithm performs better on shorter messages, while

the dynamic algorithm performs better on longer mes-

sages. It may therefore be useful to try a hybrid ap-

proach, that uses the basic algorithm for messages shorter

than a given threshold, and the dynamic algorithm other-
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Figure 13. Hybrid bandwidth without striping

wise. (This threshold is implemented in Algorithm 5 as

SHORT_MESSAGE_LENGTH).

Several short message size thresholds were tested and

compared in the dynamic and basic algorithms. We used����	 nodes of four PEs each with four rails, an average mes-

sage size of
� � KB, and short message size thresholds of � ,�

, 	 , �4� , and
� � KB. Figures 13-16 show the bandwidth and

latency obtained with and without striping.

It can be clearly seen from these results that the hybrid

approach outperforms both the dynamic and the basic ap-

proaches in terms of bandwidth for almost all the thresholds

chosen, regardless of striping. With the exception that at a

threshold of
� � KB, hybrid performs somewhat worse than

dynamic for low injection rates when striping is used, hy-

brid otherwise outperforms both the dynamic and basic ap-

proaches for latency, regardless of striping, similar to the

observation for latency. This may stem from the fact that

messages shorter than the threshold are sent with no strip-

ing (as in basic), so the latency for relatively large messages

can be lower if striping is used (Figure 16). On the other

hand, when no striping is used, the dynamic algorithm per-

forms worse than the hybrid methods for low injection rates,

and almost the same or better for higher injection rates. This

can be explained by the fact that the dynamic approach has

a larger saturation point for average message size of
� � KB

than the basic approach (see 5.5), and the hybrid approach

uses the basic algorithm for short message sizes.

6. Conclusions

One of the novel methods that can be used to increase

communication performance and enhance fault tolerance in

a cluster of workstations is to use parallel independent net-

works (rails). In this paper, we explored various aspects of

multirail interconnects and presented several rail allocation

algorithms for efficient usage of the rails. We have shown

that the dynamic algorithm can perform relatively well in

terms of bandwidth for sufficiently large message sizes, and
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can handle a relatively high load before saturating. Further-

more, it has been shown that this algorithm is scalable due

to its adaptive nature - increasing the number of rails from

one to seven increases the maximum relative bandwidth in

a linear manner. Superlinearity is achieved for messages

larger than 	 KB. Furthermore, the bandwidth increases as

the message size increases, unlike the case for other ap-

proaches. Incorporating protocol-free short message han-

dling was shown to increase the maximum bandwidth by

up to 2 0 / 
 more than the pure dynamic algorithm, and up

to
� � 0 � 
 and

� 	 0 2 
 more than the basic and local-dynamic

approaches respectively. We have also shown that striping a

message over several rails can be used to obtain a significant

reduction of latency in some cases.
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