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Abstract

Using multiple independent networks (also known as
rails) is an emerging technique to overcome bandwidth
limitations and enhance fault tolerance of current high-
performance clusters. We present an extensive experimental
comparison of the behavior of various allocation schemes in
terms of bandwidth and latency. We show that striping mes-
sages over multiple rails can substantially reduce network
latency, depending on average message size, network load,
and allocation scheme. The compared methods include a
basic round-robin rail allocation, a local-dynamic alloca-
tion based on local knowledge, and a dynamic rail alloca-
tion that reserves both communication endpoints of a mes-
sage before sending it. The last method is shown to perform
better than the others at higher loads: up to 49% better than
local-knowledge allocation and 37% better than the round-
robin allocation. This allocation scheme also shows lower
latency and it saturates on higher loads (for messages large
enough). Most importantly, this proposed allocation scheme
scales well with the number of rails and message sizes. In
addition we propose a hybrid algorithm that combines the
benefits of the local-dynamic for short messages with those
of the dynamic algorithm for large messages.

Keywords: Communication Protocols, High-Performance
Interconnection Networks, Performance Evaluation, Rout-
ing, Communication Libraries, Parallel Architectures.

1. Introduction

System-interconnection networks have become a critical
component of computing technology, with a direct impact on
the design, architecture, and use of high-performance par-
allel computers. Indeed, not only the sheer computational

*The work was supported by the U.S. Department of Energy through
Los Alamos National Laboratory contract W-7405-ENG-36

speed distinguishes high-performance computers from desk-
top systems, but also the efficient integration of the com-
puting nodes into tightly coupled multiprocessor systems.
Network adapters, switches, device-drivers and communica-
tion libraries are increasingly becoming performance-critical
components in modern supercomputers.

One approach to building large-scale supercomputers,
with as many as thousands of processors, is to use shared
memory multiprocessors (SMPs) as building blocks. In such
machines, it is very important to keep the ratio between com-
puting power and communication capability properly bal-
anced. One solution to the issues of limited bandwidth avail-
ability in network connections, and of fault tolerance, is the
use of multiple parallel networks or "rails." To the best of our
knowledge, very little attention has thus-far been given in
the literature to studies of communication protocols, perfor-
mance characteristics, fault tolerance, and implementation of
system software and libraries for multiple rails.

Aside from being a challenging scientific endeavor, the
analysis of multirailed networks has direct practical impli-
cations as well. Los Alamos National Laboratory and Com-
paq are currently developing an extreme-scale, multirailed
cluster of SMPs, the 30Tops ASCI Q machine!. The Q-
machine is based on the Quadrics network (QsNet)?, which
consists of two building blocks, a 64bit/t66MHz PCI card
with a programmable network interface called Elan [7] and
a low-latency high-bandwidth communication switch called
Elite [8]. Elites can be interconnected in a fat-tree topology
[4]. A recent performance evaluation of the QsNet shows
that the network performance is seriously limited by the PCI
bus [5]. In fact, the network can deliver almost 340 MB/sec
at user-level (400 MB/sec of raw bandwidth), but the PCI im-
plementation can sustain only 300 MB/sec, using the most
efficient PCI chipset on the market. The presence of bidi-
rectional traffic further degrades performance, limiting the
aggregate communication bandwidth to 80% of the unidi-

Uhttp://wwwS5.compag.com/alphaserver/news/supercomputer_0822.html
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rectional bandwidth on most PCI chipsets (Intel 840, Server-
works He and LE, Compaq Wildfire). Though the next gen-
eration of the PCI interface, called PCI-X, will double the
nominal performance, the new generation of QsNet will also
double its performance, so this issue will not disappear.

In this paper we present the basic properties of a mul-
tirailed network and analyze three approaches to multirail
communication, with the constraint that bidirectional traffic
cannot be efficiently supported by the I/O interfaces.

In [1] we have already shown that static rail allocation
is not a feasible solution. With static allocation, each net-
work interface can either send or receive messages, and its
direction is determined at initialization time. Static alloca-
tion poses the problem of connectivity between nodes: we
want to have a direct path in the network between any pos-
sible pair of nodes. The use of intermediate nodes could
seriously degrade the latency achieved by zero-copy, user-
level communication protocols, a key feature of most high-
performance networks. A high number of rails is required
for statically allocated unidirectional traffic. A network with

. r
r rails can support no more than n < T nodes un-

der these conditions. For example, a netch)rk of 16 nodes
requires at least six rails with static allocation. Furthermore,
static allocation performs poorly in terms of bandwidth and
latency, compared to the methods presented in this paper.

We first address these problems with the local-dynamic
allocation. In this scheme, rails are allocated in both direc-
tions, using local information available on the sender side.
Messages are sent over rails that are not sending or receiving
other messages, potentially striping a message over multiple
rails when possible. Since this algorithm uses only local in-
formation, there is no guarantee that on the receiving end the
traffic will be unidirectional.

The dynamic allocation scheme tries to reserve both end-
points before sending a message. In its core is a sophisti-
cated distributed algorithm that ensures unidirectional traffic
at both ends and avoids deadlocks, potentially generated by
multiple requests with a cyclic dependency. The implemen-
tation of this algorithm requires some processing power in
the network interface card (NIC), which needs to process in-
coming control packets and perform the reservation protocol
without interfering with the processors in the SMP. Fast re-
sponse time in the NIC is essential to limit the overhead of
this protocol for the protocol’s overhead to be justified. This
is the case of the QsNet [5], which is equipped with a thread
processor that can read an incoming packet, do some basic
processing and send a reply in as few as 2us.

Finally another dynamic allocation scheme is proposed,
called hybrid, which allows bidirectionality for small mes-
sages, thus minimizing the protocol overhead for fine-
grained communication. In the presence of large messages,
the algorithm reserves both endpoints, maintaining unidirec-
tional transmission on both ends as much as possible.

The experimental results, obtained using a circuit-level

simulator of the network and network interface, explore the
performance of these allocation algorithms under several
traffic loads and message sizes. These results shed new light
into the benefit of using multiple network rails and expose
several trade-offs in the design of the allocation algorithms.

The rest of this paper is organized as follows: Section 2
presents the local-dynamic allocation and Section 3 offers a
description of the dynamic and hybrid allocation approaches.
The details of the experimental evaluation performed are de-
scribed in Section 4 and the results obtained are presented in
Section 5. Finally, we conclude in Section 6.

2. Local Dynamic Allocation

With dynamic allocation schemes, the direction in which
each NIC is used by its node changes depending on the re-
quirements of the transaction. This allows to overcome the
high rail requirement of the static allocation outlined above
and can make better use of network resources. Unlike static
allocation, dynamic allocation does not predefine a commu-
nication direction for rails while still taking measures to min-
imize the amount of actual bidirectional traffic on a link.

In this section, a dynamic algorithm based only on local
information (that available at the source node) is proposed.
It can be applied to network configurations with any num-
ber of rails. Several desirable features are addressed namely,
minimization of bidirectional traffic over the network inter-
face, load balancing among rails, and high network utiliza-
tion. The local-dynamic algorithm is used by each process
to send a message over the network and is designed to stripe
messages over multiple rails. Furthermore, when sending
a message, it only selects NICs that are available. Thus, a
sending transaction will not produce bidirectional traffic in
the source bus unless a message reception starts before the
sending transaction completes.

Algorithm 1 : Local Dynamic Allocation

Procedure Local_Dynamic_Allocation
Input: message (M), destination node (dest), striping ra-
tio (str_r)
begin
repeat
F < {n | Nstatus[n]==FREE}

S ¢« Select_Tx_NICs(F, str_r)
until (F#£0)
send M to dest using NICs in S
end

Algorithm 1 shows the local-dynamic scheme. The rail
allocation policy selects a subset S of the set of free rails F’
for sending a message. All rails in .S are then used for send-
ing the message. The algorithm considers a rail as free if it is
not sending or receiving. The local-dynamic algorithm uses
a data structure (NStatus) which contains the status of each
NIC in a specific node. The state is updated by the NICs
and can be RESERVED or FREE. The subset of free NICs
which is selected depends on the desired striping ratio. This
parameter fixes the number of free rails which is used to send



a single message (striped in the appropriate number of frag-
ments). Its value ranges between O (only one rail is selected)
and 1 (all the available rails are chosen). The striping ratio is
handled with the Select_Tx_NICs function, which employs
a round-robin algorithm to ensure fairness when selecting a
subset of the free NICs. The allocation of the NICs starts at
the first free NIC just past the last one allocated in the previ-
ous transaction.

3. Dynamic Allocation

The dynamic allocation algorithm collects local- and
remote-state information from the NICs for every commu-
nication operation. Its main goal is to guarantee that both
the sending and the receiving side are free before injecting a
message. This ensures unidirectional traffic at both ends.

In the dynamic allocation algorithm, we use two types
of communicating processes. The first (PE process) is inte-
grated with the underlying communication library and is run
at user level by all the processes of a parallel job. The second
runs on the NIC processors and handles local and remote re-
quests. It should be noted that this distributed algorithm runs
on every PE and NIC in the cluster.

3.1. PE process

Algorithm 2 : Dynamic Allocation (PE process)

Procedure Dynamic_Allocation_PE
Input: message (M), destination node (dest), striping ra-
tio (str_r)
begin

repeat

F 4 {n | Nstatus[n]==FREE}
send local RTS to the NICs in F
Wait until all remote NICs reply or a timeout expires
A 4 {The set of NICs that replied with a CTS}
until (&#0)

S 4 Select_Tx_NICs(A,str_r)
Deallocate all NICs in A\S, sending an ABORT.
send M to dest using NICs in S

end

This process, shown in Algorithm 2, runs on the PEs
and is invoked when a message is sent. Rail reservation is
employed prior to sending so that the network interfaces at
source and destination are dedicated to unidirectional traffic
at both ends. This reservation is performed by the sender
in the following way: if local NICs are available, each re-
quest is temporarily assigned to all the available NICs. Then
a Request To Send (RTS) is sent to the destination NICs (one
destination NIC for each source NIC) to check for avail-
ability and reserve them. Destination NICs reply with a
Clear To Send (CTS) if free and a Negative Acknowledgment
(NACK) otherwise. Once the set of available paths (rails) is
known at the sender side, another selection is done (by the
Select_Tx_NICs function) in order to choose the actual set of
rails for sending, based on the desired striping ratio. Rails
initially allocated that are not eventually used are freed by
sending an ABORT command. A round-robin algorithm is

Processor

time

Figure 1. Dynamic allocation operation when selecting
more than one NIC

used to guarantee a fair selection of NICs. Finally the mes-
sage is striped, if possible, and sent over the selected set of
NICs. A visual representation of the algorithm is depicted in
Figure 1.

3.2. NIC Process

This process, shown in Algorithm 3 and Table 1, runs on
the NIC and handles the requests issued by local and remote
processors. As in the local-dynamic algorithm, we use a data
structure (NStatus) containing the status of each NIC in a
given node. In this case the status, which is only updated by
the NICs, can be one of the following:

e FREE - the NIC is available.

o RESERVED - the NIC is reserved by a local requester,
while trying to allocate the destination NIC.

e RECEIVING - the NIC is receiving a message.

o RECEIVING and Out_RTS - the NIC is receiving a
message and has an outstanding RTS message.

e SENDING - the NIC is sending a message.

When a remote RTS is received and the NIC is free, the NIC
is assigned to the requester and a CTS is issued. The re-
quester can either use the reserved path to send a message
or abort it. If the NIC is not free, a NACK is sent to the
requester.

With regard to the local requests, if alocal RTS is received
and the NIC is free, it is assigned to the local requester and
a remote RTS is sent to the destination NIC. If a CTS is re-
ceived from the remote NIC (the path has been granted), a



[ Event\Status I Free Receiving [ Sending [ Reserved [ Receiving & Out_RTS |
Local RTS Remote RTS Local NACK Local NACK Local NACK Local NACK
Reserved Receiving Sending Reserved Receiving & Out_RTS
Local ACK Remote ACK Remote ACK
Free Reserved
Local ABORT Remote ABORT
Free
Remote RTS Remote CTS Remote NACK Remote NACK - Remote NACK
Receiving Receiving Sending Reserved/Receiving & Out_RTS | Receiving & Out_RTS
Remote ABORT - -
Free Reserved
Remote CTS Local CTS ABORT & Local NACK Local CTS
Sending Receiving Sending
Remote ACK =
Free
Remote NACK Local NACK Local NACK Local NACK Local NACK Local NACK
Free Receiving Sending Free Receiving

Table 1. : Dynamic allocation - NIC process state table. The first row in each cell represents the message(s) to be sent and the second
row represents the new state.

No Path Reserved

Algorithm 3 : Dynamic Allocation (NIC process)

RTS, @ NAC @
RTS NACK
P —
RTS NACK

Procedure Dynamic_Allocation_NIC
begin
(@) NStatus[i] < FREE
counter 4 0 {for deadlock avoidance}

while TRUE { repeat forever }
case event of
local RTS:
if (NStatus[i]==FREE) then
NStatus[i] 4 RESERVED
send RTS to remote node
else
send NACK to local process

Path Reserved

crs @ A
cTs
—_ - —_

remote_CTS:
if ((NStatus[i]==RESERVED) OR (NStatus[i]==FREE)) then
NStatus[i] < SENDING
send CTS to local process
else if (NStatus[i]==RECEIVING) then
send NACK to local process
send ABORT to remote node

(b)

Figure 2. Deadlock example

remote_RTS:

if (NStatus[i]==FREE) then
NStatus[i] <= RECEIVING
send CTS to remote requester

else if (NStatus[i]==RESERVED) then
call deadlock_avoidance ()

else
send NACK to remote requester

Event\Status || Reserved & Deadlock

Send: Remote NACK; c=c-1
Reserved
Send: Remote CTS; c=c+1
Receiving & Out_RTS

Local Winner

Remote Winner local_ACK:

if (NStatus[i]==RECEIVING) then
NStatus[i] <4 FREE

else if (NStatus[i]==RECEIVING AND Outstanding_RTS) then
NStatus[i] + RESERVED

send ACK to remote requester

Table 2. : Deadlock avoidance state table
remote_ACK:

if (NStatus([i]==SENDING) then
NStatus[i] 4 FREE

local ACK is sent to the local requester that decides whether
to use the reserved path (sending a message) or to dismiss it
(sending an ABORT). That depends on the applied striping
ratio as stated in 3.1.

This procedure can deadlock if a cyclic dependency is es-
tablished between different NICs. As an example, let us sup-
pose that each NIC in Figure 2(a) sends a request to another
NIC so that a cycle of dependencies is generated. In this
scenario, each NIC receives a request while having an out-
going request pending. Consequently, using the algorithm
described above, every NIC sends a NACK (the NICs are

remote_NACK:
if (NStatus[i]==RESERVED) then
Nstatus[i] +4— FREE
send NACK to local process
else
send NACK to local process

local ABORT:
if (NStatus[i]=SENDING) then
NStatus[i] <4 FREE
send ABORT to remote requester

remote_ABORT:
if (NStatus[i]==RECEIVING AND Outstanding_RTS) then
NStatus[i] <4 RESERVED
else if (NStatus(i]=RECEIVING) then
NStatus[i] 4 FREE

busy as they have outgoing pending requests) and then all
three NICs retry the connection. This leads to a deadlock or
livelock if no other mechanism is implemented.



Algorithm 4 : Deadlock avoidance procedure

Algorithm 5 Hybrid allocation (PE process)

Procedure deadlock_avoidance
begin
if ((local_counter>remote_counter) OR
((local_counter=remote_counter) AND
(local_node_id>remote_node_id))) then { local re-
quest receives priority: }
counter +4— counter - 1
send NACK to remote requester
NStatus[i] <= RESERVED
else { remote receives priority }
counter +4— counter + 1
send CTS to remote requester
NStatus[i] <= RECEIVING & OUTSTANDING_RTS

In order to deal with this problem, a deadlock-avoidance
mechanism has been developed and included in Algorithm 4.
For the sake of clarity, this mechanism is shown in a separate
procedure (Algorithm 4 and Table 2). This priority-based al-
gorithm is run by each NIC whenever a deadlock is possible,
which is every time an incoming request is received while
an outgoing request is pending. At initialization time, every
NIC is assigned a default priority level. Each time a po-
tential deadlock is detected the priorities of the remote NIC
(incoming request) and the local NIC (outgoing request) are
compared. The request with lower priority is aborted. If the
priorities are identical, the identifiers of the local and remote
node are used instead. Finally, in order to ensure fairness,
the local priority is updated in the following way: if the local
request wins, the local priority is decremented, otherwise it
is incremented.

An example is shown in Figure 2(b). In this example, the
potential deadlocked situation appears when each node sends
an outgoing request, and while it is still pending, it receives
an incoming one. NIC-i and NIC-j have lower priority than
the source NIC of their incoming requests (NIC-k and NIC-i,
respectively), so they send a CTS to the requester NICs. On
the other hand, NIC-k has a higher priority than its requester
NIC (NIC-j), so it sends it a NACK. Eventually, every NIC
receives a reply. NIC-i receives a CTS and rejects it since it
has granted a connection to the higher priority NIC-k. NIC-j
receives a NACK for its request and ignores it since it has
been previously granted a path to NIC-i. NIC-k receives a
CTS which grants it the path for the requested sending. Fi-
nally, NIC-j receives an ABORT from NIC-i and becomes
free again. NIC priorities are updated as stated above, NIC-i
and NIC-j increment their priorities, and NIC-k decrements
its one. All the possible states and transitions are depicted in
Tables 1 and 2.

3.3. Hybrid algorithm

The rail reservation protocol employed by the dynamic
algorithm incurs an overhead for every message send. For
short messages, this overhead could become significant,
compared with the time it takes to send the message. We
therefore implemented a third, hybrid approach, shown in
Algorithm 5 . On the NIC side, an incoming short message
is always accepted even if it causes bidirectional traffic on

Procedure Hybrid_Allocation_PE

Input: message (M), destination node (dest), striping ra-
tio (str_r)
begin
if |M| < SHORT_MESSAGE_LENGTH then
F 4+ {n|Nstatus(n]=FREE}
select sE€F using round-robin
send M to dest wusing NIC s
else
call Dynamic_allocation_PE (M, dest, str_r)
end

{ Set of free NICs }

the bus for a short time. Note that a short message is never
striped, since the associated overhead of striping is not jus-
tified in this case. Rather, it is sent on a single rail which is
chosen in a round-robin fashion to ensure fairness.

The threshold used by the algorithm to distinguish be-
tween long and short messages is an important parameter.
This value has to be carefully selected to provide the best
performance. If the value is too small, it could cause the
dynamic algorithm to be applied to message sizes for which
striping and guaranteed unidirectional bus traffic would not
be effective. If too large, the allocation policy tends to be-
have like the basic algorithm. Several experiments have been
carried out in order to analyze the influence of this parame-
ter on network performance and determine its optimal value,
and the results are shown in Section 5.

4. Experimental Framework

This section offers details on our simulation platform, the
workloads that were simulated, and the metrics of interest.

4.1. Simulation model

In the experimental evaluation, we focus our attention on
a family of fat-tree interconnection networks, ranging from
32 to 128 SMPs, with four processors per SMP. The simula-
tion model tries to capture the most important characteristics
of the QsNet at the granularity of the clock cycle. The simu-
lator models wormhole flow-control, with two virtual chan-
nels on each physical channel. The input buffers on each
virtual channel can contain up to 128 flits [2], each consist-
ing of two bytes. A flit can be transmitted over a physical
channel in a single clock cycle, while a packet can be routed
through an Elite switch in six clock cycles.

The simulator also models a thread processor in the NIC,
which can process incoming control and data packets and
can send a reply in a few hundred clock cycles. Another im-
portant characteristic is the unidirectionality of the I/O bus,
which can transmit data in one direction at a time. We also
assume that the bus bandwidth is equalized with the external
network bandwidth (an optimistic set of assumptions, given
the current state of the art).

This model is evaluated in the SMART (Simulator of
Multiprocessor ARchitectures and Topologies) environment



[6]. Implemented in C++, SMART is an object-oriented,
discrete-event simulation tool for evaluating parallel archi-
tectures and high performance interconnection networks.

4.2. Communication patterns

In our model each process generates packets indepen-
dently, using three random variables:

e the message size, which is exponentially distributed
with a given mean value,

e the inter-arrival time, also exponentially distributed
around a given mean value,

e and the destinations, which are randomly chosen with
equal probability between the processes.

We consider a set of communication algorithms, including
a baseline basic algorithm, and the dynamic algorithms de-
scribed in Sections 2, 3. The basic algorithm does not use
any protocol; whenever a node needs to send a message, it
sends it on one rail, choosing it in round-robin fashion. This
base case can serve to illustrate the effects of both the over-
head of other protocols and the penalties of bidirectional traf-
fic.

4.3. Metrics

The performance of an interconnection network under dy-
namic load is usually assessed by two quantitative parame-
ters, the accepted bandwidth, or throughput, and the latency.
Accepted bandwidth is defined as the sustained data deliv-
ery rate given some offered bandwidth at the network input.
Two important characteristics are the saturation point and the
sustained rate after saturation. Saturation is defined as the
minimum offered bandwidth where the accepted bandwidth
is lower than the global packet creation rate at the source
nodes. It is worth noting that, before saturation, offered and
accepted bandwidth are the same. The behavior above satu-
ration is important because the network and/or the allocation
algorithms can become unstable, leading to a sharp perfor-
mance degradation. We usually expect the accepted band-
width to remain stable after saturation, for example in the
presence of burst-mode applications that require peak per-
formance for a short period of time [3].

The experimental results of each traffic are presented us-
ing two graphs, one to display the accepted bandwidth and
the other to display the network latency. In both graphs, the
x-axis corresponds to the offered bandwidth normalized with
the unidirectional bandwidth of the links connecting the pro-
cessing nodes to the network switches. This makes the anal-
ysis independent of the link bandwidth and the flit size.

We report the latency in cycles rather than absolute time,
in order to make our analysis insensitive to technological
changes. Given that the I/O bus in the network interface
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can only allow unidirectional traffic, the maximum achiev-
able throughput under uniform traffic is only 50% of the
nominal injection bandwidth. The intuition behind this limit
is the following: let us consider for example a cluster with
only two SMPs and single network rail; under uniform traf-
fic, only one SMP can send to another at any given time, due
to the unidirectionality constraint in the endpoints.

5. Experimental Results

In this section, we try to provide insight into some impor-
tant aspects of the multirail allocation algorithms. We first
study the impact of network load, message size, and striping
on the basic and dynamic algorithms. Then, we analyze how
the algorithms perform when the number of nodes and the
number of rails are scaled up, and we integrate these results
in the evaluation of the hybrid algorithm.

5.1. Bandwidth and latency

The following results were obtained by simulating 128
SMPs (nodes), four rails and four PEs per SMP. Figures
3-6 compare the accepted bandwidth and network latency
as a function of the offered bandwidth. Two different val-
ues for the average packet size are compared in the exper-
iments. These graphs show the performance for the basic,
local-dynamic and dynamic algorithms. Given that the mes-
sage latency goes to infinity after the saturation point, we
only report the latency when the network is not saturated.

We can see that the basic algorithm performs relatively
well on short messages, but its performance decreases as the
message size increases. The dynamic algorithm behaves in
the opposite manner, performing poorly on short messages,
and increasing in performance as the message size grows.
The local-dynamic algorithm exhibits similar performance
to the basic algorithm, performing better than the basic for
larger messages and worse for shorter messages. This sug-
gests that we may benefit from using the hybrid approach,
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where shorter messages are sent using the basic protocol and
longer messages using the dynamic protocol.

5.2. Effect of striping

Figures 3-6 also depict the effect of message striping
whenever possible in the dynamic and local dynamic ap-
proaches. Figure 7 shows the latency vs. the average mes-
sage size for an offered load of 0.15. We used an aggressive
approach for striping, using only full striping and no inter-
mediate values. Results not shown here indicate that it is
always best to stripe as much as possible.

Striping does not seem to have a significant effect on any
protocol’s accepted bandwidth. However, it does reduce the
latency of sending messages, especially as the message size
grows (which makes the striping overhead less significant)
and load diminishes (which allows a higher effective strip-
ing ratio). It can be seen, for example, that for an average
message size of 64KB and a load of 5%, striping reduces
the dynamic and local-dynamic latencies by approximately
65% and 72% respectively. The better local-dynamic results
arises from the lower overhead associated with sending a
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Figure 7. Latency vs. message size with an offered load
of 0.15. The latency for messages shorter than 8KB is not
shown for the dynamic allocation because the network is sat-
urated with this load.

message (there is no need to reserve the paths), combined
with the low load that offers a high probability that rails will
be free.

From Figure 7 it can be seen that for short average mes-
sage sizes (below 16KB) the best results are obtained with
the local-dynamic allocation algorithm with full striping. For
longer messages the dynamic allocation algorithm with full
striping provides the best performance.

5.3. Node scalability

The effect of increasing the number of nodes on the max-
imum accepted load is shown in Figure 8 for an average
message size of 32KB. The dynamic algorithm outperforms
the basic algorithm by 36% for 32 nodes and 29% for 128
nodes. These algorithms scale reasonably well, with a loss
of 7%-12% in maximum accepted bandwidth when the net-
work size is doubled from 64 to 128 nodes.
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5.4. Rail scalability

In order to understand the behavior of the algorithms as a
function of the number of rails, we tested configurations of
one, two, and four rails with 32 nodes, each having four PEs,
and using average message sizes in the range 1KB-256KB.
The results are depicted in Figure 9.

For the dynamic allocation we show full striping only,
since the maximum bandwidth is hardly affected by striping
(due to the low probability of reserving more than one rail
for higher injection rates). Also, we increase the offered load
linearly with the number of rails, so that the resource require-
ment matches the increase in available resources, thus giving
a clearer view of the network’s scalability. Again, we see the
dynamic algorithm’s performance increasing with message
size, for any number of rails, while the basic algorithm’s per-
formance decreases, this result supporting the idea of a hy-
brid approach. More importantly, we see that the maximum
bandwidth obtained using the dynamic algorithm is almost
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Figure 10. Maximum accepted load vs. no. of rails for 32
nodes and average message size of 32KB
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Figure 11. Scalability analysis for latency with injection
load of 0.15 and average message size of 32KB

constant for any number of rails (and even improves when
adding more rails, for messages larger than 16KB). This can
be clearly seen in Figure 10 which shows the maximum ac-
cepted load vs. number of rails (up to seven) for an average
message size of 32KB. This graph confirms that the dynamic
allocation algorithm slightly improves its bandwidth when
the number of rails is increased. On the other hand, the ba-
sic algorithm degrades significantly when compared with the
single-rail configuration (a 40% bandwidth reduction in the
maximum accepted load with seven rails when compared to
the single-rail topology). The reason for this is that as the
number of rails grows, so does the average sending load of
each processor (the number of processors is fixed). The basic
approach uses a round-robin rail selection method, ignoring
the state of the NICs. It therefore becomes more probable
for the processors to self synchronize the choice of the rails,
leading to a performance loss.

In Figure 11 we can observe the effect of the number of
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Figure 12. Saturation point as a function of message size

rails on latency. The data were obtained from experiments
with an injection load of 0.15, using 32 nodes (four PEs per
node) and an average message size of 32KB. The basic algo-
rithm’s latency actually increases with the number of rails,
due to the inefficiency of the round-robin method, as dis-
cussed above. This is confirmed in the simulation traces that
show the injection latency to be the source of the latency
growth. As expected, striping reduces the latency when the
number of rails is increased for the dynamic algorithms, with
an advantage to the local-dynamic algorithm. It is interesting
to note that even with no striping, both dynamic algorithms
scale well with the number of rails.

5.5. Effect of message size on saturation point

Another important feature of the allocation algorithms is
the saturation point for different message sizes. The experi-
mental data set that was used to obtain the saturation points
for each message size is the same as in 5.1. The results are
shown in Figure 12.

We can see from Figure 12 that the dynamic algorithm’s
saturation point increases with the message size, while the
basic and local-dynamic algorithms retain a near-constant
saturation point. These results suggest that the dynamic al-
gorithm scales better with the message size than do the other
two. One possible explanation for this is that the dynamic
algorithm ensures that no conflicts will occur on any rail.
These conflicts are more likely as the message size increases
and rails are unavailable for longer periods of time.

5.6. Hybrid approach

The results observed in 5.1 and 5.5 indicate that the ba-
sic algorithm performs better on shorter messages, while
the dynamic algorithm performs better on longer mes-
sages. It may therefore be useful to try a hybrid ap-
proach, that uses the basic algorithm for messages shorter
than a given threshold, and the dynamic algorithm other-
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Figure 13. Hybrid bandwidth without striping

wise. (This threshold is implemented in Algorithm 5 as
SHORT_MESSAGE_LENGTH).

Several short message size thresholds were tested and
compared in the dynamic and basic algorithms. We used
128 nodes of four PEs each with four rails, an average mes-
sage size of 32KB, and short message size thresholds of 1,
4, 8, 16, and 32 KB. Figures 13-16 show the bandwidth and
latency obtained with and without striping.

It can be clearly seen from these results that the hybrid
approach outperforms both the dynamic and the basic ap-
proaches in terms of bandwidth for almost all the thresholds
chosen, regardless of striping. With the exception that at a
threshold of 32KB, hybrid performs somewhat worse than
dynamic for low injection rates when striping is used, hy-
brid otherwise outperforms both the dynamic and basic ap-
proaches for latency, regardless of striping, similar to the
observation for latency. This may stem from the fact that
messages shorter than the threshold are sent with no strip-
ing (as in basic), so the latency for relatively large messages
can be lower if striping is used (Figure 16). On the other
hand, when no striping is used, the dynamic algorithm per-
forms worse than the hybrid methods for low injection rates,
and almost the same or better for higher injection rates. This
can be explained by the fact that the dynamic approach has
a larger saturation point for average message size of 32KB
than the basic approach (see 5.5), and the hybrid approach
uses the basic algorithm for short message sizes.

6. Conclusions

One of the novel methods that can be used to increase
communication performance and enhance fault tolerance in
a cluster of workstations is to use parallel independent net-
works (rails). In this paper, we explored various aspects of
multirail interconnects and presented several rail allocation
algorithms for efficient usage of the rails. We have shown
that the dynamic algorithm can perform relatively well in
terms of bandwidth for sufficiently large message sizes, and
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can handle a relatively high load before saturating. Further-
more, it has been shown that this algorithm is scalable due
to its adaptive nature - increasing the number of rails from
one to seven increases the maximum relative bandwidth in
a linear manner. Superlinearity is achieved for messages
larger than 8KB. Furthermore, the bandwidth increases as
the message size increases, unlike the case for other ap-
proaches. Incorporating protocol-free short message han-
dling was shown to increase the maximum bandwidth by
up to 7.5% more than the pure dynamic algorithm, and up
to 36.6% and 48.7% more than the basic and local-dynamic
approaches respectively. We have also shown that striping a
message over several rails can be used to obtain a significant
reduction of latency in some cases.
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