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SUMMARY & CONCLUSIONS 

Analysts are sometimes asked to make frequency estimates for specific accidents 

in which the accident frequency is determined primarily by safety controls. Under these 

conditions, frequency estimates use considerable expert belief in determining how the 

controls affect the accident frequency. To evaluate and document beliefs about control 

effectiveness, we have modified a tradj tional Bayesian approach by using approximate 

reasoning (AR)l to develop prior distributions. Our method produces accident 

frequency estimates that separately express the probabilistic results produced in 

Bayesian analysis and possibilistic results that reflect uncertainty about the prior 

estimates. Based on our experience using traditional methods, we feel that the AR 

approach better documents beliefs about the effectiveness of controls than if the beliefs 

are buried in Bayesian prior distributions. We have performed numerous expert 

elicitations in which probabilistic information was sought from subject matter experts 

not trained In probability. We find it rnuch easier to elicit the linguistic variables and 

fuzzy set membership values used in AR than to obtain the probability distributions 
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used in prior distributions directly from these experts because it better captures their 

beliefs and better expresses their uncertainties. 

1. INTRODUCTION 

In this paper, we present a method for generating Bayesian prior distributions of 

a Poisson parameter using approximate reasoning (AR). In this method, the uncertainty 

introduced in generating the prior distribution is explicitly represented by fuzzy set 

memberships interpreted as a possibilistic measure of belief? This method was 

developed specifically for estimating accident frequencies for military weapon systems 

in which great reliance is placed on controls to reduce the accident frequency from 

relatively high to acceptable levels. This approach is useful when there is a lack of 

"hard" data, but there is a wealth of anecdotal or experiential knowledge. Such a 

situation arises when experience on a specific weapon system is limited, but more 

general weapon system experience with safety controls is applicable. 

This problem can be approached probabilistically using Bayesian statistical 

analysis? To review this concept briefly, subjective estimates of the Poisson parameter 

called prior distributions are "updated " using available operating data to produce an 

updated estimate of the parameter. When there is; little operating experience or useful 

surrogate data, the prior distribution can dominate the results. Such prior distributions 

often are generated using expert judgement that is difficult to document, and the 

original justification may be lost. 

'For a good survey of this field see Ramon Lopez de Mantaras, Approximate Reasoning Models, Ellis 
Honvood Series in Artificial Lntelligence, Ellis Howrood LTD, 1990. 
'D. Dubois and H Prade, Possibility Theory, Plenum Press, '1988. 
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In the work reported here, we use Bayesian methods to include nonstatistical 

knowledge about the effect of safety controls on accident frequency. An important 

innovation is the use of the mathematical tools of AR to capture the knowledge base 

and reasoning used by experts in constructing prior distributions. This approach 

provides a rigorous, reproducible, and traceable basis for the prior distributions. It also 

provides a means for explicitly indicating uncertainty about the prior distribution using 

possibility as an uncertainty measure. In a typical Bayesian analysis, the uncertainty 

about the prior distribution is folded into the distribution itself, a practice that tends to 

obscure the issues involved in generating the prior distribution. In our method, this 

source of uncertainty is treated separately and differently from probabilistic uncertainty 

by interpreting fuzzy set memberships a as a measure of the expert's uncertainty in 

generating prior distributions. 

A schematic overview of our approach is shown in Fig. 1. In this paper, we focus 

mainly on evaluating controls, generating prior distributions, and generating 

occurrence probability estimates. The logical decomposition of an event into causal 

sequences is a critical aspect of our analysis because it allows experts to consider 

individual sequences leading to an accident one at a time. This simplification is 

necessary in identifying the controls used to prevent an accident and in determining 

their effectiveness. We do not discuss this important part of the analysis here but refer 

the reader to other discussion of this s~b jec t .~  We also do not discuss Bayesian analysis 

3H. F. Martz and R. A. Waller, Bayesian Reliability Analysis, John Wiley and Sons, 1982. 
5. W. Eisenhawer and T. F. Bott, "Application of Approximate Reasoning to Safety Analysis, "lp 
International System Safety Conference, System Safety Society, August,1999, Orlando, Florida, Los Alamos 
National Laboratory report LA-UR-99-1932. 
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in detail because this technique is familiar to practitioners of reliability and probabilistic 

safety analysis. We will spend the majority of this paper describing the AR evaluation 

of control effectiveness and translating this evaluation into the h prior distributions. We 

also will show how the possibilistic measures of uncertainty introduced by the AR 

analysis are propagated to the occurrence probability estimates. These measures of 

uncertainty capture the expert's beliefs about the effectiveness of the controls used to 

reduce accident frequency. 

I I 

I 
I 

I 
I 

I 
1 .  

I 

Process Tree 

I 
r. _...."._ 

..."̂ ..I..̂  I 

Fig. 1. Overview of the Approach. 

2. ILLUSTRATIVE EXAMPLE DEFINITION 

The technique shown in this paper is nearly impossible to follow without an 

example. The actual problems for which we developed and applied this technique are 

classified, sc) we are unable to discuss (either the accident sequences or the numerical 

~~ 
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results in an open forum. However, the example that we use to illustrate our method 

captures the important characteristics of the actual applications. 

We are interested in estimating the probability of occurrence of a particular 

accident state for a weapon system during a time period z. We assume that the 

occurrence can result from any of four independent sequences of events. Each sequence 

n can be modeled as a Poisson process with a constant occurrence rate A,. For 

simplicity, we assume that no occurrences of the event have happened but presume 

considerable qualitative knowledge about the controls used to reduce the frequencies of 

the various sequences leading to the accident conditions. 

Controls for the four accident sequences arc? summarized and evaluated in 

Table 1. In an actual application, the controls would be identified and evaluated by 

weapon system experts. These evaluations use an agreed-upon set of linguistic 

descriptors for control effectiveness, in this case {Highly, Quite, Partially, Ineffective]. 

This set of descriptors is called a Universe of Discourse (UOD). These descriptors are 

defined in Table 2. 
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Table 1 

Sequence C o n t r x  
1.1 

2.1 

3.1 
3.F- 

4 None 

Description of Controls for Illustrative Example 

Experts Beliefs conceming the Effectiveness of Controls 
Highly effective with high confidence 
Favor Highly effective but could only be Quite effective 
Favor Hi ivy  effectivcbut could only be Quite effective 
NO preferKce for Quite or Partially 
Initiating event is ligkziing strike which has frequency of 

-- 

-- 

Effectiveness Descriptor 

Highly Effective 
Quite Effective 

- 

about 1 x 10""per year 
I - 

I 

Definition 

The control virtually eliminates the occurrence of the sequence 
The control greatly reduces the occurrence rate of the sequence 
-I 

Table 2 

Definition of Control Effectiveness Linguistics 

(ctive -'pThecontrolzmewhat reduces the occurrence rate of the 

not afgct the occurrence rate of the sequence 

3. USING THE CONTROLS TO ESTIMATE A PRIOR DISTRIBUTIONS 

The evaluation of the effectiveness of controls forms the basis of our estimation 

of the h priors for a Bayesian analysis. We are going to treat these effectiveness 

descriptors as linguistic variables and fuzzy subsets of the UOD. Our next step is to 

translate the qualitative descriptions of Table 1 into fuzzy set membership vectors. This 

translation is called set assignment and introduces set assignment uncertainty. A fuzzy 

set membership vector shows the set membership values for each of the fuzzy subsets 

for control effectiveness in the order: {Highly, Quite, Partially, Ineffective). For 

example, a vector representing membership of .5 in Highly and .5 in Quite, with no 
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membership in Partially or Ineffective would be {.5,.5,0,0). The mapping from the 

qualitative descriptions to the membership vectors relies on the judgment of the analyst, 

Set Assignment 
Value 

but we have found it helpful to provide the set of pidelines shown in Table 3. 

Complementary 
Set Assignment 

Table 3 

Set Assignment Membership Value Guidelines 

I 

Relief that value is exclusively in one set 
Strong belief that value is in one 

1 
0.9 

that another set may also be appropriate 
Equal belief that the value is in any of n sets 
One set is favored, but another has significant 
support as well 

1 /n 
0.7 

--- - 

Belief Description 

Values 
0 

0.1 

l / n  for each 
0.3 

Following these guidelines, the qualitative descriptions of Table 1 translate into 

the fuzzy set membership vectors shown in Table 4. These fuzzy set membership 

values will be interpreted as expressing the expert’s belief in which prior estimates for h 

to use for each sequence. The greater the fuzzy set membership, the greater the expert’s 

belief that a given effectiveness is appropriate for a set of controls. 
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Table 4 
Control Effectiveness Fuzzy Set Membership Vectors 

In our example, two controls, 3.1 and 3.2, are used to reduce the accident 

frequency for sequence 3. To apply our method in such a situation, the analysts 

evaluate the aggregate effectiveness of the control suite using a rule base? An example 

of such a rule base is shown in Table 5. This rule base accepts control effectiveness 

descriptors for two controls and autputs the effectiveness of the combination using the 

same linguistic descriptors as the input. The rule base shown here is used commonly in 

our analysis and represents ii slight bias toward conservatism in combining controls. 

This bias is seen in the result for two partially effective controls. Two partially effective 

controls result in a partially effective aggregate control. This rule prevents stringing 

together a series of mediocre controls and claiming that the result is Highly effective. 

5T. F. Bott, ”An Approach to Evaluating the Effectiveness of Safety Controls,” Los Alamos National 
Laboratory report LA-UR-98-4953 (1 998). 
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Table 5 

Rule Base for Combining Reinforcing Controls 
-- 

Control 3.1 Effectiveness 

The operation of this rule base is; illustrated by evaluating the effectiveness of 

controls 3.1 and 3.2. Control 3.1 has an effectiveness described by the set membership 

vector {0.7,0.3,0,0} and 3.2 has {0,0.5,0.5,0} . Recall that the first position in the vector is 

for Highly, the second is for Quite , the third is for Partially, and the fourth is for 

Ineffective. The Cartesian product of the membership vectors for controls 3.1 and 3.2 

generates all the combinations of control effectiveness that have non-zero memberships 

in both controls. The pairs of effectiveness descriptors that we have to consider are 

(Highly,Quite), (Highly,Partially), (Quite,Partially), and (Quite,Quite). Our notation is 

that the first value is from control 3.1, and the second is from 3.2. As an example, 

according to the rule base Highly and Quite effective controls combine to produce a 

Highly effective aggregate. The inferences of interest in our example are shown by 

highlighting the appropriate items in the rule base. Note that three of the pairs result in 

an output of Highly. 

The control effectiveness descriptors are fiizzy sets and have memberships 

associated with them. We need some way to generate the membership value of the 

output effectiveness descriptors from the .membership values of the inputs. The 
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membership value for the resultant arising from a pair of inputs is found by taking the 

minimum of the memberships values for the pair. This works fine when there is only 

one pair of inputs that results in a given output. However, in our case, there are three 

pairs of input that lead to the same output, namely, Highly. In this case, the 

membership of the output is found using the Max-Min formulan6 This formula is 

succinctly stated as 

In this formula, K, and CT, are elements n and m of fuzzy input membership 

vectors K and CT and 3 is a particular element output by the rule. To find the 

membership for '3, one first finds the minimum membership in either K or CY for every 

pair that result in 3. The membership value of the resultant 3 is then the maximum 

value over all pairs of the inputs K and CY that result in %. 

An example using the rule base of 'Table 5 and the membership values for 

controls 3.1 and 3.2 is shown in Table 6. Using the Max-Min formula, the resultant 

membership vector has values { .5,.3,0,O}, indicating a stronger belief in Highly than in 

Quite and no belief in Partially or Ineffective. 

~~ 

9. J. Ross, Fuzzy Logic with Engineering Applicut,ions, McGrawHill, New York, 1995. 
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Table 6 

Effectiveness Membership Values for Combined Controls 

- 
Control 3.1 EffFctiveness 

-- 

The final complication in our example is sequence 4. In this sequence, there are 

no controls, but the sequence frequency has a relatively low inherent frequency. In 

some sequences, constraints or other factors not normally considered controls may 

dictate the frequency of the sequence. 'We often encounter sequences whose frequencies 

are dictated primarily by the occurrence of external initiating events such as lightning. 

The effect of the relative rarity of lightning strikes on the system may be treated as if it 

were a control, and can even be combined with other controls. As we shall demonstrate 

later, the sequence 4 inherent frequency of about lo4 per year corresponds to a control 

with that has full membership in Quite effective. 
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4. BAYES PRIOR ESTIMATE FOR .POISSON PARAMETERS 

As stated above, we have assumed that the occurrence of each sequence can be 

described using a Poisson process with the occurrence times distributed exponentially 

according to a Poisson parameter h, for sequence n. To use a Bayesian estimation 

process, we make an initial or prior estimate for each h using existing knowledge about 

each sequence and then modify that prior estimate using occurrence data derived from 

operational experience. In this example, we assume that we can assign h to intervals. 

The prior estimates are assumed to be uniform distributions over these intervals. 

Although the assumption of a uniform. distribution is not necessary to use this AR 

approach, we feel that such a choice generally will be appropriate to the level of 

knowledge we are assuming in using this method. If enough knowledge exists to make 

more detailed prior estimates, then the AR approach probably does not use all the 

available information efficiently. 

Using a uniform prior distribution for h on the interval[h,,h,] and no occurrences 

during a time T, a Bayes formula produ.ces a posterior distribution for h given by 

Statistics for h can be generated from this distribution. For example, the mean h for a 

given distribution g is given by 
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Similarly, the y probability value for h is given by 

r 2 
(3) 

Although Eq. (3) formally represents a probability intend for A, we will refer to 

it as the yth percentile. These formulae i3re applicable to each sequence leading to the 

accident conditions. The formulae will depend only on which h interval is chosen as a 

prior. 

5. BAYES PRIOR ESTIMATES VIEWED AS FUZZY SET ASSIGNMENTS 

To translate control effectiveness into h intervals, we define a set of intervals on 

the real line that correspond to the definitions for each effectiveness descriptor in Table 

2. For simplicity, we wish to have a one-to-one mapping between h intervals and 

effectiveness descriptors. Thus, each effectiveness will map into a single h interval. We 

typically base our definitions on the probability of one or more accident events 

occurring during a time period t given a particular A. This probability is found from 

P[S  2 1 in t ]  = I-e-" . (4) 

We use the system design lifetime for the value +-in our example about 20 yr. In the 

systems we have examined, most: accident sequences would be expected to have a 
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relatively high probability of occurrence during the design lifetime in the absence of 

controls. To capture this, we define the lower bound of our highest hestimate interval, 

I,, at about .03 so that the probability of occurrence in the design life is P = 0.5. This 

definition also fixes the upper bound of our second highest interval, I,. A highly 

effective control "virtually eliminates" ,an accident sequence. We consider an accident 

sequence as being virtually eliminated if the probability of occurrence during design 

lifetime is less than about 

about 3 x 10e5/yr. We choose the upper limits on the remaining interval, I,, 

corresponding to a quite effective control as .003,2 orders of magnitude higher than the 

I, upper bound and an order of magnitude below the I, upper bound. The results of the 

analysis are insensitive to the lower limit on the intervals I, to I, as long as the interval 

covers a decade or more. Therefore, we typically choose the lower bound for the lowest 

interval as lo4. This set of intervals and the mapping from the effectiveness descriptors 

to the intervals is shown in Fig. 2 . 

This seta the upper bound of our lowest interval I, at 
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I---- Control Effectiveness 

106 3x105 3 ~ 1 0 ~  3x10, 1 .o 
Poisson Parameter h ( per year) 

Fig. 2. Mapping from Control Effectiveness Fuzzy Subsets to h Intervals. 

This mapping emulates how an expert perceives control effectiveness affecting 

an initial estimate of h in the interval I,. A control that is ineffective leaves h in the I4 

interval. A partially effective control moves h to Is, Quite effective moves it to I, and 

Highly effective moves it to I,. 

The one-to-one mapping between control effectiveness and h intervals means 

that the control effectiveness fuzzy mernbership values can be assigned one-to-one to h 

intervals. We interpret these fuzzy set membership assignments for a h interval as 

indicating our belief that a given h interval is the appropriate one to represent the 

accident-sequence frequency,when the controls are taken into account. 
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Recall that each of the intervals I, through Ie is a uniform distribution for h and 

can be used in Eq. (1) to generate a posterior h distribution. Each of these h 

distributions can be used to generate h statistics, which we then use to generate 

probabilities of occurrence using Eq. (4). In Table 7, we summarize the mean h, 90* 

percentile h, and the probabilities of occurrence for a 20-yr design lifetime that are 

generated by the different h intervals. 

Table 7 

Mean and 90th Percentile Values for h 

Prior h Interval 

I, [I x i o6 ,3  x 10521 
I, 13 x 11 

To illustrate, consider sequence 2 of our example. The control effectiveness 

membership vector is {.7,.3,0,0). We interpret this to mean that we have a relative belief 

value .7 that h, is in I,, .3 that it is in I,, aiid 0 that it is in I, or I,. This means that we have 

the relative belief that mean h4 is 1.5 x lo5 and PSk1 is 3 x lo4. Similarly, we have a belief 

value of 0.3 that the mean h4 is 1.5 x lo3 and I?,, is 3 x lo-’. 

The result then carries both the mwertainty associated with the h prior estimate 

(represented by a uniform distribution over an interval) and uncertainty on assigning a 

h prior interval by means of control effectiveness evaluation. The former uncertainty is 

expressed by the g(h IO) distribution, and the latter is expressed by the fuzzy subset 

memberships (interpreted as belief) associated with the g(h 1 0) distribution. 
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6. INTERPRETING THE PROBABILITY OF OCCURRENCE RESULTS 

Some representative probability of occurrence results for our example are shown 

in Table 8. The upper bound uses the mean R from the posterior distribution generated 

by the highest h interval with non-zero set membership. The lower bound is the result 

of using the h posterior distribution generated by the lowest h interval with non-zero 

set membership. When only an upper bound is given, only one of the h intervals has 

non-zero set membership. The best estimate is found by: 

Sequence 1 
Sequence 2 
Sequence 3 r- Control 3.2 only 

0 If one of the h set memberships is maximal use that A. 

or 

0 If the two largest h set memberships are tied ( typically both at .5) then 

use the geometric mean of the A’s given by 

.0003 .0003 
,0003 .03 .0003 
03 .24 .18 

-- 
-- I 

X,,, = (a,a2)”’ (7) 

In Table 5, sequence 2 exercises rule 0 and sequence 3 with control 3.2 only 

exercises rule 0. 

Table 8 

Representative Results for Individual Sequence Probabilities of Occurrence 

rpossibie Event I M e a x  Occurrence Probability Interval I Sequences l K K d - ‘ w  Bound I Best Estimate 
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The probability of one or more occurrences from any of n sequences is found 

from the formula 

This is easily and rapidly computed using a Monte Carlo or other sampling simulation. 

One potential drawback to this approach is the added complexity of the results. 

Our accident frequency estimates include both the Bayesian distribution and fuzzy set 

memberships interpreted as possibilities or beliefs. Potential users of safety results 

often wish to get a single, bottom-line answer, not a proliferation of uncertainty 

measures. We have addressed this by explaining the interaction of the beliefs and the 

statistics. For example, we describe the results of Table 8 as showing that we are quite 

certain that the probability of occurrence for sequence 2 is less than .03 and that the 

average is .0003 or less. This has mollified our sponsors to some extent, but we feel that 

better methods of communicating the results are needed. 
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Problem Definition 

Problem Attributes 
Accident can result from several causal sequences 
Frequency is dominated by Safety Controls 

Limited operating experience and surrogate data sources 
Event can be modeled as a Poisson Process 
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Definition of Contra 

Quite Effective 

Partially Effective 

Effectiveness Linguistics 
. .- . .  . 

The control greatly reduces de  occurrence rate of the sequence 

The control somewhat reduces the occurrence rate of the sequence 

Description of Controls for Illustrative Example F 
Sequence Controls Experts Beliefs concerning the Effectiveness of Controls 

Highly effective with high confidence 

Favor Highly effective but could only be Quite effective 

Favor Highly effective but could only be Quite effective 

No preference for Quite or Partially 

Initiating event is lightning strike which has frequency of about 

1 x l04pea year 



Belief that value is exclusively in one set 1 0 I 

weii 

0.1 

I Effective4 I 0 I 1 I 0 I 0 

I Equal belief that the value is in any of n sets 
One set is favored, but another has significant support as 

lh lhforeach 1 
0.7 0.3 1 



I Control 3.1 Effectiveness 





3x1W5 3x1W3 3x1W2 1 .o 

Poisson Parameter h ( per year) 



. .  . . 

-;lt 
P[S  2 1 in t ]  = 1-e 



14 [3 x lo", 11 

\ 
1 . 5 ~  10" 
1.4x 

1.ox 10-l 

3 10-2 2.7 10-~  

2.4 x 2.6 x lo-' 
8.6 x lo-' 1.9 x lo-' 





Summary and Conclusions 

Provides Separate Uncertainty Measure for Prior 
Distribution 

EfTicient Method fur Collecting Expert Judgement on 
Control Effectiveness 


