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SUMMARY & CONCLUSIONS

Analysts are sometimes asked to make frequency estimates for specific accidents
in which the accident frequency is determined primarily by safety controls. Under these
conditions, frequency estimates use considerable expert belief in determining how the
controls affect the accident frequency. To evaluate and document beliefs about control
effectiveness, we have modified a traditional Bayesian approach by using approximate
reasoning (AR)' to develop prior distributions. Our method produces accident
frequency estimates that separately express the probabilistic results produced in
Bayesian analysis and possibilistic results that reflect uncertainty about the prior
estimates. Based on our experience using traditional methods, we feel that the AR
approach better documents beliefs about the effectiveness of controls than if the beliefs
are buried in Bayesian prior distributions. We have performed numerous expert
elicitations in which probabilistic information was sought from subject matter experts
not trained in probability. We find it much easier to elicit the linguistic variables and

fuzzy set membership values used in AR than to obtain the probability distributions
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used in prior distributions directly from these experts because it better captures their

beliefs and better expresses their uncertainties.

1. INTRODUCTION

In this paper, we present a method for generating Bayesian prior distributions of
a Poisson parameter using approximate reasoning (AR). In this method, the uncertainty
introduced in generating the prior distribution is explicitly represented by fuzzy set
memberships interpreted as a possibilistic measure of belief. This method was
developed specifically for estimating accident frequencies for military weapon systems
in which great reliance is placed on controls to reduce the accident frequency from
relatively high to acceptable levels. This approach is useful when there is a laék of
“hard” data, but there is a wealth of anecdotal or experiential knowledge. Such a
situation arises when experience on a specific weapon system is limited, but more

general weapon system experience with safety controls is applicable.

This problem can be approached probabilistically using Bayesian statistical
analysis.®> To review this concept briefly, subjective estimates of the Poisson parameter
called prior distributions are “updated” using available operating data to produce an
updated estimate of the parameter. When there is little operating experience or useful
surrogate data, the prior distribution can domiﬁate the results. Such prior distributions
often are generated using expert judgement that is difficult to document, and the

original justification may be lost.

'For a good survey of this field see Ramon Lopez de Mantaras, Approximate Reasoning Models, Ellis
Horwood Series in Artificial Intelligence, Ellis Howrood LTD, 1990.
. ?D. Dubois and H Prade, Possibility Theory, Plenum Press, 1988.
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In the work reported here, we use Bayesian methods to include nonstatistical
knowledge about the effect of safety controls on accident frequency. An important
innovation is the use of the mathematical tools of AR to capture the knowledge base
and reasoning used by experts in‘const'ructing prior distributions. This approach
provides a rigorous, reproducible, and traceable basis for the prior distributions. It also
provides a means for explicitly indicating uncertainty about the prior distribution using
possibility as an uncerfainty measure. In a typical Bayesian analysis, the uncertainty
about the prior distribution is folded into the distribution itself, a practice that tends to
obscure the issues involved in generating the prior distribution. In our method, this
source of uncertainty is treated separately and differently from probabilistic uncertainty
by interpreting fuzzy set memberships a as a measure of the expert's uncertainty in

generating prior distributions.

A schematic overview of our approach is shown in Fig. 1. In this paper, we focus
mainly on evaluating controls, generating prior distributions, and generating
occurrence probability estimates. The logical decomposition of an event into causal
sequences is a critical aspect of our analysis because it allows experts to consider
individual sequences leading to an accident one at a time. This simplification is
nécessary in identifying the controls used to prevent an accident and in determining
their effectiveness. We do not discuss this important part of the analysis here but refer

the reader to other discussion of this subject.* We also do not discuss Bayesian analysis

°H. F. Martz and R. A. Waller, Bayesian Reliability Analysis, John Wiley and Sons, 1982.

‘S. W. Eisenhawer and T. F. Bott, “Application of Approximate Reasoning to Safety Analysis, ”17"‘
International System Safety Conference, System Safety Society, August,1999, Orlando, Florida, Los Alamos
National Laboratory report LA-UR-99-1932.
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in detail because this technique is familiar to practitioners of reliability and probabilistic
safety analysis. We will spend the majority of this paper describing the AR evaluation
of control effectiveness and translating this evaluation into the A prior distributions. We
also will show how the possibilistic measures of uncertainty introduced by the AR
analysis are propagated to the occurrence probability estimates. These measures of
uncertainty capture the expert’s beliefs about the effectiveness of the controls used to

reduce accident frequency.
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Fig. 1. Overview of the Approach.

2. ILLUSTRATIVE EXAMPLE DEFINITION
The technique shown in this paper is nearly impossible to follow without an
example. The actual problems for which we developed and applied this technique are

classified, so we are unable to discuss either the accident sequences or the numerical
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results in an open forum. However, the example that we use to illustrate our method

captures the important characteristics of the actual applications.

We are interested in estimating the .probability of occurrence of a particular
accident state for a weapon system during a time period 7. We assume that the
occurrence can result from any of four independent sequences of events. Each sequence
n can be modeled as a Poisson process with a constant occurrence rate A,. For
simplicity, we assume that no occurrences of the event have happened but presume
considerable qualitative knowledge about the controls used to reduce the frequencies of

the various sequences leading to the accident conditions.

Controls for the four accident sequences are summarized and evaluated in
Table 1. In an actual application, the controls would be identified and evaluated by
weapon system experts. These evaluations use an agreed-upon set of linguistic
descriptors for control effectiveness, in this casé {Highly, Quite, Partialiy, Ineffective}.
This set of descriptors is called a Universe of Discourse (UOD). These descriptors are

defined in Table 2.
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Table 1

Description of Controls for Illustrative Example

Sequence Controls | Experts Beliefs concerning the Effectiveness of Controls
1 1.1 Highly effective with high confidence
2 2.1 Favor Highly effective but could only be Quite effective
3 v 3.1 Favor Highly effective but could only be Quite effective
3.2 No preference for Quite or Partially
4 None Initiating event is lightning strike which has frequency of
about 1 x 10*per year

Table 2

" Definition of Control Effectiveness Linguistics

Effectiveness Descriptor Definition
Highly Effective The control virtually eliminates the occurrence of the sequence
Quite Effective The control greatly reduces the occurrence rate of the sequence
Partially Effective The control somewhat reduces the occurrence rate of the
sequence
Ineffective The contro} does not affect the occurrence rate of the sequence

3. USING THE CONTROLS TO ESTIMATE A PRIOR DISTRIBUTIONS

The evaluation of the effectiveness of controls forms the basis of our estimation
of the A priors for a Bayesian analysis. We are going to treat these effectiveness
descriptors as linguistic variables and fuzzy subsets of the UOD. Our next step is to
translate the qualitative descriptions of Table 1 into fuzzy set membership vectors. This
translation is called set assignment and introduces set assignment uncertainty. A fuzzy
set membership vector shows the set membership values for each of the fuzzy subsets
for control effectiveness in the order: {Highly, Quite, Partially, Ineffective}. For

example, a vector representing membership of .5 in Highly and .5 in Quite, with no
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membership in Partially or Ineffective would be {.5,.5,0,0}. The mapping from the
qualitative descriptions to the membership vectors relies on the judgment of the analyst,
but we have found it helpful to provide the set of guidelines shown in Table 3.

| Table 3

Set Assignment Membership Value Guidelines

Belief Deséription Set Assignment (s:::n :sl:im ey
Value gnment
Values

Belief that value is exclusively in one set 1 0
Strong belief that value is in one set, but some belief 0.9 0.1
that another set may also be appropriate
Equal belief that the value is in any of n sets 1/n 1/n for each
One set is favored, but another has significant ~ 0.7 0.3
support as well

Following these guidelines, the qualitative descriptions of Table 1 translate into
the fuzzy set membership vectors shown in Table 4. These fuzzy set membership
values will be interpreted as expressing the expert’s belief in which prior estimates for A
to use for each sequence. The greater the fuzzy set membership, the greater the expert’s

belief that a given effectiveness is appropriate for a set of controls.
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Table 4

Control Effectiveness Fuzzy Set Membership Vectors

Control Effectiveness Linguistic Descriptor
Control
Highly Quite Partially Ineffective
1.1 1 0 0 0
2.1 7 3 0 0
3.1 7 3 0 0
3.2 0 5 5 1
Combined 5 3 0 0
3.1 and 3.2
Effective 4 0 1 0 0

In our example, two controls, 3.1 and 3.2 , are used to reduce the accident
frequency for sequence 3. To apply our method in such a situation, the analysts
evaluate the aggregate effectiveness of the control suite using a rule base” An example
of such a rule base is shown in Table 5. This rule base accepts control effectiveness
descriptors for two controls and outputs the effectiveness of the combination using the
same linguistic descriptors as the input. The rule base shown here is used commonly in
our analysis and represents a slight bias toward conservatism in combining controls.
This bias is seen in the result for two partially effective controls. Two partially effective
controls result in a partially effective aggregate control. This rule prevents stringing

together a series of mediocre controls and claiming that the result is Highly effective.

°T. F. Bott, “An Approach to Evaluating the Effectiveness of Safety Controls,” Los Alamos National
Laboratory report LA-UR-98-4953 (1998).
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Table 5

Rule Base for Combining Reinforcing Controls

Control 3.1 Effectiveness

o~ 8 Ineffective Partially ’
(Y] - —
f’a § Ineffective Ineffective Partially
£ B PhEal Partially Partially

e @

“ E Qe Quite Quite
Highl Highl Highl
gy ghly ghly

The operation of this rule base is illustrated by evaluating the effectiveness of
controls 3.1 and 3.2. Control 3.1 has an effectiveness described by the set membership
vector {0.7,0.3,0,0} and 3.2 has {0,0.5,0.5,0} . Recall that the first position in the vector is
for Highly, the second is for Quite , the third is for Partially, and the fourth is for
Ineffective. The Cartesian product of the membership vectors for controls 3.1 and 3.2
generates all the combinations of control effectiveness that have non-zero memberships
in both controls. The pairs of effectiveness descriptors that we have to consider are
(Highly, Quite), (Highly,Partially), (Quite Partially), and (Quite,Quite). Our notation is
that the first value is from control 3.1, and the second is from 3.2. As an example,
according to the rule base Highly and Quite effective controls combine to produce a
Highly effective aggregate. The inferences of interest in our example are shown by
highlighting the appropriate items in the rule base. Note that three of the pairs result in

an output of Highly.

The control effectiveness descriptors are fuzzy sets and have memberships
associated with them. We need some way to generate the membership value of the

output effectiveness descriptors from the membership values of the inputs. The
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membership value for the resultant arising from a pair of inputs is found by taking the
minimum of the memberships values for the pair. This works fine when there is only
one pair of inputs that results in a given output. However, in our case, there are three
pairs of input that lead to the same output, namely, Highly. In this case, the
membership of the output is found using the Max-Min formula.® This formula is

succinctly stated as

Uy = Max (Min(x‘,,,am))

V{(n,m)->R

In this formula, x, and 6,, are elements n and m of fuzzy input membership
vectors k and o and R is a particular element output by the rule. To find the
membership for R, one first finds the minimum membership in either « or ¢ for every
pair that result in R. The membership value of the resultant R is then the maximum

value over all pairs of the inputs k and ¢ that result in R.

An example using the rule base of Table 5 and the membership values for
controls 3.1 and 3.2 is shown in Table 6. Using the Max-Min formula, the resultant
membership vector has values {.5,.3,0,0}, indicating a stronger belief in Highly than in

Quite and no belief in Partially or Ineffective.

°T.]. Ross, Fuzzy Logic with Engineering Applications, McGraw-Hill, New York, 1995.
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Table 6

Effectiveness Membership Values for Combined Controls

Control 3.1 Effectiveness

Ineffective (0) Partially
(0)

% Ineffective | Ineffective Partially Quite Highly
[
2 (0)
o
= Partially Partially
(o]
o Min(.7,.5)— .5
[=]
'g Quite Quite
o
Min(.3,.5)— .3 Min(.7,.5)— .5
Highly Highly Highly Highly Highly

The final complication in our example is sequence 4. In this sequence, there are
no controls, but the sequence frequency has a relatively low inherent frequency. In
some sequences, constraints or other factors not normally considered controls may
dictate the frequency of the sequence. We often encounter sequences whose frequencies
are dictated primarily by the occurrence of external initiating events such as lightning.
The effect of the relative rarity of lightning strikes on the system may be treated as if it
were a control, and can even be combined with other controls. As we shall demonstrate
later, the sequence 4 inherent frequency of about 10* per year corresponds to a control

with that has full membership in Quite effective.
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4. BAYES PRIOR ESTIMATE FOR POISSON PARAMETERS

As stated above, we have assumed that the occurrence of each sequence can be
described using a Poisson process with the occurrence times distributed exponentially
according to a Poisson parameter A, for sequence n. To use a Bayesian estimation
process, we make an initial or prior estimate for each A using existing knowledge about
each sequence and then modify that prior estimate using occurrence data derived from
operational experience. In this example, we assume that we can assign A to intervals.
The prior estimates are assumed to be uniform distributions over these intervals.
Although the assumption of a uniform distribution is not necessary to use this AR
approach, we feel that such a choi'ce generally will be appropriate to the level of
knowledge we are assuming in using this method. If enough knowledge exists to make
more detailed prior estimates, then the AR approach prpbably does not use all the

available information efficiently.

Using a uniform prior distribution for A on the interval[A,,A,] and no occurrences

during a time 7, a Bayes formula produces a posterior distribution for A given by

Te™

g(A10)= e 1)

Statistics for A can be generated from this distribution. For example, the mean A for a

given distribution g is given by
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Similarly, the y probability value for A is given by

(3)

. Although Eq. (3) formally represents a probability interval for A, we will refer to
it as the y" percentile. These formulae are applicable to each sequence leading to the |
accident conditions. The formulae will depend only on which A interval is chosen as a

prior.

5. BAYES PRIOR ESTIMATES VIEWED AS FUZZY SET ASSIGNMENTS
To translate control effectiveness into A intervals, we define a set of intervals on
the real line that correspond to the definitions for each effectiveness descriptor in Table
2. For simplicity, we wish to have a one-to-one mapping between A intervals and
effectiveness descriptors. Thus, each effectiveness will map into a single A interval. We
typically base our definitions on the probability of one or more accident events

occurring during a time period t given a particular A. This probability is found from
Pls2lint]=1-¢™* . (4)

We use the system design lifetime for the value t—in our example about 20 yr. In the

systems we have examined, most accident sequences would be expected to have a
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relatively high probability of occurrence during the design lifetime in the absence of
controls. To capture this, we define the lower bound of our highest Aestimate interval,
1, at about .03 so that the probability of occurrence in the design life is P = 0.5. This
definition also fixes the upper bound of our second highest interval, I,. A highly
effective control “virtually eliminates” an accident sequence. We consider an accident
sequence as being virtually eliminated if the probability of occurrence during design
lifetime is less than about 10°. This sets the upper bound of our lowest interval I, at
about 3 x 10°/yr. We choose the upper limits on the remaining interval, I,,
corresponding to a quite effective control as .003, 2 orders of magnitude higher than the
I, upper bound and an order of magnitude below the I; upper bound. The results of the
analysis are insensitive to the lower limit on the intervals I, to I; as long as the interval
covers a decade or more. Therefore, we typically choose the lower bound for the lowest
interval as 10°. This set of intervals and the mapping from the effectiveness descriptors

to the intervals is shown in Fig. 2 .
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Control Effectiveness

Highly

t-— 11 — P 12 emiommreie b | e 13 e | e e 14 B
106 3x10°5 3x10° 3x10-2 1.0

Poisson Parameter A ( per year)

Fig. 2. Mapping from Control Effectiveness Fuzzy Subsets to A Intervals.

This mapping emulates how an expert perceives control effectiveness affecting
an initial estimate of A in the interval I,. A control that is ineffective leaves A in the ],
interval. A partially effective control moves A to I, Quite effective moves it to I, and

Highly effective moves it to 1.

The one-to-one mapping between control effectiveness and A intervals means
that the control effectiveness fuzzy membership values can be assigned one-to-one to A
intervals. We interpret these fuzzy set membership assignments for a A interval as |
indicating our belief that a given A interval is the appropriate one to represent the

accident-sequence frequency,when the controls are taken into account.
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Recall that each of the intervals I, through I, is a uniform distribution for A and
can be used in Eq. (1) to generate a posterior A distribution. Each of these A
distributions can be used to generate A statistics, which we then use to generate
probabilities of occurrence using Eq. (4). In Table 7, we summarize the mean A, 90™
percentile A, and the probabilities of occurrence for a 20-yr design lifetime that are
generated by the different A intervals.
Table 7

Mean and 90" Percentile Values for A

Mean 90" Percentile
Prior A Interval
)" Ple }\' Ple
1, [1x10° 3x 107 15x 107 3x 107 |27 x10° 54x107
I,[1x10% 3x107] 1.5x10% 3 x 107 2.7x10% 5x10?
I,[1x10°% 3 x 10°?) 1.4x10? 2.4 x 107 2.6 x 10 4 x 107
I, [3x10% 1] 1.0 x 107 8.6 x 10™ 1.9 x 10! 9.8 x 10

To illustrate, consider sequence 2 of our example. The control effectiveness
membership vector is {.7,.3,0,0}. We interpret this to mean that we have a relative belief
value .7 that A, isin I, .3 that it is in I,, and 0 that it is in I, or I;. This means that we have
the relative belief that mean A, is 1.5 x 10° and Py, is 3 x 10*. Similarly, we have a belief

value of 0.3 that the mean A, is 1.5 x 10* and P, is 3 x 102

The resuit then carries both the unc:ertainty'associated with the A prior estimate
(represented by a uniform distribution over an interval) and uncertainty on assigning a
A prior interval by means of control effectiveness evaluation. The former uncertainty is
expressed by the g(A | 0) distribution, and the latter is expressed by the fuzzy subset

memberships (interpreted as belief) associated with the g(A | 0) distribution.
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6. INTERPRETING THE PROBABILITY OF OCCURRENCE RESULTS
Some representative probability of occurrence results for our example are shown
in Table 8. The upper bound uses the meén A from the posterior distribution generated
by the highest A interval with non-zero set membership. The lower bound is the result
of using the A posterior distribution generated by the lowest A interval with non-zero

set membership. When only an upper bound is given, only one of the A intervals has
non-zero set membership. The best estimate is found by:

@ If one of the A set memberships is maximal use that A.

or

® If the two largest A set memberships are tied ( typically both at .5) then

use the geometric mean of the A’s given by

To = (y)" 7)

In Table 5, sequence 2 exercises rule @ and sequence 3 with control 3.2 only

exercises rule @,

Table 8

Representative Results for Individual Sequence Probabilities of Occurrence

Possible Event : Mean A Occurrence Probability Interval
Sequences Lower Bound Upper Bound Best Estimate
Sequence 1 - .0003 .0003
Sequence 2 .0003 03 0003
Sequence 3 03 24 18
Control 3.2 only
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The probability of one or more occurrences from any of n sequences is found

from the formula

Pls21lint]=1- S )

This is easily and rapidly computed using a Monte Carlo or other sampling simulation.

One potential drawback to this approach is the added complexity of the results.
Our accident frequency estimates include both the Bayesian distribution and fuzzy set
memberships interpreted as possibilities or beliefs. Potential users of safety results
often wish to get a single, bottom-line answer, not a proliferation of uncertainty
measures. We have addressed this by explaining the interaction of the beliefs and the
statistics. For example, we describe the results of Table 8 as showing that we are quite
certain that the probability of occurrence for sequence 2 is less than .03 and that the
average is .0003 or less. This has mollified our sponsors to some extent, but we feel that

better methods of communicating the results are needed.
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Problem Definition

Estimate Probability of Accident Occurrence

Problem Attributes

Accident can result from several causal sequences
Frequency is dominated by Safety Controls

Fvent can be modeled as a Poisson Process

Limited operating experience and surrogate data sources
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Definition of Control Effectiveness Linguistics

Effectiveness Descriptor Definition
4 -Highly Effective { Thecontrol .ﬁmaaﬁliy.eliminates the occurrence of the seguence

Quite Effective The control greatly reduces the occurrence rate of the sequence

Partially Effective The control somewhat reduces the occurrence rate of the sequence

Ineffective The control does not affect the occurrence rate of the sequence

Description of Controls for Illustrative Example
Sequence Controls Experts Beliefs concerning the Effectiveness of Controls
1 1.1 Highly effective with high confidence
2 21 Favor Highly effective but could only be Quite effective
3 3.1 Favor Highly effective but could only be Quite effective
| 32 No preference for Quite or Partially
4 Non¢ | Initiating cvent is lightning strike which has frequency of about
1 x 10* per year




Set Assignment Membership Value Guidelines

Belief Pescription ' Set Assignment | ‘Complomerntary Set
Value Assignment Valaes
Belief that value is exclusively in one set 1 0
Strong belief that value is in one set, but some belief that 09 0.1

another set may also be appropriate

Equal belief that the value is in any of n sets i/m 1/n for each
One set is favored, but another has significant support as 0.7 0.3
weill

Control Effectiveness Fuzzy Set Membership Vectors

Control Control Effectiveness Linguistic Descriptor
Highly Quite Partially ’ Ineffective
1.1 1 0 | 0 0
2.1 g 3 0 0
31 T 3 0 0
32 0 5 S5 1
Combined S 3 0 0
3.1 and 3.2
Effective 4 0 1 0 0




Effectiveness Membership Values for Combined Controls

Control 3.1 Effectiveness

Ineffective (0) Partially

. © (3 N

g Ineffective | Ineffective Partially Quite Highly

»

bS] (0)

2

2 i Partially Partially 5

Lo |

“ (3) Min(3,.5)- .3 Min(7,.5)= .5

[=] = =

*E Quite Quite ‘N I

=]

15 Min(.3,.5)— .3 Min(.7,.5)— .5
Highly Highly Highly Highly Highly
(V)

Fuzzy Set Representation of

Control Effectiveness




Quite and Partially Produces
Quite

§ Ineffective (0)

Partially

-Min(.3,5)- 3 Min(.7,.5)— .5

Quite Quite

Control 3.2 Effectiveness

Min(.3.5)— .3 Min(.7,.5)— 5

Highly Highly Higyly

Rule Base for Evaluating the
Effectiveness of Multiple

Maximum of Minima for

Hi ghl}»’ Produces Membership

of .5 in Highly

Controls



Control Effectiveness
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Meanland 90" Percentile ¥alues for

Prior A Interval
P,

-5

1 [1x10%3x107]

L [1x 10%, 3 x 10%] 3x 102
L[1x10%3x10%] 2.4x 107
L[3x10%1] 8.6x 10"

90" Percentile

A P,
2.7x 107 5.4x 10*
2.7x10° 5x10?
2.6x 107 4x10?
1.9x 10* 9.8x 10"




Best Estimate

i L

Upper Bound

Mean A Occurrence Probability Interval

Lower Bound

Possible Event
Sequences

Sequence 1

Sequence 3
Control 3.2 only




Summary and Conclusions

Provides a structured Method for Constructing Prior
Distributions

Provides a Traceable Documentation Trail for Prior
Distributions

Provides Separate Uncertainty Measure for Prior
Distribution

Efficient Method for Collecting Expert Judgement on
Control Effectiveness



