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Abstract

An implicit-in-time method for granular materials is
described. The method combines the Material Point
Method (MPM), and a Newton-Krylov equation solver
to give improved energy conservation and stabilization.

Introduction

A wide variety of numerical models have been used to
capture the complexities of granular flow. Examples in-
clude Monte Carlo models, lattice gas models and numer-
ical models to resolve the grains. The latter is the sub-
ject of this paper. In particular, an implicit formulation
of the material point method (MPM) [1] is considered
in the modeling of granular materials. MPM combines
a Lagrangian treatment, using material points, with an
Eulerian grid. These material points describe the grain
dynamics, they resolve edges and allow history dependent
effects to be recorded. The Eulerian grid allows for effi-
cient computation of interactions between grains. Con-
tacts between grains are computed with a model based
on the immersed boundary method; interpenetration is
prevented but grain separation, sliding and bonding are
allowed [2].

Previous versions of the MPM algorithm advance the so-
lution in time using a leapfrog algorithm. These work
well for relatively high strain rates but implicit meth-
ods have the potential to be more robust, stable and ef-
ficient for low strain rate calculations. In this paper, a
Newton-Krylov (NK) algorithm is applied to the solution
of the implicit MPM equations [3]. The implementation
is matrix-free, requiring only the evaluation of the resid-
ual error at each iterative step - ideal in the solution of
the non-linear and non-analytic implicit MPM formula-
tion.

In this paper, the granular flow model is presented and
the implicit MPM formulation described. Next, the
implementation of the Newton-Krylov technique is dis-
cussed and the results of numerical experiments for a
single grain and an assembly of compressed grains pre-
sented.

A Model for Granular Material

Granular material is modeled as a collection of de-
formable grains[2]. The dynamics of each grain, g, is
described by the continuum mechanics; the continuity
equation,
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and the stress evolution equation,
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The grains are modeled as elastic-plastic materials. The
constitutive equation describes an elastic plastic material
as described in detail in Sulsky et al. [4].

The momentum equation is written,

V,

P8 =V og +E, (4)
where F. is the contact force between grains. In the
absence of friction or bonding, the contact force prevents
interpenetration of grains, but allows them to move apart
freely. Interpenetration will not occur if the velocity for
each grain at the point of contact, x., satisfies the in-
equality,

fig - (vg —v) <0, (5)

where fig is the outward directed surface normal for grain
g, and v is the Fabre averaged velocity at the point of

contact,
Zg PgVg
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The summation includes all grains in contact at x.. The
contact force is constructed to ensure the velocity satis-
fies the kinematic constraint and to allow for Coulomb
friction between grains. See [2] for further details.

(6)

The Implicit MPM Formulation

In MPM, the material data is carried on Lagrangian mass
points or particles. Each mass point p carries essential
information such as the position x,, mass mp, velocity
Vp, stress o, and volume V;,. History dependent variables
are carried with the particles. The information carried
by the particles is then projected onto a background grid
where the equations of motion are solved. Shape func-
tions, S, typically formed from the tensor product of lin-
ear b-splines, are used to map information from the grid
to the particles. The particle properties are then up-
dated.

To advance the solution forward by one time step At, grid
velocities are first calculated using a lumped mass weight-
ing of particle velocities [1] Lumping the mass matrix, as
opposed to using a consistent mass matrix, results in a
dissipation of kinetic energy in the transfer from particles
to grid but allows for increased computational efficiency.

The momentum equation is next integrated forward in
time. The momentum equation for explicit MPM is
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where Vp; = VS (x — X;) |x,. The particle stress tensor
op +1/2 s calculated by solving the constitutive equations
at the particles. The required particle strain increment

is calculated by taking nodal velocity gradients,
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The particle volume V;" /2

the particle’s dilation,

is calculated by integrating

V]—)n+1/2 - V]')"—l/2 (1 + At (V - VZ)) . (10)

The explicit leapfrog algorithm described above is ex-
tended here to incorporate the following fully implicit
time centered discretisation,

A
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where 6 is the time-centering variable and time centered
particle stresses and volumes are

or T =67 + T :Ael ™ (12)

Vit = v (1464 (V-v)it) . (13)

Finally, the particle velocities are updated by mapping
the nodal velocities to the particles. New particle posi-
tions are then calculated.

A Fully Implicit Algorithm using the Newton-Krylov
Technique

The matrix-free Newton-Krylov (NK) method [3] is be-
coming an increasingly popular tool to solve the fully
coupled transient and steady-state problems. It has been
applied successfully to a wide range of applications such
as combustion [5] and phase change [6] among others.

In this study, an inexact, matrix-free, Newton-Krylov
technique is utilized to solve the fully implicit, non-linear
equations of motion for granular flows with intergranular
contact The nonlinear system of equations is represented
by the vector F(v) = [F,(v), Fy(v)]- Typically, the NK
method is utilized to find a single-valued vector field. In
this study, a multi-valued velocity field is required since
relative motion between the grains must be simulated in
the contact algorithm. When grains come into close con-
tact, a node i can be shared between more than one grain.
Therefore, there will be more than one velocity field asso-
ciated with ¢. Without a contact force, the grains would
be decoupled and the NK technique could conceivably
be applied to individual grains. However, the need for a
contact force between grains couples the grains so that
the full multi-valued velocity field must be solved for in
the NK technique. The non-linear residual vector F must
therefore contain the residuals for all nodes i belonging
to each grain g, for all grains.

Solution of the fully-coupled, non-linear problem is a con-

F(vk+1)
Fscale

tol where tol is a chosen tolerance = 1078 and Fieqe is

a scaling factor that is problem dependent. Using New-

ton’s method, the roots of this equation are calculated

by solving the following linear system

catenated velocity field vF*! which satisfies

JovE = —F (vF) ;v = vF 4 avh (14)

where J* is the Jacobian matrix whose element (i, j)

is Jik,j = gf,; In the non-linear granular flow equa-

tion set, the frictional component of the contact model
and the plastic constitutive model are both governed by
non-linear functions; in addition the plastic constitutive
model is also non-analytic. The Jacobian matrix will
therefore be difficult to invert. One of the primary ad-
vantages of employing the NK technique to granular flows
is that the Jacobian does not need to be formed (hence
the term ‘matrix-free’). This occurs because a pertinent
choice of the linear solver used in equation (14) requires
the Jacobian only in the form of a matrix-vector product.
One such solver is the Generalised Minimal RESidual
(GMRES) algorithm [7], a variant of which is utilized in
this report. GMRES constructs the solution of equation
(14) from a basis of Krylov vectors (ro,Jro, ey J"lro)
where the number of GMRES iterations is ! and rg is the
initial linear residual, ro = —F (vk) —J*§v° constructed

from an initial guess §v°. The matrix-vector product
used is the following second-order approximation,

= ECF ) ZF ), (15)

where € is a heuristic perturbation parameter. At each
Newton step, the linear problem is solved only to a toler-
ance that is proportional to the current non-linear resid-
ual, Hence the term ‘inexact’. This tolerance is employed
so that time is not spent needlessly solving the linear
problem when the local gradient is far away from the
root of the non-linear residual.

The Non-Linear Residual Function

For a given grain, the § centered non-linear residual at
node ¢ is
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at the kth Newton iteration. For notational convenience,
the grain subscript g has been suppressed

Preconditioning

The overall efficiency of a Newton-Krylov solver is highly
dependent on the choice of preconditioner used in the so-
lution of the linear system. A preconditioner is indeed
almost mandatory in a Newton-Krylov implementation.
In most NK applications in the literature, an approx-
imate matrix is constructed and either incomplete LU
(ILU) factorizations [5] or smoothing techniques such as
weighted Jacobi (WJ) or SSOR used in the precondi-
tioner [6]. In these cases, the Newton-Krylov implemen-
tation is not strictly ‘matrix-free’ as a matrix that ap-
proximates the Jacobian is constructed and converted.

In this study, the linear system is right preconditioned so
that the system to be solved is

J*M™ (Mév*) = —F (vF). (17)

The solution is formed from the following basis of
Krylov vectors

q=l
ovE &Y MV, (18)
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where V, = qth Krylov vector = (JkMgl) V-1,
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(19)

To evaluate the preconditioned Krylov vector, y =

M~V a WJ smoother is employed where the matrix-

free approximation is retained,

F (vk +e€ (y)) - F (vk)
. .

My =

(20)

As the preconditioning matrix M need only approximate
the Jacobian, a simplified form of the Newton residual F
is employed for efficiency. The Fabre-averaged velocity
is assumed constant allowing the contact force can be
calculated in one pass of the grid rather than two.

In order to retain the matrix-free approximation, each el-
ement in the diagonal is effectively calculated by passing
in a unit vector into equation (20). Thus element a in
diagonal D is D, = Me, where e, is the zero vector with
a unit entry at element a. For a two-dimensional system
with n nodes, this operation requires 2n and quickly be-
comes prohibitive for large systems. The work required
in the diagonal calculation is reduced from 2n to 18 calls
to the matrix free approximation by recognizing the spar-
sity of the matrix M due to the compact nature of the
MPM stencil.

Results

Single Elastic Grain

The problem of an elastic grain rebounding of a solid wall
is examined using the implicit and explicit MPM formu-
lations. Figure 1 shows the initial physical configuration
and reveal the grain positions for the implicit and ex-
plicit MPM formulations respectively at time ¢ = 2.00
(after five wall rebounds). The explicit results are run
with a CFL stability limit of 0.25. Despite this, they re-
veal grain spallation as the edges of the grain separate
from the main body. Plots of total energy, elastic energy
and momentum transfer for both implicit and explicit
cases are presented in Figure 2. For the explicit leapfrog,
the total energy grows by an order of magnitude, due
primarily to the spurious growth in elastic energy. An
inelastic deformation is occurring after each wall contact
and residual stresses remain. The explicit momentum
plot in Figure 2 also shows a spurious increase in mo-
mentum after each interaction.

Elastic energy accumulates after each wall contact for the
implicit scheme. The accumulation is, however, approx-
imately two orders of magnitude less that that seen in
the explicit case. The implicit momentum plot reveals
an overall dissipation in kinetic energy which is due to
the use of a lumped mass matrix.

In [8], the energy conservation and stability properties of
the implicit and explicit schemes were discussed. Both
schemes conserve total energy to 0 (At2) (due to use of
the lumped mass matrix). If one considers the grid so-
lution only, the implicit scheme conserves total energy
for 6 = %, while the explicit leapfrog scheme conserves
total energy to at best O (At?’). In addition, the explicit
scheme is non-linearly unstable to an aliasing error that
exists for all particle-in-cell calculations [9]. Elastic and
kinetic energies are not positive definite and therefore are
not bounded by the total energy. The implicit scheme is

stable to this aliasing error as elastic and kinetic energies
are positive definite and bounded by the total energy.

Compressed Grains

The second problem examined is the dynamic loading
of an assembly of 5 grains. The motivation behind the
simulation of this problem comes from the experimental
work of Rossmanith [10]. Here, investigations of dynamic
wave propagation in granular media were undertaken in
order to study impact wave propogation and load transfer
in granular materials.

Figure 3 displays the contours of the fringe patterns of
the in-plane principal stress differences at time ¢ = 50
(nearly twice the time taken for a stress wave to prop-
agate through the entire assembly). In the explicit re-
sults, the fringe patterns are dominated by high fre-
quency noise; this is a further example of the finite grid
instability discussed in Section . The total energy grows
as seen in Figure 3. In contrast, the implicit formula-
tion does not exhibit this high frequency noise and total
energy is conserved to within 1%.
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Figure 1: Elastic grain initial configuration, implicit and explicit positions at time ¢ = 2.00
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Figure 2: Elastic grain initial configuration, implicit and explicit positions at time ¢ = 2.00
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Figure 3: Compressed grains initial configuration, implicit and explicit principal stress differences at time ¢ = 50.00 and
total energy comparisons.
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