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I. Introduction

The Implicit Monte Carlo (IMC) method of Fleck and Cummings [1] has been used for years to
analyze radiative transfer problems, such as those encountered in stellar atmospheres or inertial
confinement fusion. Larsen and Mercier [2] have shown that the IMC method violates a
maximum principle that is satisfied by the exact solution to the radiative transfer equation.
Except for [2] and related papers regarding the maximum principle, there have been no other
published results regarding the analysis of errors or convergence properties for the IMC method.

This work presents an exact error analysis for the IMC method by using the analytical solutions
for infinite medium geometry (0-D) to determine closed form expressions for the errors. The
goal is to gain insight regarding the errors inherent in the IMC method by relating the exact 0-D
errors to multi-dimensional geometry. Additional work (not described herein) has shown that
adding a leakage term (i.e., a “buckling” term) to the 0-D equations has relatively little effect on
the IMC errors analyzed in this paper, so that the 0-D errors should provide useful guidance for
the errors observed in multi-dimensional simulations.

I1. Radiative Transfer Equations

Grey Equations for an Infinite Medium
We begin with the coupled equations (grey) of radiative transfer [3]:
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where I(r,€,¢) is the radiation intensity, O(r,t) = JI (r,Q,1)dQ is the integrated intensity,

U,(r,t)=a [T(r, t)]4 is the equilibrium radiation energy density, a is the radiation constant, G is
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the absorption cross section (no scattering), and B(r,t) = relates U, (r,t) to the

material energy density U, (r,t) and is a function of position, temperature, and heat capacity.

Now assume an infinite, uniform medium with constant B (i.e., pC, ~T°) and &, and integrate
Eq. (1) over angle to obtain:
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Equations (3) and (4) are solved over a timestep At=t_, —t  with initial conditions ¢(t,) =0,
and U (t,)=U.

The material energy (hence temperature T) is a sensitive function of the difference between
energy loss due to emission and energy gain due to absorption. Thus energy conservation is key
to radiative transfer. A conservation of energy principle is obtained by adding Egs. (3) and (4):
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where we note that the second term on the left hand side is the time rate of change of the material

= 1db, by the definition of . Thus the time rate of change of the
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radiation energy plus the material energy is balanced by the external source. If ¢(t) has been
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energy density, since

found, U, (t) may be obtained by integrating (5):
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IMC Approximation
It is a straightforward exercise [3,4] to apply the IMC method to Eqgs. (3) and (4), which results
in the following approximate transport equation:
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where @(t) and V (t) are the IMC approximations to the actual solutions ¢(t) and U (1),
= ————— 1s the “Fleck” factor, and o is the time weighting factor defined by the IMC
1+ ocfoAt

approximation which expresses the instantaneous equilibrium radiation energy density in terms
of its beginning and end of timestep values:

Vi)y=oaV" +(1-oV".

Reference [1] notes that to avoid oscillations in the numerical solution, one should impose
(1—o)BcoAt <1 which for many applications results in the condition o =1.

II1. Analytical Solutions

Solutions to Exact Equations
Equations (3) and (4) can be rearranged into a single second order equation:
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where the initial conditions are 0(t,)=0,and —| =oc’U! —ocd, +cQ,. The solution to Eq.
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(8) is easily found:
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where y=occ(1+f).

Now substitute (9) into (6) to find U, (¢) for the case of a fixed source Qo within the timestep:

U, =07 +BQ,(t-1,) -2 (000-0,) (10)
Solutions to IMC Equations
The IMC equation (7) may be solved for @(t):
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which is then substituted into (6) to find the equilibrium radiation energy density:
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The IMC solution is only relevant at the end of the timestep since the factor f depends on the
timestep At and a conventional IMC calculation will only yield the end of timestep solution.
However, one can obtain the within-timestep variation of the IMC solution is desired (this is
plotted in the results to be discussed in the next section). Therefore, the analytical IMC solutions

at t=t_,, are given by:
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IV. Numerical Results

The above error analysis was applied to a number of test problems to investigate the IMC errors.
[Mustrative results are given in Figure 1 for a thermal relaxation problem with

0, =1000, Uf =1,and Q, =0, and parameters 6= 1, =1, =1, ¢ = 1, and At = 5. Physically,
this problem simulates a cold medium that is irradiated by a relatively hot photon flux. The
problem data corresponds to a relatively long timestep where photons may undergo several
absorptions and re-emissions, since the mean thermal relaxation time (time to re-emit following
absorption) is B~ =1 and the mean absorption time is (6c)™' =1, compared to the timestep

. . .. ) 1 )
At=5. It is convenient to show the radiation energy density E(t) =—¢(t), since E(t) = U, (t) as
c

t increases.

Figure 1 includes three plots of the exact solutions for E(t) and U, (t) compared with the IMC

solutions for different choices of the time weighting factor o. Figure 1a shows the o=1
(“implicit”) case, which is the conventional choice for IMC. This plot shows that the errors in the
IMC solutions are substantial initially, then decrease rapidly as the solution equilibrates. Figure
1b gives the 0=.5 (time-centered) case, showing severe oscillations in the solution which
diminish with increasing t. (The Ref. [1] criterion results in o >.8 although oscillations are
observed for o =1 that are strongly damped.) Figure 1c depicts the o=0 (“fully explicit”) case
and the oscillations are persistent and undamped, indicating clearly the unstable behavior of
explicit timestepping. Therefore, the typical choice to use a=1 with IMC is supported by these 0-
D results. (For some other types of problems, such as a cold medium that has a photon source
turned on at t=0, the best results may be obtained by choosing o<1, typically in the range .5-1.)

To examine the variation of the error with timestep and beta, only the error in the first timestep
was tabulated as a function of these two parameters. Figure 2a depicts the dependence of the first
timestep error as a function of At for B=1 while Figure 2b shows the dependence of the first



timestep error as a function of  for At = 5. It can be seen that relatively large errors (20-80%)
occur for a large range of At and P.

When the above analysis is modified to include leakage, via a “buckling” term, it is found that
the solution to the exact system contains two exponential terms while the exact IMC solution has
only one exponential term to approximate the true solution. A number of cases were analyzed
with various amounts of leakage, including equilibration and source problems. Interestingly, the
errors for the cases with leakage were not substantially different from the zero leakage cases,
even with relatively large leakage terms, e.g., with a leakage rate comparable to the absorption
rate. This indicates that for the 0-D equations, leakage does not seem to make the IMC errors any
worse.

V. Summary and Conclusions

We have derived an analytical solution to the infinite medium grey radiative transfer equations
and have performed an exact error analysis for the IMC method. For large timesteps and/or small
values of B, it was shown that substantial errors arise in the IMC solutions. These temporal errors
are inherent in the method and are in addition to spatial discretization errors and approximations
that address nonlinearities (due to variation of physical constants).

As discussed in [3], two alternative schemes for solving the radiative transfer equations, the
Carter-Forest (C-F) method [5] and the Ahrens-Larsen (A-L) method [4], do not exhibit the
errors described herein; for 0-D, both of these methods are exact for all time, while for 3-D, A-L
is exact for all time and C-F is exact within a timestep. These methods yield substantially
superior results to IMC for the chosen test problems, as expected.
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Figure 1a. Analytical IMC Solution (At = 5, o = 1) vs. Exact Solu

tion
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Figure 1b. Analytical IMC Solution (At = 5, o = .5) vs. Exact Solution
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Figure 1. Comparison of Analytical IMC Solution vs. Exact Solution for Different o

(Equilibration Test Problem)




Figure 2a. Percent error for 1st timestep vs At (§ =1)
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Figure 2b. Percent error for 1st timestep vs B (At = 5)
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Figure 2. Percent Error in IMC Solution for 1* Timestep vs. At and B
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