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Abstract 

Computational grids such as the Information Power 
Grid [ I ] ,  Particle Physics Data Grid [2}, and Earth System 
Grid [3] depend on TCP to provide reliable communication 
between nodes across a wide-area network (WAN). Of the 
available TCP implementations, TCP Reno and its variants 
are the most widely deployed; howevel; Reno’s performance 
in computational grids is mediocre at best. 

Due to conflicting results in the evaluation of TCP im- 
plementations (4, 5, 6, 7, 8, 9, IO, 11, 12, 131, we present 
a detailed simulation study that un$es the conflicting re- 
sults and demonstrates the limitations of earlier work. We 
focus on the two most debated versions of TCP - Reno and 
Vegas. Using real trafJic distributions, we show that Vegas 
performs well over modern high-performance links and bet- 
ter than Reno with the proper selection of the Vegasparam- 
eters a and p. Our results exhibit ways to signijicantly en- 
hance the performance of distributed computational grids 
that rely on TCP. 

Keywords: computational grid, distributed computing, net- 
working, TCP, Reno, Vegas. 

1. Introduction 

Studying congestion-control algorithms in TCP is prob- 
lematic due to their complexity and inconsistencies between 
different implementations of the same algorithm. Recent 

*This work was supported by the U.S. Dept. of Energy through Los 
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work has shown that TCP Reno’s congestion control in- 
duces chaotic behavior in a network [13, 14, 151, thus ad- 
versely affecting all network performance. Some argue that, 
Vegas is more stable [5 ,  6, 91 while others argue that Reno 
performs better [ 11, 161 Most agree that Vegas performs 
better under certain circumstances. 

Unfortunately, many prior studies on TCP suffer from 
unrealistic simplifications. Here we extend prior research 
in three areas: (1) using more realistic traffic- and flow- 
generation models, (2) using real-world networks, and (3) 
showing how to manipulate the parameters a and p in TCP 
Vegas to enhance its performance. 

Our primary goal is to show that there exists an a,  ,f3 
pair such that Vegas outperforms Reno in direct competi- 
tion. While most researchers agree that networks with all 
Vegas flows perform better than networks with all Reno 
flows, they also claim that incremental adoption of Vegas 
in a predominantly Reno environment is doomed because 
the performance of Vegas in such an environment is pitiful. 
To address this claim, we demonstrate that overall network 
performance actually improves with the addition of Vegas 
flows (with judiciously set values for a and p)  competing 
head-to-head with Reno flows. The performance improve- 
ments we exhibit justify the use of TCP Vegas in a compu- 
tational grid and lend credence to the idea that incremental 
adoption of Vegas is possible. 

To this end, we first present requisite background infor- 
mation. Next, we discuss our network topologies and traffic 
models. Then, we present the results and analyses of our 
experiments. We close with related work and our conclu- 
sions. 



2. Background 

To create useful models for our simulations, we must un- 
derstand the diversity of TCP algorithms, the effects of RED 
routers, and the simulation tool that we use, ns. 

2.1. TCP Algorithms 

The various TCP algorithms have different congestion- 
control mechanisms, and implementations of these algo- 
rithms may or may not implement features such as selec- 
tive acknowledgements or window scaling. For our base- 
line, we use TCP Reno with the following standard fea- 
tures: a congestion window obeying additive increase by 
one/multiplicative decrease by one half, slow start, initial 
window of one, fast retransmit, fast recovery, and window 
scaling. 

The TCP Vegas algorithm [6] extends TCP Reno by try- 
ing to avoid rather than react to congestion. When the con- 
gestion window increases in size, the expected sending rate 
(ESR) increases as well. But if the actual sending rate 
(ASR) stays roughly the same, then there is not enough 
bandwidth available to send at ESR. Thus, any increase in 
the size of the congestion window will only fill buffer space 
in the network rather than improve performance. Vegas at- 
tempts to detect this phenomenon and avoid congestion by 
adjusting the congestion-window size, and hence ESR, to 
adapt to the available bandwidth. 

To adjust the window size appropriately, Vegas uses two 
threshold values, Q and p. These values are traditionally set 
to 1 and 3, respectively, and control the operation of Vegas 
as follows: 

Let Dif f = ESR - ASR. 

If Di f f < a, increase the congestion window linearly 
during the next round-trip time (RTT). 

If Dif f > p, decrease the window linearly during the 
next RTT. 

Otherwise, do not change the congestion window. 

Conceptually, cy = 1 and ,8 = 3 implies that each Ve- 
gas flow tries to keep at least one packet but no more than 
three packets queued in the network. Selecting these param- 
eters holds an implicit tradeoff between network utilization, 
goodput, and fairness; by using only the default settings 
for these parameters, prior work inadvertently favored Reno 
over Vegas [ 111. Here, we make these choices explicit. 

Figure 1. Ideal link utilization of TCP Reno and 
Vegas 

Figure 1 shows the behavior of Reno and Vegas with 
respect to link utilization in the simplest case, Le., a sin- 
gle Reno or Vegas flow between two hosts with no network 
buffering (there are no routers) and the possibility of buffer 
overflows (loss) on each host. One problem with TCP Reno 
is quite apparent; its congestion-control algorithm is inher- 
ently over-aggressive. Reno probes the network state by 
inducing packet loss, resulting in a multiplicative decrease 
(112) in the amount of data that it is allowed to send in the 
subsequent round-trip time (RTT) interval. It then enters an 
additive-increase phase to again probe the network state. As 
soon as Reno reaches the optimal bandwidth; it again passes 
it, drops a packet, and halves its sending rate. While Reno 
continues slowly climbing toward the optimal bandwidth, 
Vegas continues to send data near the optimal bandwidth. 

2.2. Random Early Detection 

To enhance TCP performance, Floyd and Jacobson 
[ 171 introduced random early detection (RED) gateways 
to detect incipient congestion. RED gateways maintain a 
weighted average of the queue length (length), a minimum 
and maximum threshold (REDmin and RED,,,, respec- 
tively), and an early-drop probability P. Packets are then 
queued as follows: 

0 If (length < REDmi,), queue all packets. 

0 If (length > RED,i, and length < RED,,,), 
drop packets with probability P. 

0 If (length > RED,,,), drop all packets. 

One modification is to use a variable, rather than a constant, 
drop probability P in the second case. Then P ranges from 
0 to 1 as the average queue size ranges from REDmin to 
RED,,,; a simple linear normalizing formula can be used 



m 

-~ I Link I Bandwidth 11 1.55 I 155 I 622 I 622 I I II I I 1 

for this purpose. We use this variation in our simulations, 
with the effective formula: 

Nodes ( N )  
Links Bandwidth 

P =  

2 50 100 100 
10 100 1000 1000 

length-RED,i, - 
RED,,, -REDmim 

Nodes ( N )  
Links Bandwidth 
L Delav 

RED can improve fairness and overall ne.twork performance 
[17], and most routers in the current Internet implement it. 
As most distributed computational grids will be connected 
via sections of the Internet, this behavior must be consid- 
ered. 

2 50 100 100 
10 100 1000 1000 
4 1 1 15 

2.3. Simulation using ns 

L Delay 
Link Bandwidth 

For our experiments, we use the discrete-event simulator 
ns, version 2.lb7a [18]. ns implements much of what we 
wish to study; however, we have extended its functionality. 
First, we introduced new code to create the traffic distribu- 
tions discussed in Section 3. Second, we added instrumen- 
tation to the existing classes for TCP Reno and Vegas so 
that the effects of our new code could be monitored more 
precisely. We verified the correctness of our changes by 
running the test suites provided with ns i i S  well as several of 
our own programs. We verified the correctness of our traffic 
generator by manual analysis of packet traces. 

4 1 1 15 
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3, Experiments 

BL 

Our experiments can be summarized as a search of the 
feature space: 

network x t r a f f i c  x a x p. 
Given only three topologies and three traffic distributions, 
we can perform a brute-force search for a ,  p values under 
which Vegas performs well. (The above features obviously 
do not capture all possible parameters, but they are the most 
representative.) Given the large amount of data that a brute- 
force search generates, we will derive simple heuristics to 
guide future exploration and protocol tuning. In contrast to 
other work [I 1, 161, our experiments show that with intelli- 
gent choices for a and ,B, TCP Vegas outperforms Reno in 
practically all circumstances. 

II I I I 

Delay 1 1  4 I 1.5 I 1.5 I 20 

3.1. Network Topologies and Parameters 

R1, 
R2 

We consider four networks; the topology of each is based 
on the generic “butterfly” topology of Figure 2 with details 
given in Table 1. The first network is that given in [ 111, 
while the second and third networks model current and fu- 
ture computational grids between Los Alamos and Sandia 
National Laboratories, and the fourth shows performance 
over a WAN grid with a 7.8-MB bandwidth-delay product. 
Our results, in addition to [14], will show how poorly the 
current TCP protocols will scale to next-generation compu- 
tational grids. 

REDmi, 3-10 6711 8948 8948 
RED,,, 6-20 26843 35791 35791 

BL __ 

Figure 2. Generic topology 

Network 1 1  1 1  2 1  3 1  4 1  

Table 1. Detail of simulated networks 

Nodes ( N )  is the number of source or destination hosts, 
meaning that the total number of nodes in the simulation 
is 2N + 2 ( N  source nodes, N destination nodes, and 2 
router nodes). Bandwidth is in megabits per second (Mbps 
or 1,000,000 bps); Delay is in milliseconds (ms); and Buffer 
sizes and thresholds are in packets (pkts). We simulate stan- 
dard 1500-Byte ethernet packets. Note that when abbrevi- 
ated size units are given, we follow the convention that a 
capital ‘B’ refers to Bytes, while a lowercase ‘b’ refers to 
bits. 

3.2. Network Traffic 

By default, one traffic flow (a traffic generator and an as- 
sociated TCP Reno or TCP Vegas transport protocol) runs 
on each source node (Si)  and transmits to its respective des- 
tination node (Di). When results with ‘reverse path’ or 
‘two-way’ traffic are given, this means that each destination 
node Di also acts as a source node, sending traffic along the 
reverse path to source node Si. Two-way traffic doubles the 
total number of flows and introduces two behaviors: ack 
loss and compression. When reverse path traffic is intro- 
duced, ack packets must compete for bandwidth and queue 
space. This means that some ack packets may be dropped as 
queues become full (loss), and their inter-packet timing may 
be altered as they are queued and later released in a burst 
(compression). In some situations, these behaviors can sig- 
nificantly affect results [ 191, and we present them when this 
is the case. 

For our experiments, there are always equal numbers of 
Reno and Vegas flows; so with one-way traffic we have $! 
of each type, with two-way traffic we have N of each type. 



Traffic libraries (such as tcplib [20]) are available to drive 
simulations, but they are fundamentally flawed. Such traces 
were made using the tcpdump tool available on Unix plat- 
forms, meaning that they were captured after having passed 
through TCP. Passing these packet traces back through TCP 
again is meaningless. Furthermore, the available traces are 
several years old and are not representative of current traf- 
fic. None capture traffic in a computational grid. For all 
these reasons, we have created our own generators. 

As a first approximation, network traffic is typically 
modeled as an infinite file transfer. The next approxima- 
tion adds variation over packet transmission times, explic- 
itly with an exponential odoff traffic source or implicitly by 
setting up background traffic [9]. The most realistic traffic 
models contain variations in inter-flow times, flow lengths, 
and packet sizes. We use all the above features of real traf- 
fic except for variation in the packet size, which ns does 
not adequately support. Prior research has used only the 
first overly simplistic traffic type or has neglected to con- 
sider bidirectional traffic, which can seriously affect results 
[ 191. We refer to [21] for further background on our traffic 
models, which are summarized in Tables 2 and 3. 

Pareto&NPS 
Pareto&NPS 
Pareto&NPS 

Mean inter-flow time 0.5 s 
Mean flow length 10-100 MBZ 

Flow length shape 1.5 

5 P e  11 Arrival I Length I Spacing I 
Infinite File 1 1  all at time 0 I 031  constant I 

Traffic 

_. I I 

Interactive I t  Poisson I Pareto I Pareto on/off I 

I Flow I Flow I Packet I 

I No Packet Spacing 11 Poisson I Pareto I n/a I 
Table 2. Summary of traffic models 

For infinite file traffic, requests to transfer a packet are 
made every link-speedlpacketsize seconds for the dura- 
tion of the simulation. We also refer to this traffic as “con- 
stant bit rate” or “CBR”. Applications transferring large 
data sets generate this type of traffic. 

Interactive traffic uses a Pareto odoff distribution for 
packet spacing; an exponential odoff distribution was also 
tested but produced no significant differences. We also refer 
to this model as “Pareto”. Applications for data set visual- 
ization generate this type of traffic. 

Cluster and grid communication patterns depend heavily 
on the algorithms being executed [22]. Our model assumes 
that traffic between nodes is frequent and mostly small, with 
less frequent larger transmissions. This is similar to the In- 
teractive model except that packet spacing is ignored; all 
packets for a given flow (data at an upper level, such as an 
MPI message) are presented to TCP at the same time and 
should be transmitted as soon as possible. We refer to this 
model as the No Packet Spacing (WS) model, as it is the 
same as Pareto traffic with that exception. Scientific appli- 
cations which pass messages between nodes and perform 
checkpoint operations generate this type of traffic. 

The values in Table 3 are representative of traffic on the 

I TrafficType I Parameter I Values I 
I InfiniteFile I Rate I 10-100Mbt I 

Pareto&NPS 
Pareto Mean ON time 
Pareto Mean OFF time 
Pareto ON/OFF shape 

Table 3. Traffic parameters for distributions 

networks in Table 1, Different networks use different val- 
ues: t represents the values for network 1 at the lower end 
of the range and the remaining networks at the higher end 
while the lower values marked with $ represent network 2, 
the higher values for 3 and 4. (Note that direct numerical 
comparisons of bandwidth acquired between traffic types is 
invalid, as each model attempts to send different amounts of 
data.) 

At time zero, the start of Pareto and NPS flows is de- 
layed by the inter-flow time on average (as though flows 
had just terminated on all nodes). Thus, it takes a few sec- 
onds in simulation time to achieve a network state as would 
be found in a live network. Simulations were run for 200 
seconds to minimize this factor and to ensure that the dif- 
ferences we report between flows are not due to transient 
conditions (simulations for longer periods reveal no signifi- 
cant differences from the following results). 

4. Results and Analysis 

We now present our results, focusing on the total amount 
of reliably transmitted data (as measured by the number of 
ACK packets) and the amount of data lost (as measured by 
the number of retransmitted packets). From these metria, 
we can then calculate link utilization, goodput, or fairness. 

In the following figures, each pair of bars represents the 
aggregate bandwidth or loss results from a single simula- 
tion; that of all TCP Reno flows (white) and all TCP Vegas 
flows (black) as they competed against each other with the 
given parameters. 

4.1. Network 1 with Varied Queue Sizes 

First, we look at a simple head-to-head competition of 
one Reno flow versus one Vegas flow, varying the queue size 
for our bottleneck link. We use CBR traffic for comparison 
with the work done in [ l l ] .  

We are only interested in queue sizes indirectly; Reno 
aggressively probes the network and uses any available 
buffer space while Vegas only buffers between o and ,B 
packets on average. Varied queue sizes exhibit the effects 



this difference has on the protocols’ performance. By ty- 
ing a and ,B to the queue sizes, Vegas is forced to set its 
congestion window to a value comparable to that of Reno, 
so Reno has no unfair advantage. For a network with only 
Vegas flows, router buffer space would tie less relevant [6] .  

To guide our choice of Q and ,B, we initially developed 
the following heuristic. Assume that Reno uses 75% of the 
bandwidth on average while Vegas uses 100% (Figure I )  
and that the bandwidth acquired corresponds directly to the 
buffer size utilized. Then, to achieve long-term fairness be- 
tween Reno and Vegas, the following constraints should be 
met: 

and 

where BR and Bv represent the fraction of buffer size 
for each Reno and Vegas flow, respectively. Note how 
Reno requires twice as much buffering for the same perfor- 
mance. These figures are only valid for this simple case; for 
more complex cases, ‘overlapping’ of the sawtooth pattern 
more effectively utilizes bandwidth, and we will want Reno 
and Vegas to use approximately the same amount of buffer 
space. 

Of BR and Bv ,  we can only control Bv indirectly and 
cannot control BR at all. We assume that Reno will use any 
queue space that Vegas does not and consider Q and p to be 
the minimum and maximum number of packets Vegas tries 
to keep enqueued. This analysis leads us to the following 
possible heuristic. 

0.75 x BR = f => BfiI = 2 

1.0 x Bv = !j 3 Bv = f .  

3 

- 11 and set p = J 
set = [Queue  S i r e  

3 

I 2  i 2  1 2  1 
q=4 q.7 4.10 <(=I5 

TCP Version, 1. or ?.way Tralllo. and Queut# Sire 

5 

1 2  1 
q=!;o 

Figure 3. Network 1, variation of queue sizes 

The results for this choice are presented in Figure 3. 
Note that full bottleneck link utilization with one-way traf- 
fic would be to send 25,833 1500-Byte: ethernet segments 
over the 1 S5-Mbps link during our 200 second simulation. 

For two-way traffic, full utilization is 25,162 packets given 
the the 40-Byte ACK packets on the reverse path. 

For simple one-way flows, our linear heuristic based on 
queue size is too timid for queue sizes 10 or below (Reno 
beats Vegas). For queue sizes between 10 and 20, Reno and 
Vegas compete well, and for larger queue sizes, Vegas does 
much better than Reno. Link utilization is above 99% in all 
cases. 

Adding reverse-path traffic slightly decreases the amount 
of bandwidth each flow acquires (due to the higher over- 
all traffic on the network) and changes the pattern in favor 
of Vegas. These changes are due to the slight increase in 
drop rates at the routers (due to 40-Byte ACK packets com- 
peting with 1500-Byte reverse-path data packets); as Reno 
has twice as many packets buffered as Vegas does, Reno is 
much more likely to lose one of their packets than Vegas. 
Link utilization varies from 78% to 90%. 

The difference between our experimental results and 
those predicted by our formula (equal performance by Reno 
and Vegas) is due to several factors. First, we are working 
in a 200-second simulation with real values for various pa- 
rameters rather than an infinitely long simulation with in- 
finite bandwidth (where the delimiting factor is only queue 
size). Furthermore, we want the ‘apparent’ or ‘effective’ 
size (the size below which is it unlikely for a packet to be 
dropped) rather than the absolute fair queue size. This ap- 
parent size is time-dependent, given the fluctuations caused 
by Reno’s additive-increase, multiplicative-decrease behav- 
ior. Note that by slightly changing our heuristic, increasing 
Q! and ,B for queue sizes below 20, Vegas will beat Reno for 
all queue sizes. 

4.2. Network 1 with Varied RED Thresholds 

For this set of experiments, we fix the queue size at 25 
packets and vary the RED minimum (RED,(,) and max- 
imum (RED,,,) thresholds. We use a single Reno and a 
single Vegas flow, each with CBR traffic, as done in [ 1 I]. 

In [ 111, the performance of Vegas was shown to drop as 
RED thresholds were increased. This is due to the fact that 
the apparent queue size is increasing - Reno will automat- 
ically probe the network and exploit this space, but Vegas 
will not as it is constrained by the default a = 1 and ,B = 3 
values. Consequently, the experiments in [ 111 are inadver- 
tently “rigged” to favor Reno over Vegas. 

To account for the above factors, we view REDmi, and 
RED,,, as the apparent queue size and continue as in the 
prior experiment but with 

Q = RED,(, - 2 and ,B = RED,,, - 2. 
to produce the following results. 
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Figure 4. Network 1, variation of RED thresh- 
olds 

Note how similar Figures 3 and 4 are. In fact, the only 
significant difference occurs in the second set of bars of 
each figure, Le., q = 7 and M i n  = 4,Max = 8, respec- 
tively; for 1-way traffic, Vegas performs better than Reno 
does with RED, due simply to the randomness induced by 
RED. 

The heuristic here was selected to produce results similar 
to the prior section. A more obvious formula, 

a = RED,(, and p = RED,,,, 

allows Vegas to outperform Reno in all cases. Unfortu- 
nately, loss rates also increase and link utilization decreases, 
which is undesirable. 

If we examine Figures 3 and 4 carefully, we see that if 
the goal is even competition between Reno and Vegas, our 
heuristic results in values too small for small queue sizes 
and too large for large queue sizes. In fact, these values are 
off by an amount proportional to the queue size! This leads 
us to the obvious conclusion that the heuristic we desire is 
not fixing a = RED,(, + C, and @ = RED,,, + cb, 
with C,, c b  constant as we have done here; instead we de- 
sire proportionality to queue size or effective queue size 
(based on the RED thresholds): a = C, x RED,i, and 
p = cb x RED,,, 

4.3. Network 2 

Now we consider our true interest - real-world net- 
works such as the current computational grid (see Table 
1) between Los Alamos and Sandia National Laboratories. 
Figure 4.3 presents the results for two-way traffic on this 
network. Full utilization is 258 x lo4 packets. (See Table 
1; 155Mbps x llo:ypb x 200s x % x a. ). 

250 ' TCF!Rnno 
TCP Vegas - 

CBR Pareto NPS CBR Pareto NPS CBR Psrelo NF 
aipha=l,bsts=.? aipha=4O,bet&=50 a1pha.t W.beta40 

TCP Version, Traltio. and Vegas Paramslers 

' TC$Reno - 
TCP Vega6 - 2 5  

r l  

TCP Version. Traliie, and Parameters 

Figure 5. Results for network 2 

Here we see that the default a and /? of 1 and 3 are clearly 
inadequate; but by increasing them to 100 and 105, the per- 
formance under CBR and NPS traffic for Vegas is better 
than that of Reno. These values are arbitrary; any suffi- 
ciently large values will work. 

For insight into the selection of a and p values, recall 
that a and p are tuned here primarily to keep Reno from 
acquiring an unfair share of bandwidth (see subsection 4.1). 
The actual number of packets a fair flow can have unac- 
knowledged is just the bandwidth x delay product of the 
network divided by the number of flows. In this case, that 
is: 

(155 M bps x 130z:0b ) x (7msx &) x % x && 
50 f lows 

which is only about two packets. Thus, without TCP Reno, 
the default a = 1,p = 3 would suffice; with TCP Reno 
competition, we must modify these values. 

where N is the number of flows. This gives the effective 
fair queueing space per flow; which is about 134 packets 
here (9). The values for a and 0 may be then be set 
slightly smaller than this value to achieve comparable per- 

One heuristic for this network is to calculate 



formance to Reno. (The difference is due to the superior 
properties of the Vegas algorithm; using Rfiz"- often re- 
sults in unfairly poor performance for Reno flows and is 
generally a bad idea). 

However, Reno does outperform Vegas for Pareto traf- 
fic, regardless of a and p. Tests for values up to 1000 re- 
veal that the problem is not clue to an improper choice of 
these parameters, but is instead fundamental to current im- 
plementations of TCP Reno and Vegas and the heavy-tailed 
distribution. The problem is two-fold. 

First, Reno is more aggressive during slow start, and in 
this case, benefits. Reno doubles its congestion window ev- 
ery RTT whereas Vegas doubles it every other RTT. Vegas 
does this in order to detect what effects its change has on 
the network before rampantly sending more data. Two solu- 
tions to this problem are immediately apparent: (1) If most 
flows use Vegas (and hence, the same slow-start algorithm), 
they would compete fairly with each other. (2) The use of 
ECN [23] or similar ideas to glean information from the net- 
work can allow Vegas to double its window at the same rate 
as Reno without adverse affects. 

A second problem is that these paritmeters along with 
running Pareto traffic through TCP Reno creates unpre- 
dictable fluctuations in queue length; thus interfering with 
the RTT estimates used by Vegas. Vegas then uses these 
inaccurate estimates to control its sending rate, to its detri- 
ment. This problem is due to the bursty nature of aggregated 
TCP Reno flows [13] and would disappear if all flows were 
TCP Vegas. 

Figure 4.3 also shows that the loss rates for TCP Reno 
are 20 to 70 times higher than those of TCP Vegas in this 
simulation. This is obviously bad for the network, and it can 
also drastically affect the performance of a grid application 
using TCP for data transport. When a loss occurs, it must be 
detected (via observation of the acknowledgements coming 
from the receiver) at the sender side, and the packet must be 
retransmitted. Thus, any lost packet arrives at the destina- 
tion delayed at least one full KTT. If that packet contained 
critical data, the upper-level grid application may block the 
entire time. Therefore, loss patterns are often more impor- 
tant than total deliverable bandwidth. So, Vegas may pro- 
vide better performance to a grid application, even provid- 
ing lower total bandwidth, due to the lower loss rates. 

4.4. Network 3 

This network represents the future computational grid 
between Los Alamos and Sandia National Laboratories. 
The results are presented in Figure 6 ,  again for bidirectional 
traffic. 
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Figure 6. Results for network 3 

The figure with "Data Acknowledged" on the dependent 
axis presents two new features. First, a and p must oc- 
casionally be set quite high for Vegas to outperform Reno. 
Second, simply increasing a and p is sometimes insuffi- 
cient to increase performance; for NPS traffic, Vegas per- 
forms better with a,@ set at 75 and 80 than it does with 
a,  /3 over-aggressively set at 1000 and 1100. 

These values concur with the the heuristic used in the 
prior section; setting a and /3 approximately equal to the 
effective queue size, RED ' would indicate setting a,  ,8 
to be slightly less than M 89 for fair competition 
with Reno. Note that this is exactly what we see, for 
a = 75,p = 80. Unfortunately, due to the somewhat 
chaotic feedback behavior of TCP [13], combined with a 
random traffic generator, RED, and the high bandwidth of 
the network, these values may need to be significantly in- 
creased to make Vegas competitive. This is the case for 
TCP with a Pareto traffic generator, most likely due to the 
heavy-tailed nature of the distribution and the effects listed 
in the prior subsection. 

Recall that we only seek to show that Vegas is compet- 
itive with Reno for some administratively set choice of pa- 
rameters a and p. Once most TCP flows are TCP Vegas, 

%M3 



choosing parameters will be less of an issue [6, 91. This is 
also why we we present results at different values of these 
parameters for each network. 

As in the previous section, even when Vegas and Reno 
achieve similar bandwidth, Vegas may give better overall 
performance due to the extreme loss rates that Reno suffers. 
These losses are due to Reno's over-aggressive nature, in 
particular its use of slow-start restart. Using slow start on 
a chaotically congested network (also caused by TCP Reno 
[13]) can lead to the loss of up to a full bandwidth-delay 
product's worth of packets. On this network, that is 7ms x 
1Gbps = 855KB worth of data. TCP Vegas avoids most 
of these losses with a less aggressive slow start. 

fCP Rdno 2- 
TCP Vega8 - 

4.5. Network 4 

We now consider the same computational grid as in the 
prior section but with increased delay (in order to simulate 
a more widely distributed grid). 
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Figure 7. Results for network 4, high delay 

All flows have problems with a large RTT. Although 
mostly incomparable due to the selection of different a and 
,8 parameters, the performance differences between figures 

6 and 7 are still apparent. Careful study of these graphs 
reveals several things. 

For stable CBR traffic, the RTT is unimportant as TCP 
does not have to respond to dramatic changes in network 
state. The acknowledgement values are only slightly lower 
than in the prior simulation, primarily due to the higher 
amount of time required for the congestion window to grow 
to appropriate values. 

For Pareto and NPS traffic, we find poorer performance. 
As in the prior section, TCP Reno and Vegas perform 
similarly for values of a and p above 50. This is also 
due to the high delay in the network; the performance of 
TCP here is dominated by the flow-control behavior of 
acknowledgement-based self-clocking and similar features 
which are the same for all TCP algorithms. Performance 
differences between Pareto and NPS traffic are obviously 
due to the packet spacing. When an NPS flow begins trans- 
mission, it may flood the network and lose many packets. 
The distribution of packet arrival times in a Pareto flow 
makes this less likely. 

Other than the increased delay, this network is the same 
as the prior network; meaning that the effective fair queue 
size and choice of a and ,8 parameters via our simple heuris- 
tic remains the same. Indeed, the crossover point for Reno 
outperforming Vegas to Vegas outperforming Reno is for a 
and p near 89 packets. 

We do not present results for that point, because only 
slightly larger values are required to make Vegas compet- 
itive with Reno. This is due to the increased delay in the 
network; here the bandwidth x delay product is: 

(622Mbps x l ~ o ~ ~ ~ b )  x (100ms x &) 

which, converted to packets (via 
large value: 

x *) gives a fairly 

5183 packets % 52- 
In all prior simulations, the value of bandwidth x 
delaylnumber of f lows  was below 4 packets, meaning 
that the only reason to increase the defaults of Q = 1 and 
,B = 3 was to keep Reno from unfairly using bandwidth. 
With this network, Vegas must also try to keep more pack- 
ets queued in routers to effectively cope with the increased 
delay in feedback information. Thus, for this network, a 
and ,8 must first be increased to cope with the high delay, 
and then again to keep Reno from unfairly using bandwidth. 
This leads to the values given above. 

The link utilization in network 4 is significantly worse 
than in network 3. Here the values are only 92% for CBR 
traffic, 55% for Pareto traffic, and 32% for NPR traffic. The 
latter numbers are unacceptably bad. Using all Vegas flows 
would help solve this problem. Loss rates approximately 
double due to the increased time it takes for a flow to re- 
spond to changes in the network state; with TCP Reno los- 



ing from 3-6% of its data precisely in those cases where 
latency most matters (Pareto/NPS distributions). 

5. Related Work 

We made a few simplifying assumptions, with one in par- 
ticular that should be removed in future work: we have only 
tested traffic of a given type against traffic of that same type. 
Real networks have multiple types of traffic in competition, 
and we would like to test this - first by studying the rela- 
tive proportion of various types on our network and then by 
using that data in our simulations. 

Other extensions of this work include developing a more 
mathematical model of our systems to find provably opti- 
mal values for LY and p, using uncontaminated traffic traces 
to drive simulations, or using implementations of Reno and 
Vegas to emulate these networks. We are also looking at 
ways to use ECN or other mechanisms to set QI and ,B rather 
than basing these values on information (the number of 
flows in the network or the effective fair queue space) that 
is difficult to infer. 

6. Conclusion 

Prior research has used carefully crafted examples to 
study the performance of Reno or Vegas. In this paper, we 
have generalized those examples and made them more real- 
istic. We are confident that Vegas can and will effectively 
compete with Reno in nearly all situations. 

In particular, we showed how inappropriate the default 
values of cy = 1 and ,8 = 3 arc, explained their relationship 
to variations in network and traffic parameters, and then dis- 
cussed how to use the effective queue size to set these pa- 
rameters to improve performance. We have also shown how 
switching from Reno to Vegas will improve overall perfor- 
mance. Given that TCP is ubiquitous in today’s networks, 
these results lead us to believe that many would benefit from 
more widespread adoption of TCP Vegas. 
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