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ABSTRACT

The objective of the Arbitrary Lagrangian-Eulerian (ALE) methodology for solving multidimensional fluid flow prob-
lems is to move the computational mesh, using the flow as a guide, to improve the robustness, accuracy and efficiency
of the simulation. A principal element is the rezone phase in which the computational ("rezoned”) mesh is created
that is adapted to the fluid motion. Here we describe a general rezone strategy that ensures the geometric quality of
the computational mesh, while keeping it as close as possible to the Lagrangian mesh. In terminology of mesh gener-
ation community our method can be classified as a two-stage smoothing algorithm. We provide numerical examples
to demonstrate the robustness and the effectiveness of our methodology.

Keywords: ALE, rezoning, optimization, reference Jacobian, condition number

1. INTRODUCTION

In numerical simulations of multidimensional fluid
flow, the relationship of the motion of the compu-
tational mesh to the motion of the fluid is an im-
portant issue. There are two choices that are typi-
cally made, one representing a Lagrangian framework
and the other an Eulerian framework. In the La-
grangian framework the mesh moves with the local
fluid velocity, while in the Eulerian framework the
fluid flows through a mesh fixed in space. In the arbi-
trary Lagrangian-Eulerian (ALE) methods, [1], [2], [3],
[4], the motion of the computational mesh is used as
independent degree of freedom to optimize accuracy,
robustness, and computational efficiency. The main
elements in an ALE simulation are an explicit La-
grangian phase, a rezone phase in which the computa-
tional mesh is redefined, and a remapping in which the
Lagrange solution is transferred to the rezoned mesh.
Of these three processes, it is the rezone phase that is

least developed.

The purpose of this paper is to describe a general re-
zone strategy that ensures the continuing geometric
quality of the computational mesh while keeping the
rezoned mesh at each time step as close as possible
to the Lagrangian. Geometric quality includes such
mesh features such as smoothness, invertibility, and
cell size, shape, and orientation. The latter three prop-
erties are derived from the Lagrangian mesh; size and
orientation are mostly preserved while the shape is im-
proved to remove mesh distortions which can result in
loss of accuracy or non-invertible cells. By keeping
the rezoned mesh ’close’ to the Lagrangian mesh, it
is believed that solution adaptivity is preserved while
level of accuracy is increased. To further enhance so-
lution adaptivity, we intend in future to incorporate
error estimates based on solution field (e.g. velocity
or acceleration) to the mesh optimization strategy.

The essential new idea in this paper is the recognition
that the Lagrangian solution before rezoming con-



tains sufficient information about the flow to con-
strain our measure of the smoothness of the mesh.
More specifically, the Lagrangian mesh reflects both
the physical motion of the fluid and unphysical distor-
tion. We assume that the unphysical distortion of a
computational mesh has a much shorter wavelength,
and so can be separated from the physical motion by
averaging over a small neighborhood of the cell. This
assumption naturally leads to a desire that rezoned
mesh be close to the Lagrangian mesh but ”smoother”
(i.e., better geometrical quality). By requiring the re-
zoned mesh to remain as close as possible to the La-
grangian mesh, we will minimize the error of the remap
phase. Our preliminary results for ALE method using
logically-rectangular meshes, [5], look very promising.
In this paper, we describe our methodology for un-
structured meshes.

The general unstructured mesh is defined by positions
of the nodes and connectivity. Between the node and
each of its neighbors is an ”edge-vector”. Using con-
nectivity one can use edge-vectors to form the columns
of matrices (Jacobians). Valid mesh is uniquely de-
fined by these Jacobian matrices. If two meshes with
same connectivity have close set of Jacobian matrices
the positions of corresponding nodes are also close.
This leads to the following strategy. We first con-
struct Jacobian matrices —termed the reference Ja-
cobian matrices (RJM’s) —that are based on the ge-
ometry of the nearest neighbors of a Lagrangian cell,
effectively smoothing the shorter wavelength mesh de-
formation . It is not possible to use the RJMs defined
at each vertex by itself to derive the new (i.e., rezoned)
positions of the vertices because the RJMs related to
the cell specifies the vectors that form the edges of a
cell and there is no guarantee that these vectors will
form a closed figure. Furthermore the cells do not ex-
ist in isolation from each other. Each vertex belongs
to many cells; a simple rezone strategy applied indi-
vidually to each cell will lead, in general, to incompat-
ible specifications of the rezoned position of any ver-
tex. Ezactly for this reason one cannot simply use
just a local optimization procedure for constructing
global rezoned mesh. The resolution is to construct a
global functional that measures the difference between
the RJM (which depends on the Lagrangian mesh and
the smoothing process) and the rezoned Jacobian (not
known before the minimization process) of all cells in
the mesh. Minimizing this functional over the entire
mesh (as a function of each of the vertex coordinates)
then leads to the rezoned mesh. This strategy still
does not guarantee that the rezoned mesh is unfolded.
However in our framework, this property now can be
easily enforced through a simple modification of our
global functional to include a barrier function that ef-
fectively penalizes any solution where the area of the
cell is much smaller than the area derived from the
RJM.

The flows that we are interested in are usually mul-
timaterial, and it is important to maintain interfaces
between different materials during ALE calculations.
This means that nodes that are on material inter-
face have to stay on this interface during optimization.
This requirement leads to a constrained optimization
problem, in which there are less degrees of freedom for
nodes on interfaces. This constraint has to be taken
into account in the construction of RJMs as well as in
the global optimization stage.

To summarize, our method consists of two compo-
nents: a sequence of local optimizations followed by
a single global optimization (see flow-chart in Fig. 1).
The local optimization — stage I in Fig 1 — defines
"reference” Jacobians (Jy¢ ), that incorporate our def-
inition of mesh quality at each point of the mesh. The
"rezoned” mesh results from minimizing a global ob-
jective function that measures the distance (in a least-
squares sense) between the Jacobians of the rezoned
mesh and the reference Jacobians — stage Il in Fig. 1.
The global optimization resolves incompatibilities of
the locally defined RJMs in a smooth manner. We use
Lagrangian mesh as initial guess for global optimiza-
tion. Because the Lagrangian mesh is usually close
to the minimizing mesh, the global minimization pro-
cess usually converges quickly. The Lagrangian mesh
is assumed to be invertible.
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Figure 1. Flow chart.

The rest of the paper is organized as follows. In sec-



Figure 2. The patches on the triangular mesh. Only
the fragment of the triangular mesh in the unit square
s shown.

tion 2. we describe how to construct RJM for given
Lagrangian mesh. In section, 3., we describe proce-
dure to construct rezoned mesh for given set of RJMs.
The description includes discussion of the global ob-
jective function, optimization procedure, special case
of constrained optimization, and numerical examples.
Finally, in the conclusion (section 4.) we summarize
results and describe future work.

2. CONSTRUCTION OF REFERENCE
JACOBIAN MATRIX (RJM) FROM
LAGRANGIAN MESH

As asserted above, the Jacobian matrix is the natu-
ral object with which to analyze and control the first-
order properties of the mesh. In particular, to produce
a smooth mesh that is close to the Lagrangian mesh,
we will begin with the Jacobians that correspond to
Lagrangian mesh and modify them to form the RJMs.
These modifications will be performed locally. For ex-
ample, on the 2D triangular mesh in Fig. 2, we con-
sider a central mesh point and all nodes which are
connected to central node by edge-vectors. This pro-
cedure defines patch consisting of all triangles which
have central node as a vertex, — stage 1.1 in Fig. 1.
Two such patches are highlighted in Fig. 2 Suppose
that we have some method of choosing a better posi-
tion for this central node, while keeping all the other
mesh points of the patch fixed — stage 1.2 in Fig. 1.
Virtual displacement leads to new edge vectors (refer-
ence edge vectors) and hence a new Jacobian for each
of the triangles in the patch — stage 1.3 in Fig. 1.
These new Jacobians are the RJMs at this mesh point.
In this paper we will describe our strategy for virtual

displacement of central node in patch based on a the-
ory of algebraic mesh quality [6], [7]. If we denote
central node in the patch by C, and enumerate the
nodes on the boundary of the patch in counter-clock-
wise order then typical triangle in this patch looks like
the one shown in Fig. 3. We denote edge vectors con-
necting central node with k-th node on the boundary
of the patch by ey, its length is denoted by l;. The
area of triangle with vertices C, k, k 4+ 1 is denoted
by AkJr%. Accordingly to [6], [7] we will form Jaco-

Figure 3. Typical Triangle in Patch

bian matrix JIH-% = (ex|ek+1), and will use condition
number, £(Jp; 1), of this matrix as measure quality

of corresponding triangle from point of view of central
node. Simple algebra shows that

(s) = i

The optimal virtual position of central node, (z., y.)
of the patch is found by minimizing following func-
tional

Fc(xc,yc) = % ZH(‘]/H-%) .

k

To minimize this functional we use a direct optimiza-
tion procedure described in detail in section 3.2. Op-
timization starts with Lagrangian mesh (which is as-
sumed to be valid mesh - all areas of triangles are pos-
itive) as initial guess. It is important to note that the
virtual movement of the central point always leads to
RJMs with positive determinant (areas of triangles),
because these areas are in the denominator of each
term in functional and effectively play the role of bar-
riers. Fig. 4 shows the original local patches marked in
Fig. 2 and corresponding virtual displacement of cen-
tral point. In Fig. 4 a) we present ”smooth” patch. In
this case optimal virtual position is almost the same
as original position of central node. In case of "non-
smooth” patch, shown in Fig. 4 b) optimal virtual
position differs significantly from original Lagrangian



Figure 4. Local virtual movement of central node of the
patch: a) Smooth patch, b) Non-smooth patch.

position. These results show that the local optimiza-
tion produces RJMs which are significantly different
from Jacobian matrices of Lagrangian mesh only in
regions where its geometrical quality is low.

3. CONSTRUCTION OF THE MESH FOR
GIVEN SET OF REFERENCE JACOBIANS

In this section we describe the construction of the
global objective function and our optimization pro-
cedure in more detail — stage II in Fig. 1. Assume
that we are given reference Jacobian matrices Jyr
with positive determinant. Our goal is to construct a
rezoned mesh whose set of Jacobian matrices, J, are
close to the set of J’ref and which also has positive
determinant everywhere (so that the rezoned mesh is
unfolded). The global objective function is based on
the idea presented in [8] that if one performs a least-
squares fit between the Jacobian matrices (or their in-
verses) and the reference Jacobian matrices, one can
control basic mesh properties such as smoothness, cell
shape, size, and orientation.

3.1 Global Objective Function

The RJMs described in the previous section can be
conveniently denoted using two indices: subscript in-
dex, n, for node, and superscript index, t for triangle.

The global objective function, whose minimization
yields the rezoned mesh with set of nodes (z, ¥n)
is

|| thL - (Jref)t ||%
F(..@p,Yn,...) = n
2 SZ() [T/ T rep) |

Here St(n) is set of triangles which share node n as a
vertex, and || - || is the Euclidean (Frobenius) norm
of the matrix, i.e., the square root of the sum of the
squares of all elements of the matrix, and | - | is the

determinant of the matrix. Note that the nonlinear
functional includes a barrier function |J|/|Jycf| in the
denominator. This barrier function penalizes any so-
lution that is close to being degenerate, i.e., where the
sought for Jacobian |.J| is much smaller than the de-
terminant of the RJM or perhaps even vanishes.

We note that this minimization problem belongs to
the class of so-called nonlinear least squares [9] for
which effective minimization procedures have been de-
veloped.

Below we describe a minimization approach that takes
into account the specifics of our problem.

3.2 Optimization Procedure

The goal is to minimize a real-valued objective func-
tion F'= F(...,Zp, Yn,...),n =1,2,..., N of 2N vari-
ables, where N is the number of free nodes in the mesh.
There is no theoretical proof that a unique global min-
imum exists, however our numerical experiments with
logically rectangular mesh presented in [5] suggest that
unique minimum do exist.

The basic optimization technique is a line search pro-
cedure coupled with a conjugate gradients algorithm
to determine the search direction, as described in
Chapters 3 and 5 of [9]. The optimization procedure is
iterative, beginning with an initial (Lagrangian) mesh.
The feasible region consists of the mesh node config-
urations that yield an invertible mesh. The initial
mesh is assumed to lie in the feasible region. This as-
sumption is checked at the beginning of the optimiza-
tion procedure. The optimization procedure is initial-
ized by computing the value of the objective function
Fy = F(...,2%,4% ...) on the initial mesh and the
initial gradient (VF')g. The initial search direction is
po = —(VF)o.

Basic steps in the iteration procedure are

e increment the iteration counter k; halt if maximum
allowable count exceeded (procedure failed to find lo-
cal minimum),

e compute the maximum component of the gradient
vector in absolute value (i.e., the (o, norm); halt if
this is less than some initial tolerance 7 (procedure
has produced an iterate close to a local minimum) 7 =
1.e — 06 works well in practice.,

e given the search direction py, perform the line search
to get the step length ay, > 0,

e if a;; = 0, check the solution by changing the search
direction to be minus the gradient (steepest descent)
and re-doing the line search; if the step length is still
zero, then the iteration successfully halts at a local
minimum,

o if a;; > 0, update the iterate (mesh): 41 = z +



Pk,

e evaluate the objective function on the new iterate
_ 1 k41
Fiyr = F(o bt yhtl )

e evaluate the gradient (VF')i41 on the new iterate,

e compute a new search direction based on conjugate
gradient scheme

Pr1 = —(VE)ry1 + Br pr
with 3, given by the Fletcher-Reeves
Brr =] (VE)gs1 [ /[ (VE)y [°
or Polak-Ribiere formulas [9],

Brr=BFR
—(VF)iq1 - (VE)/ | (VF)i |?

® go back to the start of this itemization

3.2.1 Calculation of the Gradient

Evaluation of the objective function is straightforward,
given the mesh. The gradient of the objective function
is computed numerically. For each node n of the mesh
one has coordinates Z,,¥yn. The n-th component of
the gradient is approximated by

OF[0xn=[F(...;xn + €,Yn,-..)

—F(.c.,Zp,Yn,--)]/€
OF [0yn=[F(..c;Tp,Yn + €, ...)
—F (., Ty Yn,-..)]/€

where € is chosen as some small fixed number (1.e-07
works well in practice) which ensures that the trial
mesh remains in the feasible region. The alternative
to this numerical computation of the gradient is to
first analytically calculate the gradient of F given the
formula for the objective function, then to evaluate
the analytic formula for the gradient on the computer.
The advantage of numerically computing the gradient
without using an analytic formula is that, in general
the analytic formulas are very complex and time con-
suming to evaluate. Since the optimal search direction
is not known, the small errors in the gradient due to
the approximation do not significantly affect the speed
of the overall optimization procedure.

3.2.2 The Line Search Algorithm

The inexact line search algorithm seeks to find a scalar
a > 0 such that the univariate function

6(a) = Flx, +apy)

is minimized or is made significantly smaller than
F(2%). A fixed search direction py, is given. The line
search begins with an initial guess for o, say o = 1,
and an initial mesh, xj. Objective function values are
compared at various trial meshes and the initial value
of a is either increased geometrically by a factor p or
decreased by 1/p. The line search procedure consists
of the following steps

Find an « for which the trial mesh x; = xj, + apy lies
inside the feasible region. This is done by decreasing
a by the factor 1/p until the trial mesh lies in the
feasible region. Since 2" lies in the feasible region, we
know there exists « sufficiently small such that z¢ is
feasible.

if ¢(a) > ¢(0), decrease « until ¢p(a) < ¢(0). Con-
tinue decreasing « until an increase in ¢(a) is found,;
return the last value of a.

else, increase « until either no further decreases in ¢
are found or until x; lies outside the feasible region.

3.3 Constrained optimization

In previous sections we have assumed that nodes are
free to move in any direction both in the formation of
RJMs and in the global optimization procedure. How-
ever, nodes which are on the boundary of the com-
putational domain have to stay there to maintain in-
tegrity of the geometry. This means that we need to
restrict their movement to be tangent to the bound-
ary. In many practical applications there are different
materials in computational domain and the interface
between them has to be preserved. Thus movement
of the nodes on the interface also has to be restricted
to the tangential direction. In this section we describe
how this can be taken into account for the case of the
logically rectangular meshes. In this case boundaries
and interfaces coincide with mesh lines (¢ = const, or
J =const).

First, we need to decide how to define boundaries and
interfaces. We have chosen the following approach.
To be specific, we describe our approach for an in-
terface defined by the segmented line given by nodes
(l'i’j, Yij - 1 = iintaj = jmin7~-~7jma1)~ In La-
grangian mesh we are given coordinates of the nodes
on this segmented line, x;,,, i, Yi;,.,;» Which we will
call reference nodes. For convenience, we introduce



notations &% = i, 3 Y = Yi,.,;- Lo describe lo-
cation of the arbitrary point on this segmented line
we first compute parameter ¢; for each reference node
by summing lengths of all segments in segmented line
which occur before this reference node:

i'=i

G= X e nr e )

J'=Jmin—1

For any parameter ¢, with t;min <t < t;-’mu, coordi-

nates x(t), y(t) of point on segmented line are defined
as follows. If for some ji we have t’ <t <17 ., then

x(t), y(t) are defined by linear interpolation with re-
spect to ¢ of coordinates x7, , yj , and &}, 1, Yj, 11

To summarize, the segmented line will be the ”inter-
face” on which we want interface points to remain dur-
ing optimization. This interface is described by the
set of triplets (x;, Yj, tj), which are x, y coordinates,
and parameter ¢ value in reference point. This gives
enough information to find position on the interface

for any value of ¢, t7 =~ <t <t}

JImaz"

In our global minimization problem each internal node
which is not on an interface or boundary is represented
by two degrees of freedom, which are its coordinates
Zij, Yi,; and during optimization procedure we are
trying to find these values which minimize our objec-
tive function. Nodes on interfaces or boundaries will
be represented just by one degree of freedom — that
is by parameter ¢;,,, ;. During optimization we will
adjust the value of this parameter. Because objective
function does not explicitly depend on ¢, but rather
depends explicitly on = and y, then each time when
we need to compute objective function for new values
of parameter ¢, we first compute corresponding values
of x and y using parametric representation of inter-
face. In particular, when we need to compute numer-
ical derivative of objective function with respect to ¢,
we first compute x and y which correspond to ¢ + ¢
and then compute value of objective function.

To preserve geometric integrity, especially for non-
smooth boundaries we have an option in our algorithm
not to move some nodes at all and keep them in La-
grangian positions (for example, corners of square).
In some cases it is convenient to fix boundary nodes
if some special procedure is used for distribution of
nodes on the boundary.

3.4 Numerical Examples

For ALE calculations it is very important that sig-
nificant changes in the mesh occur in regions where
original Lagrangian mesh has low geometrical quality,

0.8

0.6 - i

04 &l

0.2
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0 0.2 0.4 0.6 0.8 1

Figure 5. Lagrangian mesh (Delaunay mesh) - min
angle=1.8°, maz angle =159°; condition number:
min=2, mar=64.8.

and in regions where mesh was good already it is al-
most untouched. This is demonstrated in the next two
examples.

First, we present an example of a triangular mesh (ac-
tually Delaunay mesh for given set of nodes) in unit
square, where distribution of nodes are very irregular.
In Fig. 5 we present Lagrangian mesh and in Fig. 6 we
present rezoned mesh. The maximum value of condi-
tion number is reduced dramatically, and also minimal
angle is increased and maximum angle is decreased sig-
nificantly even though these quantities are not explic-
itly involved in the objective function. Longer wave-
length features of the mesh have been preserved.

Next, we present an example of our rezoning algorithm
for triangular Lagrangian mesh in the domain which
is unit square with one corner cut away by quadrant
of circle of radius 0.2 (see Fig. 7). In this example
all internal nodes are free, nodes on curved piece of
the boundary and in the corners are fixed, and nodes
on straight segments of the boundary can move along
these segments. The mesh in the subregion near right,
top corner (obtained from square mesh by subdividing
squares by diagonals) is very regular. For ALE, we
desire that our smoothing algorithm not change the
mesh in this subregion very much. The area close to
curved boundary has some very distorted triangles, so
we desire that our smoothing algorithm improve the
quality in that area. The rezoned mesh is presented
in Fig. 8; an overlay of original and rezoned mesh is
given in Fig. 9. Indeed, the quality of the distorted
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Figure 6. Rezoned mesh - min angle=12.5°, mazx
angle=139.8°; condition number: min=2, max=9.52.
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Figure 7. Lagrangian mesh: minimal angle = 16.7°, maxi-
mum angle = 129.2°; condition number: min=2, max="7.25.

triangles has improved while the regular portion of the
mesh is unchanged.

Overall quality of the mesh is improved (minimal angle
is increased from 16.7° to 22.0° and maximum angle
is decreased from 129.2° to 120.2°.

We next present an example of our rezoning algorithm
for the case of constrained movement on nodes on in-
terface. This example is snapshot of model calcula-
tions of Rayleigh-Taylor instability problem, [10]. The
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Figure 8. Rezoned mesh: minimal angle = 22.0°, maximum
angle = 120.3%; condition number: min=2, max=>5.61.
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Figure 9. Comparison of Lagrangian and rezoned meshes

Rayleigh-Taylor instability problem that we simulate
consists of two ideal gases with two different densities.
Initially, the heavier gas is above the lighter gas in a
rectangular vessel [0 : 1/6] x [0 : 1], with a gravita-
tional field directed vertically downward. The inter-
face has been deliberately perturbed. Initially both
gases are at rest (velocity is zero everywhere); the
pressure distribution is approximately hydrostatic. It
is well known that this configuration is unstable and
as time progresses, the heavier gas will sink and the
lighter gas will rise through the formation of bubbles
and spikes. The time evolution of this problem leads
to a rollup of the interface and the generation of signif-
icant vorticity. In Fig. 10 we present meshes obtained
as result of Lagrangian step in framework of ALE cal-
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Figure 11. Comparison of original Lagrangian inter-
face (solid line) with one obtained by unconstrained,
a), and constrained, b), optimization.

culations for some time moment corresponding to de-
veloped stage of instability. In Fig. 11 we present com-
parison of original Lagrangian interface with one ob-
tained by unconstrained and constrained optimization.
It is clear from this comparison that unconstrained op-
timization can produce interface which is even visually
distinct from the original Lagrangian interface. Com-
parisons of fragments of the corresponding meshes is
shown in Fig. 12. It is very important to understand
that in ALE calculations of gasdynamics flow rezoning
is performed on each time step and small differences
in meshes will grow with time and can lead to quite
different results.

To conclude this section we present mesh obtained as
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Figure 12. Comparison of rezoned mesh obtained by
unconstrained optimization, solid line, and rezoned
mesh obtained by constrained optimization, dashed
line. Nodes on interface obtained by constrained op-
timization marked by asterisk.

result of pure Lagrangian calculation (no rezone) of
Rayleigh-Taylor problem, Fig. 13, and mesh obtained
as result of ALE calculations (when described rezoning
is performed each time step), Fig. 14. The ALE mesh
is much smoother and yet more closely follows the flow
features. More detailed results for this problem are
presented in [5]. These results show that our ALE
calculations capture the width of mixing layer much
more closely than the Lagrangian approach; of equal
interest, the ALE simulation reproduces some of the
details of the interface shape.

4. CONCLUSION AND FUTURE WORK

In this paper we have described a general framework
for rezone strategies based on the reference Jacobian
approach. This approach allows us to construct a
mesh with optimized geometrical quality whose Jaco-
bian matrix is closest (in the sense of least squares)
to a locally prescribed reference Jacobian matrix. We



=N

%/;///

7
/4;//4

\\\\\\\\\\\\

7

iz Dy
Wi = <\ i
Il \ }\\\\

N
il N !
A

4

_

\\\wa\l\“

\%‘\\\‘

=
==
=~

=

[

=

=

—

I{l {llll

0
s
"III’ ";0‘

—

l

|

il
et 7
Il “\‘\\\\m \\\\“ ""I"l%

I {,, =
il
|

d
g-‘-;“:’*' I

=—————

=
—

___,,_

g |

it
R
RN
i
al \\\\\\\\‘\‘“‘Q‘N\\\\\\\\\\\%\\\\%{{{{{{\x \

R
T
I

S>
—
=
2=
e

=
—

N\

=
SS=——
~—
=
\ ==

\\\\\
N\ ml
N\ =
NN
1111 LU RRA NS )l

o] 0.02 004 006 008 0.1 012 014 016

Figure 13. Mesh obtained as result of pure Lagrangian calcu-
lations
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Figure 14. Mesh obtained as result of ALE calculations

have described how this general framework can be used
to ensure that the mesh has appropriate geometrical
quality and is guaranteed to be valid, while keeping the
mesh nearly Lagrangian and aligned with the bound-
ary and any internal interfaces. This is achieved by
a special procedure of constructing RJM’s, based on
local optimization of the condition number.

The reference Jacobian framework is general enough
to allow us to include more information about the so-
lution in the construction of the RJM. In particular we
are planning to incorporate error estimates [11, 12] to
create truly adaptive ALE algorithms, where error will
be minimized by appropriate choice of computational
mesh. Our approach also can be used for generating

meshes similar to reference mesh in context of design
process, [13].

In principle, our approach can be naturally extended
to three dimensional unstructured meshes, which is
the subject of our current work.
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